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Abstract 
 

In this work, nonlinear vibration of microbeams under magnetic field is studied. The equation governing 
motion of microbeam resting on a linear elastic layer and under magnetic field is derived by using the 
modified couple stress theory and Hamilton’s principle. Amplitude–frequency relationships of 
microbeams with pinned–pinned and clamped–clamped end conditions are obtained in closed-forms by 
using the equivalent linearization method with a weighted averaging. Accuracy of the present solution is 
verified by comparising the obtained solution with previous solutions. Efects of the material length scale 
parameter, the stiffness coefficient of the linear foundation and the magnetic field on the frequency ratios 
of microbeams are investigated in this paper. 
 

 
Keywords: Modified couple stress theory; nonlinear vibration; microbeams; equivalent linearization 

method; weighted averaging. 
 

1 Introduction 
 
Micro/Nano-beams have many applications, especially in Micro/Nano-electromechanical systems 
(MEMS/NEMS) such as sensors, nanowires, micro-actuators, micro-switches and atomic force microscopes 
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[1-5]. Unlike structures at the macro-scale where the microstructure size-dependency can be neglected; for 
structures at the micro-scale, material size dependence is very important and cannot be neglected. The 
classical elastic continuum theory is not suitable to describe behaviors of micro-/nano-structures, thus some 
higher-order elastic theories have been developed to describe the size-dependent behavior of micro-/nano-
structures such as the nonlocal elasticity theory proposed by Eringen [6], the strain gradient theory 
introduced by Aifantis [7], the couple stress theory proposed by Toupin, Mindlin and Tiersten [8,9] and the 
nonlocal strain gradient theory proposed by Lim, Zhang and Reddy [10].  
 
The couple stress theory [8,9], besides the two classical elastic constants (Lamé constants), contains two 
material constants (the material length scale parameters). Because of difficultity in applying, the couple 
stress theory was modified by Yang, Chong, Lam and Tong in 2002 [11] by introducing an applicable theory 
with only one additional material constant was considered, this theory was called the modified couple stress 
theory (MCST). MCST is more useful than the classical one, thus this theory is widely used by researchers. 
To date, many works related to micro/nano-beams using MCST have been published. Nateghi et al. analyzed 
buckling of functionally graded materials (FGM) microbeams based on MCST [12]. Based on a new unified 
beam theory and the modifed couple stress theory, bending and vibration behaviors of FGM microbeams 
were investigated by Şimşek and Reddy [13]. Static and dynamic beharvior of the third-order shear 
deformation FGM microbeam based on MCST was studied by Salamattalab et al. [14]. Free vibration of 
nonuniform microbeams was investigated by Khaniki and Hashemi using MCST [15]. Based on MCST and 
Euler–Bernoulli beam theory together with the von-Kármán’s nonlinear strain–displacement relationship, 
Şimşek studied the static and nonlinear vibration of microbeams resting on the nonlinear elastic foundation 
[16]. In the work of Jam et al. [17], MCST was used to analyze nonlinear free vibration behavior of 
microbeams resting on the viscoelastic layer. And, based on MCST, Hieu [18] investigated the postbuckling 
and nonlinear free vibration of microbeams resting on three nonlinear elastic layers. 
 
Vibration responses of beams and tubes under magnetic force also attract many authors. Based on nonlocal 
elasticity theory, vibration of double-walled carbon nanotubes under the longitudinal magnetic field was 
investigated by Murmu et al. [19]. Nonlinear free vibration of nonlocal elasticity nanobeams under magnetic 
field was studied by Chang [20]. Sun et al. used the nonlocal elasticity theory to analyze nonlinear vibration 
of buckled nanobeams under longitudinal magnetic field [21]. Effect of longitudinal magnetic field on 
vibration response of a sing-walled carbon nanotube embedded in viscoelastic medium was investigated in 
the work of Zhang et al. [22]. And, influence of magnetic field on size sensitivity of nonlinear vibration of 
embedded nanobeams was studied by Zhao et al. using the nonlocal Timoshenko beam theory [23].  
 
However, according to authors' knowledge, there has no published work on the vibration of microbeams 
resting on the elastic foundation under magnetic force based on MCST. Thus, in this work, based on MCST 
and the Von-Kármán’s assumptions about strain-displacement relationships, we focus on analyzing 
nonlinear free vibration of microbeams resting on linear elastic medium under effect of magnetic force. The 
equivalent linearization method (ELM) with a weighted averaging [24,25] is used to obtain approximate 
frequencies of microbeams with pinned-pinned (P-P) and clamped-clamped (C-C) end conditions. Accuracy 
of the current solution is verified by comparising the obtanied solution with the published solution and the 
numerical solution using the 4th-order Runge-Kutta method. Effects of the material length scale parameter, 
the magnetic field and the coefficient of the linear elastic layer on nonlinear vibration behavior of 
microbeams are investigated in this paper. 
 

2 Governing Equation 
 
2.1 The modified couple stress theory 
 
The strain energy for an isotropic linearly elastic material occupying a volume   according to the modifed 
couple stress theory [11] is given as: 
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   2 2
1

1 1
: : : : ( ) .

2 2
U d l tr d 

 

 
        
 σ ε m χ ε ε χ χ ε  (1) 

 
where σ , ε , m and χ  are the symmetric part of the Cauchy stress tensor, the strain tensor, the deviatoric 

part of the couple stress tensor and the symmetric curvature tensor, respectively; l is the material length scale 

parameter;   and   are Lamé constants. 

 
The kinematic relations are given as: 
 

1
( ) ,

2
ε u u T       (2) 

 

1
( ) ,

2
χ ω ω T     

 
(3) 

 
where u and ω  are the displacement and rotation vectors, respectively, which are described as follows: 
 

1
.

2
ω ucurl

 
(4) 

 
Expressions of tensors σ  and m are described as:  
 

( ) 2 ,σ ε I εtr  
 
(5) 

 
22 .l m χ

 
(6) 

 

Lamé constants   and   can be expressed as the elasticity modulus E and Poisson’s ratio   as follows: 

 

, .
(1 )(1 2 ) 2(1 )

E E
 

  
 

    
(7) 

 

2.2 The Governing Equation for Microbeam 
 
An isotropic microbeam resting on a linear elastic foundation with the spring constant kL of the Winkler 

elastic mediun is considered in Fig. 1. The microbeam of length L and cross-section dimension b h  is 
subjected to the longitudinal magnetic field.  
 
The displacement field based on Euler–Bernoulli beam theory takes a following form: 
 

( , )
( , , ) ( , ) ,x

w x t
u x z t u x t z

x


 

  
(8) 

 

( , , ) 0,yu x z t 
 
(9) 

 

( , , ) ( , ),zu x z t w x t
 
(10) 



here ux, uy and uz are the displacements
transverse displacements, respectively,
 

Fig. 1. Schematic of a microbeam

 
The strain–displacement relationship 
 

( , ) 1 ( , ) ( , )

2
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     

   
        

   
 
The rotation vector ω has the components
 

( , )
0, , 0.x y z

w x t

x
  


   


 
And, the components of the symmetric

 
2

2
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, 0.

2
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x
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
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
 
Using Hamilton’s principle 
 

 1 2

0

t

extT W U U dt    
 
where T, Wext, U1 and U2 are the kinetic
in Eq. (1) and the strain energy induced
motion of microbeam based on MCST
 

 
4 2 2

2

4 2 22

w EA w w w
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 

    
     

     
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displacements along x, y and z directions, respaectively; u and w are
respectively, of any point on the neutral axis of microbeam. 

 
microbeam resting on the linear elastic medium under the longitudinal

magnetic field 

 based on the Von-Kármán’s assumptions are expressed as:

2 2

2

( , ) 1 ( , ) ( , )
; 0.xx yy zz xy xz yz

u x t w x t w x t
z

x x x
     

   
        

   

components given by: 

( , )
0, , 0.x y z

w x t

x
     

 
(12) 

symmetric curvature tensor χ  are given as: 

, 0.xy xx yy zz xz yz           
 
(13) 

0,T W U U dt   

 

(14) 

kinetic energy, the work done by the external forces, the strain
induced by the linear elastic layer, respectively, the governing

MCST can be obatined as follows: 

24 2 2

4 2 2

0

.
2

L

L

w EA w w w
EI Al dx k w A F

x L x x t
 

     
      
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(15) 

 
 
 

; Article no.ARJOM.46392 
 
 
 

4 
 
 

are the axial and 

 

longitudinal 

as: 
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(11) 

strain energy given 
governing equation of 
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In Eq. (15), 
3 /12I bh  is the inertia moment of the cross-section, A bh  is the area of the cross-

section,   is the the mass density of the microbeam, and F is the Lorentz force due to the longitudinal 

magnetic field. The Lorentz force along the z direction is denined as [20,21]: 
 

2
2

2
.x

w
F AH

x






 

(16) 

 
where   is the magnetic permeability, Hx is the component of the longitudinal magnetic field.  

 
Substituting Eq. (16) into Eq. (15), the equation of motion of micro beam becomes: 
 

 
24 2 2 2

2 2

4 2 2 2

0

0.
2

L

L x

w EA w w w w
EI Al dx k w A AH

x L x x t x
  

      
       

       


 

(17) 

 
Introducing the dimensionless parameters: 
 

44 2 2
26

, , , , 1 , , .
1

L
L x

k Lx w AL l AL
x w t t K H H

L r EI h EI EI

  



        



 

(18) 

 

where /r I A  is the radius of gyration of the cross-section of the microbeam.  

 
Considering Eq. (18), Eq. (17) can be written in the dimensionless form as follows: 
 

214 2 2 2

4 2 2 2

0

1
0.

2
L

w w w w w
dx K w H

x x x x t

      
       
       


 

(19) 

 

The displacement function ( , )w x t  is assumed to be expressed as: 

 

( , ) ( ) ( ),w x t V t x  (20) 

 

where ( )V t  is the unknown time-dependent function and ( )x is the basis function satisfying the 

kinematic boundary conditions. The basis functions can be chosen as follows: 
 
+ For P-P microbeam: 
 

( ) sin( ).x x 
 (21) 

 
+ For C-C microbeam: 
 

 
1

( ) 1 cos(2 ) .
2

x x  
 (22) 

 
Using Galerkin method, we substitute Eq. (20) into Eq. (19) then multiplying both sides of the obtained 

equation with ( )x  and integrating this equation over the domain (0,1), we get: 
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(23) 

 
where 

1 1
(4)

0 0
1 1 1

2 2
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   


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(24) 

 

 
1 1

2

0 0
2 1

2

0

1
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2
.

dx dx
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  





 
 
  
 


 
(25) 

 
Assuming that microbeam has the following initial conditions: 
 

(0) , (0) 0,V V   (26) 

 
where   is the dimensionless maximum amplitude of oscillation.  
 

3 Solution Procedure 
 
ELM with a weighted averaging [24, 25] will be used to find approximate solution of Eq. (23). Based on 
ELM proposed by Caughey [29], the equivalent linearization method with a weighted averaging has 
improved the disadvantages of the linearization method equivalent with the classical averaging. Some 
strongly nonlinear oscillations have been analyzed by applying this method [18, 25-28].  
 
First, we introduce to the linearized form of the nonlinear equation (23) as follows: 
 

2( ) ( ) 0.V t V t 
 
(27) 

 
In Eq. (27),   is known as the frequency of oscillation, it can be determined by using the mean square 
criterion which minimizes the error between two equations (23) and (27): 
 

 
2

22 3 2
1 2( ) .e V V V V Min


       (28) 

 

From condition: 
 

2

2

( )
0,

e Q







 (29) 

 

we get: 
 

2 4
1 22

2
.

V V

V

 



  (30) 
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In Eq. (30), the symbol �  denotes the time – averaging operator in classical meaning [30]: 

 

0

1
( ) lim ( ) .

T

T
V t V t dt

T
   (31) 

 
For a ω-frequency function , the averaging process is taken during one period T, namely: 
 

2

0 0

1 1
( ) ( ) ( ) , .

2

T

V t V t dt V d t
T



     


   
 

(32) 

 
The averaging values in Eqs. (31) and (23) are called the classical averaging values. In this work, we use the 
weighted averaging [24, 25] to determine averaging values in Eq. (30). According to Anh’s idea [24], the 

constant coefficient 1/T in Eqs. (31) and (32) is replaced by a weighted coefficient function ( )h t . Thus, we 

get the weighted averaging value: 
 

0

( ) ( ) ( )
w

V t h t V t dt


  , (33) 

where the weighted coefficient function ( )h t
 
satisfies the following condition: 

 

0

( ) 1h t dt


 . (34) 

 
In this work, we use a specific form of the weighted coefficient function as follows [24]: 
 

2( ) s th t s t e   , (35) 

 
where s is a positive constant. Eq. (33) will take the form of Eqs. (31) and (32) as s=0. The solution of Eq. 
(27) is given as: 
 

( ) cos( )Q t t   (36) 

 

With the periodic solution in Eq. (36), the averaging values 
2V  and 

4V  in Eq. (30) can be determined 

by using Eq. (33) with the weighted coefficient function given in Eq. (35) and Laplace transform as follows: 
 

2 2 2 2 2 2

0

4 2
2 2 2 2

2 2

0

cos ( ) cos ( )

2 8
cos ( ) ,

( 4)

s t

w w

s

V t s t e t d t

s s
s e d

s





    

    







 

 
 







 (37) 

4 4 4 4 2 4

0

8 6 4 2
2 2 4 4

2 2 2 2

0

cos ( ) cos ( )

28 248 416 1536
cos ( ) .

( 4) ( 16)
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s
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s s s s
s e d
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



    

    
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
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

 

   
 

 





 (38) 
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Substituting Eqs. (37) and (38) into Eq. (30), we obtain the approximate frequency of oscillation: 
 

2
1 2

8 6 2

24

4

2 2

28 248 416 1536

( )(
.

12 8 6)
NL

s

s s s s

ss
   

  




 

 
 (39) 

 

The approximate frequency NL  in Eq. (39) depends on both the initial amplitude α and the parameter s. 

With 2s  , we obtain the approximate frequency: 
 

2
1 20.72 .NL    

 
(40) 

 
Thus, the approximate solution of oscillation is: 
 

 2
1 2( ) cos 0.72 .V t t    

 
(41) 

 

Using the basis functions ( )x  given in Eqs. (21) and (22), and performing the integrations in Eqs. (24) 

and (25), we get the approximate frequencies: 
 
 + For P-P microbeam:  
 

4
2 4 2( ) 0.72 .

4
NL LK H


   

 
      

 
 (42) 

 
 + For C-C microbeam:  
 

4
2 4 24 16

( ) 0.72 .
3 3 3

NL LK H


   
 

      
 

 (43) 

 

4 Numerical Results and Discussions  
 
Accuracy of the current solution is verified by comparing this solution with the published solution. The current 
frequencies are compared with the approximate frequencies achieved by Sun et al. [21]. Using the Multiple 
Scales Lindstedt-Poincare (MSLP) method and the nonlocal elasticity theory, Sun et al. [21] obtained the 
approximate frequency of nanobeam under magnetic field. Comparison is presented in Table 1 with noted that 
the material length scale parameter l/h and the linear elastic foundation parameter KL are set to zero. We can see 
a very good agreement between the two approximate frequencies from this Table.  
 

Fig. 2 shows the time history of responses for P-P and C-C microbeams are compared with the ones obtained 
by the 4th-order Runge-Kutta method. Again accuracy of the current solution can be observed. 
 

Effects of the material length scale parameter l/h, the magnetic field and the Winkler parameter KL of the 

elastic layer on the nonlinear frequency ( NL ) and the frequency ratio ( /NL L  ) of microbeam are 

investigated in the below part. Noted that the linear frequency of microbeam can be achieved by letting the 

initial amplitude to be zero ( 0  ). We can see from Figs. 3-8 that both the nonlinear frequency and the 
frequency ratio of microbeams increase as the initial amplitude ( ) increases. In these bellow Figures, the 

Poisson’s ratio is chosen as 0.3   for steel material.  



Table 1. Comparison of

α H P–

present  

0.1 5 12.3056  
0.5 12.4754  
0.9 12.8629 
0.1 20 17.3053  
0.5 17.4264  
0.9 17.7059 
0.1 50 24.4041  
0.5 24.4902  
0.9 24.6898 

 

Fig. 2. Time history of responses of

 
Effects of the material length scale parameter

seen from Figs. 3-6. Figs. 3 and 4 plot

/NL L  of microbeam to the initial

parameter (l/h=0; 0.2; 0.4 and 0.6). And,

/NL L  of microbeam to the initial

10; 20 and 40) are showed in Figs. 

increases when the material length scale

hand the frequency ratio /NL L   of

the magnetic field H increase. When

magnetic field H, the linear frequency

a reduction in the frequency ratio NL L 
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of the approximate frequencies with the exact frequency
 

–P microbeam  C–C microbeam

MSLP  [21] present  MSLP

12.3059   24.6885  24.6887
12.4827   24.8019  24.8068
12.8859  25.0644 25.0802
17.3055   28.4063  28.4064
17.4317   28.5049  28.5091
17.7226  28.7336 28.7473
24.4043   34.6655  34.6657
24.4939   34.7464  34.7499
24.7018  34.9343 34.9456

of P-P microbeam (a) and C-C microbeam (b) for 0.3 
10H   and 100LK   

parameter l/h and the magnetic field H on response of microbeam

plot variations of the nonlinear frequency NL  and the frequency

initial amplitude   with some different values of the material

And, variations of the nonlinear frequency NL and the frequency

initial amplitude   with some different values of the magnetic

 5 and 6. We can see that the nonlinear frequency NL  

scale parameter l/h and the magnetic field H increase; but

of microbeam decreases as the material length scale parameter

When increasing invalues of the material length scale parameter

frequency L  increases faster than the nonlinear frequency NL , 

/NL L   of microbeam. 
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frequency 

microbeam 

MSLP  [21] 

24.6887  
24.8068  
25.0802 
28.4064  
28.5091  
28.7473 
34.6657  
34.7499  
34.9456 

0.3 , / 0.2l h  , 

microbeam can be 

frequency ratio 

material length scale 

frequency ratio 

magnetic field (H=0; 

NL  of microbeam 

but on the other 

parameter l/h and 

parameter l/h and the 

NL  which leads to 
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Finally, effect of the Winkler parameter (KL) of the elastic layer on the nonlinear frequency NL  and the 

frequency ratio /NL L   of microbeam is studied. Variations of the nonlinear frequency NL  and the 

frequency ratio /NL L   to the initial amplitude   for some different values of the Winkler parameter 

(KL=0; 10; 50 and 100) are presented in Figs. 7 and 8. It is reasonable that when value of the Winkler 
parameter (KL) increases, microbeams become harder and therefore the nonlinear frequencies of microbeams 
increase, this behavior is called the hardening spring behavior. On the other hand, when the Winkler 

parameter (KL) increases, the frequency ratios ( /NL L  ) of microbeams decrease. 

 

5 Conclusions 
 
Based on MCST and Euler-Bernoulli beam theory, nonlinear free vibration behavior of microbeam under 
longitudinal magnetic field is investigated in this work. The governing equation of motion of microbeam is 
derived by using Hamilton’s principle with the Von-Kármán’s assumptions about strain-displacement 
relationships. ELM with a weighted averaging is employed to get the approximate frequencies of 
microbeams with P-P and C-C end conditions. Comparing the obtained solution with the published solution 
and the numerical solution shows acurracy of the present solution. Effects of the material length scale 
parameter l/h, the magnetic field H and the Winkler parameter KL of the elastic layer on the nonlinear 

frequencies NL  and the frequency ratios /NL L   of P-P and C-C microbeams are investigated and 

discussed in the section 4. The nonlinear frequencies of microbeams increase as increasing in values of the 
material length scale parameter l/h, the magnetic field H and the Winkler parameter KL. And on the other 
hand, when the material length scale parameter l/h, the magnetic field H and the Winkler parameter KL 
increase, the frequency ratios of microbeams decrease. 
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