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Abstract

In this paper, exact solutions with bounded periodic amplitude to Kundu equation are
obtained through transformation, direct integration method and trial function method when the
parameters satisfy certain conditions. By the way, exact solutions for the derivative nonlinear
Schrödinger equation are also obtained. Two solutions’ images are displayed. These results
greatly enrich the solutions’ structural diversity for these equations.
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1 Introduction

Nonlinear Schrödinger type equations have been widely applied to the field of physics, such as plasma
physics, nonlinear fluid mechanics, nonlinear optics and quantum physics. In recent decades, this
type of equations have attracted many researchers to study, who have gotten fruitful results [1]-
[10]. Anjan Kundu derived the following higher-order nonlinear equation (Kundu equation) from
nonlinear Schrödinger type equations [11]

iut + uxx + β|u|2u+ γ|u|4u+ iα(|u|2u)x + is(|u|2)xu = 0, (1.1)

Kundu equation can be denoted into the following equivalent form

iut + uxx + β|u|2u+ γ|u|4u+ i(2α+ s)|u|2ux + i(α+ s)u2ūx = 0. (1.2)

When s = 0, Eq.(1.1) becomes the derivative nonlinear Schrödinger equation as follows

iut + uxx + β|u|2u+ γ|u|4u+ iα(|u|2u)x = 0. (1.3)

When α = 0, β = 2, γ = 4δ2 and s = −4δ , Eq.(1.1) becomes Kundu-Eckhaus equation

iut + uxx + 2|u|2u+ 4δ2|u|4u− 4iδ(|u|2)xu = 0, δ ∈ R, (1.4)

In addition, Chen-Lee-Lin equation iut + uxx + iδ2|u|2ux = 0 and Gerdjikov-Ivanov equation
iut + uxx + β|u|2u+ 2δ2|u|4u+ 2iδu2ūx = 0 are also special cases of Eq.(1.2).

Many scholars have obtained exact solitary wave solutions, travelling wave solutions and singular
periodic solutions for Eq.(1.1) [12]-[15]. Some scholars have also investigated Kundu-Eckhaus
equation from which rogue-wave solutions are obtained [16] and [17]. However, to our knowledge,
exact solutions with bounded periodic amplitude for Eq.(1.1) have not been reported. Difficulty to
look for exact solutions lies in the presence of the fifth-order nonlinear term in this type equations.
Recently, we have found that Eq.(1.1) possesses exact solutions with bounded periodic amplitude
under a special condition, that is 4 s2 − 16γ+4α s− 3α2 = 0. The aim of the present paper will be
to investigate Eq.(1.1) through transformation, direct integration method and trial function method
to obtain exact solutions including trigonometric and elliptic function solutions.

The rest of the paper is organized as follows: In Sect.2, we will simplify the structure of Eq.(1.1)
by transformation, and solve simplified equation. Sect.3 will be our conclusions.

2 Exact Solutions with Bounded Periodic Amplitude

By using a transformation

u(x, t) = Q(x, t)e(iW (x,t)+ivt), (2.1)

Eq.(1.1) can be transformed into the following equation

((3α+ 2 s)Q2(x, t)Qx(x, t) +Q(x, t)Wxx(x, t) +Qt(x, t) + 2Qx(x, t)Wx(x, t))i+ γQ5(x, t)

+(β − αWx(x, t))Q
3(x, t)− (v +W 2

x (x, t) +Wt(x, t))Q(x, t) +Qxx(x, t) = 0.
(2.2)

where Q(x, t) and W (x, t) are real functions to be determined, and v is real constant to be
determined.

Case 1: If set

Wx(x, t) = A+BQ2(x, t), Wt(x, t) = E + F Q2(x, t), (2.3)
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then Eq.(2.2) becomes the following form

((3α+ 2s+ 4B)Q2(x, t)Qx(x, t) + 2AQx(x, t) +Qt(x, t))i+Qxx(x, t)− (v +A2 + E)Q(x, t)

−(Aα+ 2AB + F − β)Q3(x, t) + (γ − αB −B2)Q5(x, t) = 0,
(2.4)

where A,B,E and F are real constants to be determined. When the parameters satisfy the following
conditions

3α+ 2s+ 4B = 0, Aα+ 2AB + F − β = 0, γ − αB −B2 = 0, (2.5)

or

A = 2 F−β
α+2s

, B = − 1
2
s− 3

4
α, γ = 1

4
sα− 3

16
α2 + 1

4
s2, (2.6)

then, Eq.(2.4) is simplified to the following form

(2AQx(x, t) +Qt(x, t))i+Qxx(x, t)− (v +A2 + E)Q(x, t) = 0. (2.7)

Solving equations 2AQx(x, t) +Qt(x, t) = 0, Qxx(x, t)− (v +A2 + E)Q(x, t) = 0, we have

Q(x, t) = C1 sin(
√
−v −A2 − E(x− 2At)) + C2 cos(

√
−v −A2 − E(x− 2At)), (2.8)

where C1, C2, E and v are arbitrary constants, they should satisfy the condition −v −A2 −E > 0.

Substituting Eq.(2.8) into Eq.(2.3) and integralling it , we obtain

W (x, t) = − 1

4
√

−v−A2−E
(B(C2

1 − C2
2 ) sin(2

√
−v −A2 − E(x− 2At))

+2BC1C2 cos(2
√
−v −A2 − E(x− 2At)) +

√
−v −A2 − E(4B(C2

1 + C2
2 )(− 1

2
x+At)

−4Et− 4Ax− 4C3) + 2BC1C2).

(2.9)

By using Wxt(x, t) = Wtx(x, t), we obtain F = −2AB. Therefore, when A,B, α, β, s and γ satisfy
the relationships

A = β
α
, B = − 1

4
(2s+ 3α), γ = 1

4
sα− 3

16
α2 + 1

4
s2, (2.10)

exact solution of Eq.(1.1) is expressed as

u(x, t) = (C1 sin(
√

− vα2+β2+Eα2

α2 (αx−2βt
α

))

+C2 cos(
√

− vα2+β2+Eα2

α2 (αx−2βt
α

)))e(iW (x,t)+ivt),

(2.11)

where C1, C2, E and v are arbitrary constants, and

W (x, t) = (2s+3α)

16

√
− vα2+β2+Eα2

α2

((C2
1 − C2

2 ) sin(
√

− vα2+β2+Eα2

α2 (αx−2βt
α

))

+2C1C2 cos(
√

− vα2+β2+Eα2

α2 (αx−2βt
α

))) + C1C2(2s+3α)

8

√
− vα2+β2+Eα2

α2

− 1
8α

(C2
1 + C2

2 )(2s+ 3α)(αx− 2βt) + Et+ β
α
x+ C3,

(2.12)

α, β, v and E satisfy vα2 + β2 + Eα2 < 0. Eg.(2.11) is a bounded periodic amplitude solution of
Kundu equation (see Fig. 1).
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Fig. 1. Profile of |u(x, t)| in Eq.(2.11) with α = 1, β = 2, v = 2, E = −10, C1 = 2, C2 = 3

Case 2: If set X = P (x − k t) and WX(X) = A + BQ(X)2, then Eq.(2.2) can be converted to
the following from

i((3α+ 2s+ 4PB)Q(X)2 + (2PA− k))QX(X) + P 2 QXX(X) + (−v + P 2 A2)Q(X)

+(β − αP A)Q(X)3 + (−αP B + γ − P 2 B2)Q(X)5 = 0.
(2.13)

When the parameters satisfy the following conditions

k = 2PA, B = − 1
4P

(2s+ 3α), γ = 1
4
sα− 3

16
α2 + 1

4
s2, (2.14)

Eq.(2.13) is simplified to the following form

P 2 QXX(X) + (−v + P 2 A2)Q(X) + (β − αP A)Q(X)3 = 0. (2.15)

We use trial function method to look for elliptic function solutions for Eq.(2.15). Suppose solution
of Eq.(2.15) as follows

Q(X) = a0 + a1 JacobiSN(X,m), (2.16)

where a0, a1, b1 and m (0 < m < 1) are constants to be determined. Substituting Eq.(2.16) into
Eq.(2.15), we easily obtain the following results.

When a0 = 0, A =
2P2m2+β a2

1

αP a2
1

, v = −P2m2a2a4
1−4P4m4−4βP2m2a2

1−β2a4
1+α2P2a4

1

α2a4
1

, Eq.(2.15) has

solution

Q(X) = a1 JacobiSN(X,m), (2.17)

where a1, P and m (0 < m < 1) are arbitrary constants. At this time, the elliptic function solution
of Eq.(1.1) is expressed as

u(x, t) = a1 JacobiSN(X,m) e
(i

∫
(
2P2m2+β b21

αP b21

− 1
4P

(2s+3α)(a1 JacobiSN(X,m))2)dX+ivt)
, (2.18)

where X = P (x − 2PAt) and v = −P2m2a2a4
1−4P4m4−4βP2m2a2

1−β2a4
1+α2P2a4

1

α2a4
1

. This is a bounded

elliptic function solution of Kundu equation (see Fig. 2).
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Fig. 2. Profile of |u(x, t)| in Eq.(2.18) with α = 1
2
, β = 2, m = 1

2
, a1 = 1, P = 2

In the above solutions, setting s = 0, we can obtain solutions of the derivative nonlinear Schrödinger
equation.

3 Conclusion

When parameters satisfy condition 4 s2 − 16γ + 4α s − 3α2 = 0 in Kundu equation, its bounded
periodic amplitude solutions including trigonometric and elliptic function solutions, are obtained.
Prior to this, bounded periodic amplitude solutions have not reported. Based on the solutions of
Kundu equation, we easily obtain solutions to the derivative nonlinear Schrödinger equation. These
results contribute to a better understanding of the structure of the solutions for the nonlinear
Schrödinger type equations. They can also be applied to the field of nonlinear optics.
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