

International Research Journal of Pure & Applied Chemistry 5(2): 185-201, 2015, Article no.IRJPAC.2015.017 ISSN: 2231-3443

Crystallographic and Structural Analysis of Heterometallic FeAg Complexes

M. Melník^{1*} and P. Mikuš¹

¹Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic.

Authors' contributions

This work was carried out in collaboration between the authors, each section in the ratio 1:1. The authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IRJPAC/2015/13420 <u>Editor(s):</u> (1) Monica Butnariu, Department of Chemistry & Biochemistry, Banat's University of Agricultural Sciences and Veterinary Medicine from Timisoara, Romania. (2) SungCheal Moon, Korea Institute of Materials Science (KIMS), Industrial Technology Support Division, Changwon, Republic of Korea. <u>Reviewers:</u> (1) Anonymous, Gulbarga University, India. (2) Anonymous, Southwest University of Science and Technology, China. (3) Anonymous, Quaid-i-Azam University, Pakistan. (4) Olga Kovalchukova, General Chemistry Department, Science Faculty, Peoples' Friendship University of Russia, Russia. (5) Anonymous, Fukushima University, Japan. Complete Peer review History: <u>http://www.sciencedomain.org/review-history.php?iid=807&id=7&aid=6838</u>

Review Article

Received 16th August 2014 Accepted 9th October 2014 Published 6th November 2014

ABSTRACT

There are 30 heterometallic Fe/Ag complexes in this review. The complexes contain the following metallic cores: FeAg, Fe₂Ag, FeAg₂, FeAgW, Fe₂Ag₂, FeAg₃, Fe₄Ag, Fe₃Ag₂, Fe₂Ag₄, Fe₂Ag₂Pd₂, Fe₆Ag, Fe₄Ag₄, Fe₄Ag₅, Fe₃Ag₆ and {FeAg₁ⁿ. The mean M-M bond distance elongated in the order: 2.614Å (Fe-Fe) < 2.660Å (Fe-Ag) < 2.806Å (Ag-Ag). The most common type of ligands is C donor for iron atoms, while for silver atoms are O and N donors. The inner coordination spheres about the iron atoms range from four to seven and ten (sandwiched) which is the most common. About the silver atoms from two to six, the four are the most common. The structural parameters are analyzed and compared with those of FeCu and FeAu complexes.

Keywords: Structure; heterometallics; Fe/Ag; classification; review.

*Corresponding author: Email: qmelnik@stuba.sk;

ABBREVIATIONS

Acac- acetylacetonate; bz- benzoate; $C_{13}H_{14}S_2$ - bis(cyclopentadienyl)-1,5-dithiopentane; C_4H_4N -pyrrolyl; $C_5H_4PPh_2$ - diphenylphosphinecyclopentadienyl; C_5H_4py - cyclopentadienylpyridine; C_6H_6 -benzene; Dptpc- diphenylthiophosphoryl cyclopentadienyl; Edta- ethylenediaminetetraacetate; Eimpbis(3-ethylenedimino-4-methoxyphenyl)cyclopentadienyl; m- monoclinic; Me- methyl; $O_2C_2S_2$ - dithiooxalate(2-); or - orthorhombic; PBu_{2-}^t di-tera-butylphosphido; Ph_2Ppy - 2-(diphenylphosphino)pyridine; Phen- 1,10-phenanthroline; PMe_3 - trimethylphosphine; $PPh_2(tol)$ -diphenyltoluenephosphine; PPh_3 – triphenylphosphine; $Si(Me)Ph_2$ - diphenylmethylsilicium; tol-toluene; tr- triclinic; trg- trigonal;

1. INTRODUCTION

The chemistry of heterometallic iron complexes is an extensive and active area of study, with the relationships between structure, reactivity and catalytic activity of major importance. There have been many structural studies of such complexes [1]. Heterometallic iron gold as well as iron copper complexes have been summarized and classified from a structural point of view [2]. The aim of this review is to classify and analyze of heterometallic iron silver complexes from a structural point of view. There are thirty heterometallic iron / silver complexes for which structural data are available. Variations and trends in bond distances and angles were found and their importance is discussed in this review. The factors relevant to the stereochemical interactions around the these metals are discussed and where appropriate comparisons are made with heterometallic FeAu and FeCu complexes and show a general view on an interaction between iron and 1 B metal atoms.

2. HETERODIMERIC COMPLEXES

There are three yellow FeAg complexes [3-5] and their structural parameters are gathered in

Table 1A. In two fragments, [3] (PMe₃){Si(Me)Ph₂}(CO)₃Fe and Ag{PPh₂(tol)} are held together via direct Fe-Ag bond (2.581(1)Å). The iron atom is six- FeC₃PSiAg and silver atom is two- AgPFe coordinated with Fe-Ag-P bond angle of 175.49(7)°. In [4] beside direct Fe-Ag bond (2.760(1)Å), a carbon atom of CO group and two Ph₂Ppy ligands in the manner $n^{1}(P):n^{1}(N)$ serve as bridges between $(CO)_{2}Fe$ and $Ag(\eta^1-Ph_2Ppy)$ fragments. The iron atom is six- FeC₃P₂Ag and silver atom is five- AgN₂CPFe coordinated. The Fe-C-Ag bridge angle is 86.2(2)°. In [5] pair of equivalent dptpc ligands is coordinated to iron atom via the cyclopentadienyl rings and forms a sandwich (FeC₁₀) and to silver atom via the two S atoms (AgS₂). The S-Ag-S angle is 176.83(5)° (Fig. 1). In golden FeAg complex [6] a pair of $C_5H_4PPh_2$ ligands serve as bridges between Fe atom and Ag(η^2 -phen) unit. Each of the ligand coordinated to the iron atom via five carbon atoms and via the phosphorous to the silver atom. The iron atom is sandwiched (FeC₁₀) and the silver atom is four- AgN₂P₂ coordinated.

Fig. 1. Structure of [Fe(dptpc)Ag]⁺ [5]

3. HETEROTRIMERIC COMPLEXES

There are eight heterotrimeric (Fe₂Ag (6 examples), FeAg₂ (1 example), FeAgW (1 example)) complexes and their structural parameters are summarized in Table 1B. Structure of red - violet complex [7] consists of a trimer cluster built up of two iron atoms and a silver atom which are positioned at the corners of an almost equilateral triangle, with the bond lengths: Fe-Fe 2.656(1), Fe(1)-Ag 2.693(1)Å, and Fe(2)-Ag 2.670(1)Å. The Fe-Fe bond is double bridged by both a di-tert-butylphosphido ligand and a carbonyl group. Besides, the Ag atom is coordinated by a PPh₃ ligand and to each iron atom three terminal CO groups are attached.

The basic structural skeleton of dark red cluster [8] consists of an almost equilateral triangle of two iron atoms and a silver atom (Fe-Fe 2.682(1)Å, Fe-Ag 2.685(1) and 2.703(1)Å) with the Fe-Fe bond bridged by a diphenylphosphido group and a single carbon atom of a dipolar μ - η^{1} alkylidene ligand $Me(H)^{\dagger}N=C(Ph)CH$. The alkylidene ligand also coordinated to the silver atom via carbon atoms (Table 1B). In yellow Fe₂Ag complex [9] the two ferrocenophane ligands form a distorted tetrahedral arrangement about the silver atom (AgS_4) . Each ferrocenophane acts as a bidentate chelate ligand. The mean Fe-Ag separation of 4.149Å ruled out a direct metal-metal bond. In the remaining three Fe₂Ag complexes [6,10,11] the four P atoms of four ferroceno phosphine ligands are directly bonded to the silver center (AgP₄).

Yellow FeAg₂ complex [12] is the only example which contains two silver atoms and one iron atom. In the complex two benzoate anions serve as bridges in syn-syn configuration between the silver atoms (Ag···Ag 3.346(4)Å). In addition, the 1,1-bis (diphenylphosphino)ferrocene fragment bridges the {Ag(μ - η^2 -bz)₂Ag} fragment via P atoms. Each silver atom has trigonal planar geometry (AgO₂P) (Fig. 2).

Dark red FeWAg complex [13] is the only example which contains three different metal atoms. The tungsten atom is "real" center atom. The two satellites Br_2Fe and $(PPh_3)_2Ag$ are connected with the tungsten center via pairs of sulfur atoms in the manner: $Br_2Fe(\mu-S)_2W(\mu-S)_2Ag(PPh_3)_2$. The Fe-W bond distance of 2.779(1)Å is much shorter than the W-Ag distance (3.0788(7)Å). The mean Fe-S-W bridge angles of 75.5° are about 3.7° smaller than the W-S-Ag (79.2°).

4. HETEROTETRAMERIC COMPLEXES

There are four heterotetrameric (Fe₂Ag₂ (3 examples), FeAg₃ (1 example)) complexes and their structural parameters are gathered in Table 1C. In the orange Fe₂Ag₂ complex [14] is a bridge of azaferrocene ligands with a nearly linear coordination for the silver atoms. The Ag...Ag distance is 3.257(1)Å. Each methanol coordinated to each silver atom and completes the T-shape geometry (AgN₂O).

Fig. 2. Structure of $[Fe(C_5H_4PPh_2)_2Ag_2(bz)_2]$ [12]

Complex (colour)	Crys.cl Sp.Gr. Z	a [Å] b [Å] c [Å]	α [°] ß [°] γ [°]	Chromo- phore	M-L [Å]	M-M [Å] M-L-M [°]	L-M-L [°]	Ref
A: Dimers			,					
(PMe ₃){Si(Me)Ph ₂ }.	tr	10.931(2)	74.95(3)	FeC₃PSiAg	OC ^b 1.734(9,24)	Ag 2.581(1)	C,C ^b 140.0(4)	3
(CO) ₃ FeAg{PPh ₂ (tol)}	Pī	12.837(4)	76.63(2)		Me ₃ P 2.199(3)		P,Si 173.7(1)	
(light yellow)	2	15.863(7)	74.31(2)		Si 2.327(3)		C,Ag 70.2(3,6)	
							173.2(3)	
							P,Ag 96.08(9)	
				A DE			Si,Ag 90.14(7)	
				AgPFe	P 2.393(2)		P,Fe 1/5.49(7)	
[(CO)₂Fe(µ-ŋ':ŋ'-	m DQ /m	14.701(1)	400.00(4)	FeC ₃ P ₂ Ag	OC 1.787(7,5)	Ag2.760(1)	C,C 110.2(3,5.1)	4
$Pn_2Ppy)_2(\mu-CO).$	P2 ₁ /n	13.349(1)	100.03(1)		$\mu LP2.224(2,1)$	C 76.2(2)	139.7(3)	
	4	27.760(1)			μου 1.604(7)		P,P = 173.4(1)	
(vellow)							169 3(3)	
(yenew)				AaN₂CPFe	ul N2 467(6 11)		N N 122 5(2)	
					uOC 2.565(6)		N.P 108.0(1.2.5)	
					P 2.449(2)		N,Fe 85.4(1,5)	
							P,Fe 149.6(1)	
[Fe(μ-η ⁵ :η¹-dptpc) ₂ .	or	25.943(2)		FeC ₁₀	η⁵C not given		not given	5
Ag]CH ₂ Cl ₂	Pna2₁	12.121(1)						
(yellow)	4	11.292(2)		AgS ₂	η ¹ S 2.381(1,0)		S,S 176.83(5)	
(at 173 K)					F		-	
Fe(μ-η [°] :η'-C₅H₄PPh₂)₂.	m	11.027(2)		FeC ₁₀	η°C not given		not given	6
Ag(ŋ ⁻ -phen)	P2₁/n	17.050(3)	95.09(3)		2			
(yellow)	4	21.029(5)		AgN_2P_2	η ⁻ N 2.352(3,9)		N,N 70.85(10)°	
(at 143 K)					$\eta P 2.411(1)$		P,P 110.59(3)	
					2.507(1)		N,P 94.52(7)	
							138 69(7)	
B. Trimers							130.09(7)	
$(CO)_{4}(\mu-CO)(\mu-PBu_{2}^{t})$	tr	12,714(2)	96,79(1)	FeC₄PA _g Fe	OC 1.783(9.34)	Ag2.682(1.12)	C.C 93.1(4.9.5)	7

Table 1. Crystallographic and structural Data of heterodi-, heterotri-, heterotetra- and heteropentameric complexes^a

Complex (colour)	Crys.cl Sp.Gr. Z	a [Å] b [Å] c [Å]	α [°] ß [°] γ [°]	Chromo- phore	M-L [Á]	M-M [Å] M-L-M [°]	L-M-L [°]	Ref
Fe ₂ Ag(PPh ₃) (red violet)	Pī 2	14.667(2) 10.121(2)	113.14(2) 88.68(1)	(x2)	μOC 1.964(7,22) μΡ 2.273(2,2)	Fe 2.656(1) C not given P 71.51(6)	169.4(3,2.3) μC,P 81.6(2,4) C,P 99.1(3,2.7) μC,Ag 96.5(2,9) μC,Fe 47.5(2,7)	
				AgPFe ₂	Ph ₃ P 2.404(2)		P,Fe 149.9(1,4.7) Fe,Fe 59.36(2)	
[(CO) ₆ Fe ₂ {μ-CHC. (NHMe)Ph}(μ-PPh ₂). Ag]ClO ₄ .C ₆ H ₆ .tol (dark red)	tr Pī 2	14.101(3) 10.654(4) 15.777(4)	93.68(2) 114.27(2) 95.03(3)	FeC₄PAgFe (x2)	OC 1.794(7,32) μC 2.066(6,18) μP 2.226(2,9)	Ag2.694(1,9) Fe 2.682(1) C 81.0(0) P 74.1(0)	C,C 93.7(3,4.5) 168.7(2,8) μC,P 77.2(1,5) C,P 96.1(2,3.7) 166.0(2,1.5) μC,Ag 97.2(1,2) μC,Fe 49.6(1.6)	8
				AgC_2Fe_2	C 2.505(12,2)		Fe,Fe 59.7(0)	
[{Fe(μ-η ¹⁰ :η ² - C ₁₃ H ₁₄ S ₂)} ₂ Ag]BF ₄ (yellow)	tr Pī 2	11.347(2) 11.849(5) 12.025(8)	62.66(3) 81.68(3) 81.87(3)	FeC ₁₀ (x2) AgS₄	C 2.054 S 2.611(3,30)	Ag4.149(2,44)	not given S,S 91.7(1,9) ^d	9
							103.9-144.9(1)	
[{Fe(µ-ŋ [°] :ŋ'-C₅H₄. PPh₂)₂}₂Ag].	tr Pī	11.411(2) 16.517(3)	98.20(2) 94.59(2)	FeC ₁₀ (x2)	C not given		not given	6
$2CHCl_3$ (yellow) (at 143 K)	2	18.600(4)	107.45(2)	AgP ₄	P 2.555(2,6) 2.593(2,9)		P,P 109.4(-,8.4)	
$[{Fe(\mu-\eta^5;\eta^1-Me_4.}]$ C ₄ P) ₂ }-Ag].	tr Pī	13.547(2) 13.729(1)	98.55(1) 106.33(1)	FeC ₁₀ (x2)	C not given		not given	10
(tcnq) (dark blue)	1	15.415(3)	113.92(1)	AgP ₄	P 2.500(5,7) 2.529(3,5)		P,P 95.4(2,1) 116.9(2,5.3)	
$[{Fe}_{\mu-\eta^{5}:\eta^{1}-}$				FeC ₁₀ (x2)	C not given		not given	11
$Me_{2}_{2}Ag]BF_{4}$				AgP ₄	P not given		P,P 99.11(-,8)	

Complex (colour)	Crys.cl Sp.Gr. Z	a [Å] b [Å] c [Å]	α [°] ß [°] γ [°]	Chromo- phore	M-L [Á]	M-M [Å] M-L-M [°]	L-M-L [°]	Ref
(yellow)			/ • •					
$\overline{Fe}(\mu-\eta^5:\eta^1-C_5H_4.$ $PPh_2)_2Ag_2(\mu-bz)_2$	or Pbca	10.532(2) 18.851(9)		FeC ₁₀	C not given		not given	12
(yellow)	8	41.74(2)		AgO ₂ P (x2)	O 2.201(9,19) 2.439(8,39) η ¹ Ρ 2.352(4,12)	Ag 3.346(4)	O,O 103.7(4,3.0) O,P 103.0(3,4.9) 151.6(2,7)	
$Br_2Fe(\mu-S)_2W.$ (μ -S) ₂ Ag(PPh ₃) ₂ (dark red)	tr Pī 2	13.527(4) 15.592(5) 12.429(6)	104.91(3) 94.72(3) 101.19(2)	FeS ₂ Br ₂ W	μS 2.305(3,1) Br 2.351(2,0)	W 2.779(1) S 75.5(1,1)	S,S 102.06(9) Br,Br 110.68(8) S,Br 111.0(1,1.6)	13
			()	WS_4	μS 2.189(2,5) 2.232(2,5)	Ag3.0788(7) S 79.2(1,7)	S,S 109.5(1,3.6)	
				AgS_2P_2	µS 2.616(2,27) Ph₃P 2.487(3,1)		S,S 88.56(7) P,P 118.27(7)	
C. Tetramers							3,F 111.4(1,5.2)	
$[Fe(\mu-\eta^5:\eta^1-C_4H_4N)_2.$ Ag(MeOH)] ₂ (BF ₄) ₂	tr Pī	8.333(1) 9.602(1)	76.02(1) 77.89(1)	FeC ₈ N ₂ (x2)	η⁵C 2.057(2,31) μN 2.014(2,1)		N,N 108.3(1)	14
(orange)	1	13.522(2)	81.15(1)	ÀgN ₂ O (x2)	η ¹ N 2.108(2,1) Ο 2.631(2)	Ag 3.257(1)	N,N 178.3(1) N,O 90.3(1,2.3)	
$[Fe(\mu-\eta^5:\eta^1-C_5H_4P.P_1)_2Ag(ONO_2)]_2.$	m P2₁/n	13.908(5) 15.629(9)	102.07(2)	FeC ₁₀ (x2)	η⁵C 2.04(1,1)		not given	12
2CHCl ₃ (yellow)	2	18.674(9)		AgP ₂ O (x2)	η ¹ P 2.434(3,1) <u>O</u> 2.476(8)	Ag 3.936(2)	P,P 140.1(1) P,O 103.3(2,3.1)	
[Fe(µ-ŋ⁵:ŋ¹-C₅H₄. Py)₂Ag(µ-OClO₃)]₂	tr Pī	10.489(2) 11.340(3)	91.60(2) 113.29(1)	FeC ₁₀ (x2)	η⁵C not given		not given	15
(orange red)	1	8.789(2)	83.52(2)	AgO ₂ N ₂ (x2)	μΟ 2.81(1,8) 2.16(1,2)	O 111.9(2)	O,O 68.1(2) N,N 163.1(2) O,N 96.4(2,3.6)	
[Fe(μ - η^{2} : η^{2} - O ₂ C ₂ S ₂) ₃ {Ag(PPh ₃) ₂ } ₃]	trg P3	19.984(6)		FeO ₆	η ² O 2.003(6,7)		O,O 77.8(3) ^c 95.1(3,9.1)	16
(not given)	2	15.302(11)		AgS_2P_2	η ² S 2.587(3,12)		161.0(4) S,S 83.3(1) ^c	

Complex (colour)	Crys.cl Sp.Gr. Z	a [Å] b [Å] c [Å]	α [°] ß [°] γ [°]	Chromo- phore	м-L [Á]	M-M [Å] M-L-M [°]	L-M-L [°]	Ref
				(x3)	Ph ₃ P 2.468(2,13)		P,P 115.2(1) S,P 107.8(1,8.2) 121.7(1,4.3)	
D: Pentamers								
$[{(\eta^5-cp)_2Fe_2(\mu-\eta^{10}:\eta^2-eimp)_2}_2Ag]$		not given		FeC ₁₀ (x4)	C not given		not given	17
(orange)				ÀgŃ₄	η²N 2.344(6,0)		N,N 76.3(2) ^c 128.2(2)	
[Fe ₃ (μ - η^5 : η^1 - C ₅ H ₄ PPh ₂) ₆ Ag ₂].	tr Pī	13.410(4) 13.417(4)	77.74(3) 75.94(3)	FeC ₁₀ (x3)	η⁵C 2.07(3,1)		not given	18
$(PF_6)_2$ (golden)	1	15.163(5)	72.58(3)	ÂgP̂₃ (x2)	η ¹ Ρ 2.486(7,32)		P,P 105.6(2) 127.2(2,3.5)	
$[Fe_3(\mu-\eta^5:\eta^1-C_5H_4 PPh_2)_6Ag_2.$	m C2/c	41.79(1) 10.70(1)	110.43(2)	FeĆ ₁₀ (x3)	η⁵C 2.05(2,1)		not given	12
(HCOO) ₂].2CH ₂ Cl ₂ (not given)	4	24.73(1)	. ,	ÁgÝ ₃ O (x2)	η ¹ Ρ 2.521(5,25) Ο 2.65(2)		P,P 113.6(2,4.3) P,O 89.9(3) 111.4(3,8.4)	

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated, The first number in parenthesis is e.s.d., and the second is maximum deviation from the mean value, b. The chemical identity of coordinated atom / ligand is specified in these columns. c. The five-membered metallocyclic ring, d. The six-membered metallocyclic ring.

Yellow Fe₂Ag₂ complex [12] has the bridging coordination mode of Fe(μ - η^5 : η^1 -C₅H₄PPh₂)₂ moieties with a bent P-Ag-P angle of 140.1(1)°. The Ag-Ag distance is 3.936(2)Å. There is a three coordination sphere around the silver atoms, with the third coordination site occupied by an oxygen atom of nitrate anion (AgP₂O). Structure of orange red Fe₂Ag₂ complex [15] consists of two Fe(μ - η^5 : η^1 -C₅H₄py)₂Ag fragments linked by two perchlorate anions. Each iron atom is sandwiched and both silver atoms are four-AgO₂N₂ coordinated. The Ag-O-Ag bridge angle is 111.9(2)°.

In an FeAg₃ complex [16] (Fig. 3) the central iron(III) atom is octahedral coordinated by three dithiooxalate ligands via oxygen atoms (FeO₆). The Ag(PPh₃)₂ moieties interact also with the dithiooxalate ligands, but now via the sulphur atoms. Each silver atom is four- AgS_2P_2 coordinated. The chelate angle of 77.8° for O-Fe-O is narrower than that for the S-Ag-S (83.3°).

5. HETEROPENTAMERIC COMPLEXES

There are three heteropentameric (Fe₄Ag (1 example), Fe₃Ag₂ (2 examples)) complexes

(Table 1D). Crystals of the orange [{(cp)₂Fe₂(μ eimp)}₂Ag] [17] belongs to the highly unusual cubic system (F43d) (Fig. 4). The complex involves a distorted tetrahedral configuration of the four imino nitrogens of the two eimp ligands around the central silver atom in a helical arrangement. The ferrocene units and the aromatic rings are situated in an α -helical array around silver atom.

Structure of golden Fe₃Ag₂ complex [18] contains well separated $[Fe_3(\mu-\eta^5:\eta^1-C_5H_4PPh_2)_6Ag_2]^{2+1}$ cations and PF₆ anions. In a dicationic molecular compressing core two $\{Fe(C_5H_4PPh_2)_2\}$ moieties singly bridged by a $Fe(C_5H_4PPh_2)_2$ group. The crystallographically imposed C_2 symmetry of the structure implies a symmetrical disposition of the bridging $Fe(C_5H_4PPh_2)_2$ group with respect to the two Ag(1) moieties (cp. cp torsion twist 180°). The different steric demands of $Fe(C_5H_4PPh_2)_2$ groups in bridging and chelating modes impose some significant distortion on the trigonal planar Ag(1) centers (P-Ag-P bond angles range from 105.6(2) to 130.7(2)°).

Fig. 3. Structure of $[Fe(O_2C_2S_2)_3[Ag(PPh_3)_2]_3]$ [16]

Fig. 4. Structure of $[{(cp)_2Fe_2(eimp)_2}_2Ag]$ [17]

Structure of another Fe₃Ag₂ complex [12] {Fe($C_5H_4PPh_2$)₂} consists of а ligand bridaed symmetrically between two $\{Fe(C_5H_4PPh_2)_2Ag(HCOO)\}$ moieties. The molecule is centrosymmetric with Fe(2) lying on a center of symmetry. Each Ag(1) atom is four-AgP₃O coordinated, and iron atoms are sandwiched (FeC₁₀).

Inspection of the data in Table 1 reveals that here are heterometallics which contains the following metal cores: FeAg; Fe₂Ag, FeAg₂, FeAgW; Fe₂Ag₂, FeAg₃; Fe₄Ag. Fe₃Ag₂. The inner coordination spheres about the iron atoms are: FeS₂Br₂W, FeO₆, FeC₄Ag₂, FeC₃P₂Ag, FeC₃PSiAg, FeO₅N₂, FeC₄Ag₃, FeC₄PAgFe, FeC₁₀ and FeC₈N₂. The mean Fe-L bond distance elongated in the order: 1.795Å (CO) < 1.965Å (µ-CO) < 2.11Å (OL) < 2.20Å (PPh₃)< 2.225Å (µ-PL) < 2.327Å (SiL) < 2.35Å (Br). The inner coordination spheres about the silver atoms are: AgS₂, AgFe₂; AgPFe; AgP₃, AgO₂X (X=C or P), AgN₂O, AgP₂O, AgPFe₂; AgX₄ (X=N, S or P), The mean Ag-L bond distance elongated in the order: 2.35Å (bi-OL) < 2.35Å (bi-NL) < 2.440Å (PL) < 2.52Å (OL) < 2.525Å (bi-SL) < 2.81Å (µ-OL). There are heterodonor ligands which serve as bridge'/s between Fe and Ag in the manner (Fe:Ag): η^1 P: η^1 N, η^1 C: η^2 C, η^2 O: η^1 C, η^2 O: η^2 S, η^5 C: η^1 N, η^5 C: η^1 S; η^5 C: η^1 P, η^{10} C: η^2 N and η^{10} C: η^2 S. The mean M-M bond distance elongated in the order 2.664Å (Fe-Ag) < 2.670Å (Fe-Fe) < 2.790Å (Ag-Ag) < 2.780Å (Fe-W) < 3.08Å (Ag-W). The complexes crystallized in the crystal classes: triclinic (x10), monoclinic (x5), orthorhombic (x2) and trigonal (x1).

6. HETEROOLIGO- AND HETEROPOLYMERIC COMPLEXES

Crystalographic and structural parameters for heterooligo - complexes are gathered in Table 2A. Structure of the orange Fe_2Ag_4 complex [19] which is centrosymmetric, comprises two $\{(Fe(C_5H_4PPh_2)_2Ag_2(ac)_2\}_2$ moieties linked by two oxygen sites [O(1) and O(1a)], thus resulting in two triple bridging acetates. The four Ag(1) centers are arranged in an approximate chair conformation together with the acetates. The structure may also be viewed in a fashion of three metallocyclic rings, consisting of a planar four- membered $\{Ag_2O_2\}$ ring sandwiched by two six- membered rings. The silver atoms are tetrahedrally coordinated by three basal oxygen atoms and an apical phosphorus atom. Iron atoms are sandwiched. The Ag…Ag separation is 3.104(1)Å.

Structure of Fe₂Pd₂Ag₂ aggregate [20] consists of a {Pd₂S₂} molecular square with two AgCl "fails" dangling from the sulfur sites on opposite faces of the plane. A chelating {Fe(C₅H₄PPh₂)₂} molecule is on each Pd atom. Each iron is sandwiched (FeC₁₀), the Pd atoms have a square-planar arrangement (PdS₂P₂) and each Ag atom is an almost linear (Cl-Ag-S, 178.1(1)°).

Structure of dark red Fe₆Ag complex [21] contains well separated [{(cp)₂(CO)₂(μ -CO)Fe₂(μ - η^2 -CS)}₃Ag]⁺ cations and BF₄ anions. In the complex cation, three {(cp)₂(μ -CO)Fe₂(μ - η^2 -CS)} fragments are connected by a silver atom, which is surrounded by three S atoms of the CS ligands (Fig. 5). The mean Fe-Fe bond distance is 2.503Å.

 $[(cp)Fe(C_5H_4CH_2NMe_2)Ag]_4$ In [22] each {(cp)Fe(C₅H₄CH₂NMe₂} moiety serves as bridge between two Ag(1) atoms by amine donor. Four Ag(1) atoms form plane square. Unfortunately, structural parameters are not available. Structure of pale yellow Fe₄Ag₄ cluster [23] contains well separated $(NMeCH_2Ph)^+$ cations and $[Ag_4[\mu Fe(CO)_{4}_{4}^{4-}$ anion. The molecular structure of the anion consists of an Ag₄ square, spanned on all the edges, by Fe(CO)₄ groups. The idealized molecular symmetry is D_{4h} . The Ag-Fe bond distances range from 2.570(2) to 2.600(2)Å (av. 2.581Å). The Ag-Ag interactions are distributed over the range 3.036 - 3.334(1)Å.

Structure of $[Ag_{5}\{\mu-Fe(CO)_{4}\}_{2}\{\mu-Fe(CO)_{4}\}_{2}]^{3-}$ [23] contains a planar cluster of nine metal atoms packed in a rhombus. The iron atoms define the vertices and the silver atoms are placed almost midway along the edges and in the center. Both the idealized and crystallographic symmetry of the anion is D_{2h} . The silver atoms define a bow tie with four equivalent atoms at the corners and unique central atoms. The latter is sixcoordinated to four silver and two iron atoms. (Ag(1) - Ag(2) 2.975(1)Å and Ag(1) - Fe2.727(1)Å. The corner atoms are fourcoordinated with two Ag...Ag and two Ag...Fe interactions. The Ag. Ag distance bridged by the Fe(CO)₄ group of 3.017(1)Å is longer than the values above. The Fe(CO)₄ groups form two independent pairs, both form to a precise C_{2v} symmetry. The Fe(1) and Fe(1) are three connected to the silver atoms resulting in the distorted pentagonal - bipyramid (FeC₄Ag₃). The Fe(2) and Fe(2) atoms are two connected and realize octahedral like coordination (FeC₄Ag₂). The values of Ag-Fe bond distances are 2.585(1)Å for the six coordination Fe(2) and for the seven coordination Fe(1) the values are 2.650(1) and 2.727(1)Å.

The molecule of dark red [{(CO)₄Fe}₃Ag₆{ μ - η^3 -CH(PPh₂)₃}].2Me₂CO [24] has no crystallographically imposed symmetry, but the skeletal atoms have approximately C₃ symmetry. The silver atoms define a distorted octahedron with the trigonal CH(PPh₂)₃ ligand coordinated to three silver atoms on the face of the octahedron. These silver atoms {Ag(1), Ag(2) and Ag(3)} are separated by 3.288(1)Å.

Fig. 5. Structure of [{(cp)₂(CO)₃Fe₂(CS)}₃Ag] [21]

The remaining Ag···Ag distances lie in the range 2.817(1) – 3.065(1)Å (av. 2.909(1)Å). The three Fe(CO)₄ fragments cap three of the faces of the octahedron in a symmetrical fashion. The Fe-Ag bond distances lie in a narrow range 2.660(1) – 2.720(1)Å. In view of the long Ag...Ag distances associated with the silver atoms coordinated to the tripodal ligand, the cluster geometry can be described as a triangle of vertex linked Ag₃Fe tetrahedral.

There are four heteropolymeric {FeAg}_n complexes (Table 2B). In dark red monoclinic $[Fe(acac)_3Ag(OCIO)_3(H_2O)]$ [25] the Fe(acac)_3 moieties arranged in a staggered array along 2 axis to form a bulky sheet - like structure parallel to the bc plane. These sheets create "cylindrical holes" in a direction parallel to y. These "holes" are filled with Ag(I) and perchlorate ions. The Fe(III) atom is six- (FeO₆) coordinated build up by three bidentate chelating acac ligands. Each Ag(I) atom is surrounded by a monodentate perchlorate oxygen, the hydrate oxygen and the central carbon atom of one acac ring (AgO₂C). In yellow brown monoclinic {Fe(edta)Ag(H₂O)₃}_n complex (Fig. 6) [26] the Fe(III) atom is surrounded by four O atoms and two N atom of an edta ligand, which acts in a six- dentate fashion and by a water molecule (FeO₅N₂). The coordination polyhedron is of roughly pentagonal bipyramid shape. Each Ag(I) atom is six- AgO₆, coordinated. The anions form layers along a crystallographic plane. Single layers are loosely linked by the cations into neutral double layers.

linear onedimensional polymeric In $[Fe(C_5H_4S_2CNEt_2)_2Ag]ClO_4.CH_2Cl_2$ [27], the Ag(I) centers are bonded to two sulphur atoms of different ferrocene moieties and also to the cyclopentadienyl ring in an η^2 -fashion. The silver atom lies on an inversion centre and the iron atom on a two-fold axis. In structure of orange $[Fe{CH₂(Ph₂PS)₂Ag}₂(\mu-dptdf)₂](ClO₄)₂.CH₂Cl₂$ [28] the complex cationic units to form a polymeric chain (Fig. 7). The single Ag(I) atom displays a distorted tetrahedral geometry forms by a chelating CH₂(Ph₂PS)₂ ligand (atoms S2 and S3) whereby one sulfur atom (S2) also forms a bridge to an adjacent silver atom leading to four-membered Aq₂S₂ rings with inversion symmetry. The Ag. Ag separation of 3.554(1)Å ruled out a direct bond. The mean Ag-S-Ag bond angle is 83.43(6)°.

Inspection of the data in Table 2 reveals that the complexes prefer to crystallized in monoclinic (x8), tetragonal (x2) and orthorhombic (x1) crystal classes. The inner coordination spheres about the iron atoms are: FeO_6 , FeO_5N_2 , FeC_4Ag_3 and FeC_{10} (most common). The Ag atoms: AgClS, AgFe₂; AgS₃, AgO₂C; AgS₄, AgO₃P; AgN₂Ag₂, AgFe₂Ag₂; AgO₆, AgC₄S₂, AgFe₂Ag₄. The mean M-M bond distance elongated in the order: 2.503Å (Fe-Fe) < 2.654Å (Fe-Ag) < 2.806Å (Ag-Ag).

Complex (colour)	Crys.cl Sp.Gr. Z	a [Å] b [Å] c [Å]	α [°] ß [°] γ [°]	Chromo- phore	М-L [Å]	M-M [Å] M-L-M [°]	L-M-L [°]	Ref
A: Oligomers								
[{Fe(μ - η^{5} : η^{1} - C ₅ H ₄ PPh ₂) ₂ . {Ag(μ - η^{3} -ac) ₂ } ₂] ₂ (orange)	m P2₁/n 2	10.373(2) 17.593(5) 19.754(8)	100.66(2)	FeC ₁₀ (x2) AgO ₃ P(x4)	η ⁵ C ^b not given ac 2.376(5) μO 2.395(5,2) η ¹ Ρ 2.667(5)	Ag 3.104(1) O 75.5(1) 103.6(1)	C,C [♭] not given O,O 51.2-114.1(2) O,P 114.5-137.9(1)	19
[{Fe(μ-η ⁵ :η ¹ -C ₅ H ₄ . PPh ₂) ₂ Pd(μ ₃ -S)} ₂ . (AgCl) ₂].4CH ₂ Cl ₂ (not given)	m P2 ₁ /c 2	13.090(1) 20.539(1) 15.744(1)	113.16(1)	$FeC_{10}(x2)$ $PdS_2P_2(x2)$ $AgClS(2)$	η⁵C not given μ₃S 2.368(1,14) η¹P 2.336(1,3) Cl 2.348(2)	S 97.3(1)	not given S,S 82.7(1) P,P 98.1(1) S,P 89.6(1,1.9)	20
					µ₃S 2.397(1)	S 81.2(1,1.7)	Cl,S 178.1(1)	
[{(η³-cp)₂(CO)₂(μ-CO). Fe₂(μ-η²-CS)}₃Ag]BF₄ (dark red)	tr Pī 2	13.771(4) 15.047(7) 12.544(4)	109.55(3) 93.77(3) 90.76(3)	FeC ₈ Fe (x6)	OC 1.76(2,4) η ⁵ C not given μOC 1.87(1,2) μSC 1.91(2,2) μCS 2.498(6,19)	Fe 2.503(2,4) C 81.6(7,1.3) 84.0(7,1.3)	C,μC 90.0(7,1.7) η ⁵ C,μC 95.8(7,7) C,Fe 99.4(5,5) μC,Fe 48.6(6,9) S,S 109.9(2)	21
				AqS ₃	1 ())		122.4(4,5.2)	
$[{\eta^5-cp})Fe(\mu-\eta^5:\eta^1-C_5H_4CH_2NMe_2)Ag]_4$	tg P42₁c	15.817		FeC ₁₀ (x4)				22
(not given)	2	10.186		AgN ₂ Ag ₂ (x4)				
(PhCH ₂ NMe ₃) _{4.} [(CO) ₄ FeAg] ₄ (pale yellow)	m P2 ₁ /n 4	11.419(4) 29.714(5) 19.227(3)	92.40(2)	FeC ₄ Ag ₂ (x4)	OC 1.75(1,8)	Ag2.581(2,19)	C,C 103.0(6,2.9) 135.4(6,2.5) Ag,Ag 75.2(1,5.5)	23
				AgFe ₂ (x4)		Ag3.043(1,7) 3.254(1,80)	Fe,Fe 165.4(1,3.9) Ag,Ag 90.0(1,2.6)	
(NEt₄)₃[Ag₅{µ- Fe(CO)₄}₂{µ₃-Fe.	tg P4 ₂ /mnm	14.004(1)		FeC₄Ag₃ (x2)	OC 1.771(7,1)	Ag 2.650(1) 2.727(1)	C,C 94.4(6) 141.4(6)	23
(CO) ₄ } ₂] (yellow)	2	14.278(1)		FeC₄Ag₂ (x2)	OC 1.740(8,8)	Ag 2.585(1)	Ag,Ag 62.6(1) C,C 107.3(5) 141.2(7) Ag,Ag 71.4(1)	

Table 2. Crystallographic and structural data for heterooligo- and heteropolymeric complexes^a

Complex (colour)	Crys.cl Sp.Gr. Z	a [Å] b [Å] c [Å]	α [°] ß [°] γ [°]	Chromo- phore	M-L [Á]	M-M [Á] M-L-M [°]	L-M-L [°]	Ref
			,	AgFe₂Ag₂ (x4) AgFe₂Ag₄		Ag 2.795(1) 3.017(1)	Aa.Aa 65.3(1)	
$[\{(CO)_{4}Fe\})_{3}Ag_{6}. \\ \{\mu-\eta^{3}-CH(PPh_{2})_{3}\}]. \\ 2Me_{2}CO \\ (dark red)$	m P2 ₁ /c 4	12.168(2) 20.473(4) 24.425(3)	91.65(2)	FeC ₄ Ag ₃ (x3) AgPFe (x6)	OC not given P not given	Ag2.670(1,15) 2.711(1,9) Ag 2.817- 3.415(1)	C,C 99-120(2)	24
B: Polymers [Fe(μ-acac) ₃ Ag. (OClO ₃)(H ₂ O)] (dark red)	m P2 ₁ /c 4	12.274(5) 11.751(5) 17.235(5)	120.64(12)	Fe [™] O ₆ Ag ^I O₂C	η ² O 2.00(1,3) H ₂ O 2.25(2) O ₃ CIO 2.50(2) LC 2.29(2)		O,O 88.0(4,1.6) ^c 90.5(4,3.2) 176.7(4,3.1) O,O 100.5(4) O,C 86.0(4)	25
[(H ₂ O)Fe(μ-edta). Ag(H ₂ O) ₂] (yellow brown)	m C _c 4	8.928(4) 11.871(1) 15.116(2	99.85(2)	Fe ^{III} O₅N ₂ Ag ^I O ₆	LO 1.957(7) 2.052(7,49) L μ O2.079(6) L μ N 2.340(8,2) H $_2$ O 2.109(7) LO 2.351(7) 2.558(7,56) L μ O 2.673(6)		not given not given	26
[Fe(μ -cpS $_2$ CNEt $_2$) $_2$. Ag]CIO $_4$.CH $_2$ CI $_2$ (yellow) (at 173 K)	m P2/c 4	20.066(5) 9.859(3) 18.463(5)	113.02(2)	FeC_{10} Ag'C ₄ S ₂	H ₂ O 2.334(7) cpC not given cpμC 2.972(8) 3.027(8) S 2.286(3,0)		not given not given	27
$[{CH2(Ph2PS)2Ag}2.(\mu-dptdf)2](ClO4)2.CH2Cl2(orange) (at 173 K)$	m C2/c 4	26.933(4) 11.209(2) 31.404(3)	105.74(1)	FeC ₁₀ Ag ⁱ S₄	cpC not given S 2.524(2,2) µS 2.530(2) 2.801(2)		not given S,S 99.3(1,5.7) 125.0(1,4.8)	28

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated, The first number in parenthesis is e.s.d., and the second is maximum deviation from the mean, b. The chemical identity of coordinated atom / ligand is specified in these columns, c. The six-membered metallocyclic ring

Fig. 7. Structure of $[{CH_2(Ph_2PS)_2Ag}_2(dptdf)_2]_n^{2+}$ [28]

7. CONCLUSION

There are thirty heterometallic iron/silver complexes in this review. The numbers of the FeAg examples are much less than those of the FeAu [1] and FeCu [2] with over 90 examples of each of the respective complexes. However, it is interesting that the heterometallic FeM (M=Cu, Ag, Au) complexes prefer to crystallized in the two crystal classes: monoclinic (43% (M=Cu), 43.3% (Ag), 61.7% (Au) and triclinic (41%, 36.7%, 29.8%)), respectively. Similar trend exists in the chemistry of the heterometallic PtM (M=Ag [29], Au [30], Cu [31]). These complexes also

prefer crystallized in the same crystal classes: monoclinic (48%) and triclinic (35%). The coordination numbers about the metal atoms are: around iron atoms from five to ten, (FeC₁₀) is the most common; around copper atoms from two to six, with six is the most common; around silver and gold atoms from two to six, with four is the most common. The ligands can be divided into the three groups, the first one which are coordinated only to the iron atoms and the second group which bound only to M atom. The mean Fe-L and M-L bond distances elongated in the orders:

 $\begin{array}{l} (\text{Fe-L}): 1.77\text{\AA} \ (\mu\text{-O}, \ \text{CO}) < 1.925 \text{\AA} \ (\text{CN}) < 1.95 \text{\AA} \ (\mu\text{-CO}) < 1.97 \text{\AA} \ (\text{tetra-OL}) < 2.01 \text{\AA} \ (\text{CL}) < 2.02 \text{\AA} \ (\text{NL}) < 2.04 \text{\AA} \ (\text{penta-CL}) < 2.045 \text{\AA} \ (\text{OL}) < 2.07 \text{\AA} \ (\text{ter-CL}) < 2.09 \text{\AA} \ (\text{tetra-NL}, \ \text{ter-CL}) < 2.21 \text{\AA} \ (\text{PL}) < 2.215 \text{\AA} \ (\text{di-NL}) < 2.225 \text{\AA} \ (\mu\text{-PL}) < 2.235 \text{\AA} \ (\text{Cl}) < 2.33 \text{\AA} \ (\text{SiL}); \end{array}$

(Cu-L): 2.00Å (NL) < 2.01Å (di-NL, tetra-NL) < 2.02Å (ter-NL) < 2.15Å (Cl) < 2.22Å (di-SL) < 2.235Å (PL) < 2.34Å (OL) < 2.355Å (AsL) < 2.41Å (μ -Cl) < 2.44Å (I) < 2.74Å (μ -I); (Ag-L): 2.35Å (di-OL), di-NL, Cl) < 2.44Å (PL) < 2.45Å (OL) < 2.525Å (di-SI) < 2.81Å (μ -OL);

(Au-L): 2.02Å (di-Cl) < 2.065Å (CL) < 2.08Å (OL) < 2.15Å (di-NL) < 2.25Å (μ_3 -CL) < 2.29Å (Cl, PPh₃; di-SL) < 2.305Å (di-PL) < 2.335Å (μ -S) < 2.35Å (μ_3 -S, I).

The third type of the ligands which serve as bridge / s are mostly heterodonors, coordinated in the manner (Fe : M) : $\eta^1 C$: $\eta^1 N$, $\eta^1 O$: $\eta^1 O$; $\eta^1 P$: $\eta^1 N$, $\eta^1 C$: $\eta^2 C$, $\eta^2 O$: $\eta^1 O$, $\eta^2 O$: $\eta^2 O$: $\eta^2 S$, $\eta^5 C$:

$$\eta^{1}O, \eta^{5}C : \eta^{1}N, \eta^{5}C : \eta^{1}S, \eta^{5}C : \eta^{1}P, \eta^{5}C : \eta^{1}S, \eta^{5}C : \eta^{2}S, \eta^{10}C : \eta^{2}N \text{ and } \eta^{10}C : \eta^{2}S.$$

The mean M-M bond distances elongated in the sequences:

in Fe/Cu complexes: 2.520Å (Fe-Cu) < 2.638Å (Cu-Cu) < 2.663Å (Fe-Fe); in Fe/Ag complexes: 2.614Å (Fe-Fe) < 2.660Å (Fe-Ag) < 2.806Å (Ag-Ag); in Fe/Au complexes: 2.668Å (Fe-Fe) < 2.680Å (Fe-Au) < 2.898Å (Au-Au). As can be seen, the Fe-M as well as M-M bond distances elongated in the order of M (Cu < Ag < Au), and the mean Fe-Fe bonds (Ag < Cu < Au).

In PtM complexes the mean M-M bond distances elongated in the sequences:

in PtCu complexes: 2.673Å (Cu-Cu) < 2.693Å (Pt-Pt) < 2.727Å (Pt-Cu); in PtAg complexes: 2.740Å (Pt-Pt) < 2.820Å (Pt-Ag) < 2.943Å (Pt-Au); in PtAu complexes: 2.720Å (Pt-Au) < 2.742Å (Pt-Pt) < 2.802Å (Pt-Au)

In the series of PtM complexes, the order of Pt-M and M-M bond distances is: M = Cu < Au < Ag; and the mean of Pt-Pt bonds (Cu < Ag < Au).

It is hoped that such review will help to focus attention on areas of heterometallic complexes that could be enhanced by further study and assist in allowing comparative behaviors of the iron and the 1 B subgroup metal atoms which can arise from the widespread use of the respective heterometal atoms.

ACKNOWLEDGEMENTS

This work was supported by the projects VEGA 1/0664/12 and KEGA 031UK-4/2012.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Holloway CE, Melník M. Crystallographic and Structural Characterization of Heterometallic Platinum Compounds. Part I. Heterobinuclear Pt Compounds, Centr. Eur. J. Chem. 2011;9:5601-549.
- 1b. Melník M, Mikuš P, Part II. Heterobinuclear Pt Compounds, ibid. 2012;10:1709-1759.
- 1c. Melník M, Mikuš P. Part III. Heterotrinuclear Pt Clusters, ibid, 2013;11:827-900.
- 1d. Melník M, Mikuš P. Part IV. Heterotetranuclear Pt Clusters, ibid, 2013;11:1902-1953.
- Melník M, Mikuš P. Part V. Heteropentanuclear Pt Clusters, ibid, 2014;12:283- 316.
- 1f. Melník M, Mikuš P. Part VI. Heterohexanuclear Pt Clusters, ibid, 2014;12:1101-1126.
- Melník M, Mikuš P. Structural Characterization of Heterometallic Gold – Iron Clusters. Int. Res. J. Pure Appl. Chem. in press.

- 2b. Melník M, Mikuš P. Structural Characterization of Heterometallic FeCu Complexes. Int. Res. J. Pure Appl. Chem. in press.
- Reinhard G, Hirle B, Schubert U. Übergangsmetall-silyl-komplexe: XLII. Einfluβ des phosphan-liganden auf bildung, struktur und stabilität der heterozweikernkomplexe (CO)₃(R'₃P)(R₃Si)Fe-MLn (M = Cu, Ag, Au, Hg). J. Organomet. Chem. 1992;427(2):173-192.
- Li SL, Mak TC, Zhang ZZ. Synthesis and crystal structures of heterobimetallic 2-(diphenylphosphino)-pyridine complexes containing an Fe→M (M = Cul, Agl or HgII) donor–acceptor bond and a mononuclear iron(II) complex bearing a pair of planar strained four-membered chelate rings. J. Chem. Soc. Dalton Trans. 1996;16:3475-3483.
- Gimeno MC, Jones PG, Laguna A. Sarroca C., 1,1'-Bis(diphenylthiophosphoryl) ferrocene as a *trans*- chelating ligand in gold(I) and silver(I) complexes. J. Chem. Soc. Dalton Trans. 1995;21:3563-3564.
- Gimeno MC, Jones PG, Laguna A, Sarroca C. Synthesis of silver(I) complexes with 1,1'-bis(diphenyl-phosphino)ferrocene (dppf). Crystal structures of [Ag(dppf)(PPh₃)]ClO₄·2CH₂Cl₂, [Ag(dppf)₂]ClO₄·2CHCl₃ and [Ag(dppf)(phen)] ClO₄(phen = 1,10phenanthroline). J. Chem. Soc., Dalton Trans. 1995;9:1473-1481.
- Walther B, Hartung H, Bötcher HC, Baumeister U, Böhland U, Reihold J, Sieler J, Ladriere J, Schiebel HM. Unexpected Reaction of [ni(co)4-n(r2pcl)n] (n=1, 2, R=bu-tert, Cy, Ph) With Na2[fe2(co)8] -Synthesis and Electronic-structure of the Anions [fe2(mu-co)(co)6(mu-pr2)]- and Their Reactions With H+ and [m(pph3)]+

(m=cu, Ag, Au). Polyhedron. 1991;10(20-21):2423-2435.

- Mott GN, Taylor NJ, Carty AJ. Triangular Iron-Silver Clusters via the Addition of Silver Electrophiles to Electron-Rich Iron-Iron Bonds. Organometallics. 1983;2:447-452; Carty A.J., Mott G.N., Taylor N.J., Triangular Iron-Silver Clusters. J. Amer. Chem. Soc. 1979;101(11):3131-3133.
- Sato M., Anano H., The transition-metal complexes of the thiamacrocycle containing two ferrocene nuclei in the main chain. Synthesis, properties, and molecular structure of Ag(I), Cu(I), Pd(II), and Pt(II) complexes of 1,5,16,21tetrathia[5.5]ferrocenophane. J. Organomet. Chem. 1998;555(2):167-175.
- 10. Atwood DA, Cocley AH, Dennis SM. A diphosphaferrocene as a chelating ligand for silver(I). Inorg. Chem. 1993;32(8):1527-1528.
- Nifantev IE, Mazhukova LF, Antipin MY, Struchkov YT, Nifantev EE. Ferrocenylenediphosphonites as ligands in the synthesis of oligonuclear heterometallic complexes. Zh. Obsch. Khim. 1995;659(5):756-760.
- 12. Hor TSA, Neo SP, Tan Ch. S, Mak TCW, Leung KWP, Wang RJ. Metal-metal via cooperation 1.1'bis(diphenylphosphino)ferrocene (dppf). 1. Structurally distinctive silver(I) dppf complexes of nitrato and carboxylato ligands in variable coordination modes. Crystal structures of [Ag(NO₃)(dppf)]₂.2CHCl₃, $[Ag_2(HCOO)_2(dppf)_3].2CH_2CI_2,$ $[Ag_2(CH_3COO)_2(dppf)]_2$, and $Ag_2(C_6H_5COO)_2(dppf).$ Inorg. Chem. 1992;31(22):4510-4516.
- Lin P, Huang Q, Sheng T, Wu X. The Heterotrimetallic Linear Complex Tetraethylammonium Dibromo-2 c²Br-tetrak-sulfido-1:2 k⁴S;1:3 k⁴Sbis(triphenylphosphine-3 kP)-2-iron-3silver-1-tungsten, [Et₄N][Br₂FeS₂WS₂Ag(PPh₃)₂]. Acta Cryst., Sect. C. 1996;52:27-29.
- Kuhn N, Horn EM, Boese R, Bläser D. Heterocyclen als Liganden, VI: Die verbrückende Koordination eines 1,1'-Diazaferrocens in einem zweikernigen Silberkomplex — eine ungewöhnliche Struktur. Chem. Ber. 1989;122(12):2275-2277.
- 15. Tani K, Mihana T, Yamagata T, Saito T. Transition metal complexes of 1,1'-Bis(2-

pyridyl)ferrocene. A Cationic Rhodium(I) and a Silver(I) Complex. Preparation and Structure . Chem. Lett. 1991;20(12):2047-2050.

- 16. Hollander FJ, Coucouvanis D. Metal complexes as ligands. V. Crystal and molecular structures of tris(bis(triphenylphosphine)silver(I)) tris(dithiooxalato)iron(III) and aluminum(III). Inorg. Chem. 1974;13(10):2381-2386.
- Hall CD, Sachsinger N, Nyburg SC. Steed J.W., Redox-active schiff-base ligands. J. Organomet. Chem. 1998;561(1-2):209-219.
- 18. Neo SP, Hor TSA, Zhou ZJ, Mak TCW. Nitrato displacement in $[Ag_2(NO_3)_2(\mu - dppf)_2]$. Molecular structure of a homoleptic dppf complex, $[Ag_2(\mu - dppf)(dppf)_2]$ $(PF_6)_2(dppf = 1,1'-bis(diphenylphosphino)ferrocene)$. J. Organomet. Chem. 1994;464(1):113-119.
- Liu Q, Huang L, Liu H, Wu D, Ang B, Lu J. Structural chemistry of molybdenum-ironsulfur cluster compounds with a singlecubane [MoFe₃S₄]n+ (n = 4-6) core and crystal structure of [MoFe₃S₄(Me₂dtc)₅].2CH₂Cl₂. Inorg. Chem. 1990;29(20):4131-4137.
- 20. Li GM, Li S, Tan AL, Wip WH, Mak TCW, Hor TSA. Heteropolymetallic aggregates from $[Pd_2(dppf)_2(\mu-S)_2]$. Bonding and structural analysis of $[Ag_2Pd_2Cl_2(dppf)_2(\mu_3-S)_2] \cdot 4CH_2Cl_2[dppf = Fe(C_5H_4PPh_2)_2]$ —a flat $\{Pd_2S_2\}$ core with two AgCI 'tails'. J. Chem. Soc. Dalton Trans. 1996;23:4315-4316.
- 21. Choi MG, Daniels LM, Angelici RJ. Cyclopentadienyl thiocarbonyl complexes of iron: $[Cp^*Fe(CO)_2CS]^*$, $Cp^*_2Fe_2(CO)_2(CS)_2$, $Cp_2Fe_2(CO)_3(CS)$, and $Cp_2Fe_2(CO)_2(CS)_2$. J. Organomet. Chem. 1990;383(1-3):321-337.
- 22. Moiseev Meleshonkova SK, NN. Solid-solutions Spiridonov FM. of organocopper and organosilver compounds tetrakis-[2-(N,Ndimethylaminomethyl) ferrocenylcopper]tetrakis-[2-(N,Ndimethylaminomethyl)ferrocenylsilver] system. Koord. Khim. 1987;13(12):1589-1592.
- 23. Albano VG, Azzaroni F, Iapalucci MC, Longoni G, Monari M, Mulley S, Proserpio DM, Sironi A. Synthesis, Chemical Characterization, and Bonding Analysis of the $[Ag{Fe(CO)_4}_2]^{3^-}$, $[Ag_4{\mu^2-Fe(CO)_4}_4]^{4^-}$, and $[Ag_5{\mu^2-Fe(CO)_4}_2{\mu^3-Fe(CO)_4}_2]^{3^-}$

- Briant CF, Smith RG, Mingos DMP. Synthesis and structural characterisation of [Ag6{Fe(CO)4}(Ph2P)3CH] - A Distorted Tricapped Octahedral Silver Cluster. J. Chem. Soc. Chem. Commun. 1984;9:586-588.
- Nasimbeni LR, Thackeray MM. Synthesis and crystal structure of the silver perchlorate adduct of iron(III) triacetylacetonate monohydrate. Acta Cryst. Sect. B. 1974;30:1072-1076.
- 26. Solans X, Altaba MF, Garcia OJ. Crystal structures of ethylenediaminetetraacetato metal complexes. V. Structures containing the $[Fe(C_{10}H_{12}N_2O_8)(H_2O)]^{-}$ anion. Acta Cryst. Sect. C. 1984;40:635-638.
- 27. Crespo O, Gimeno MC, Jones PG, Laguna A, Sarroca C. A double sandwich silver(I) polymer with 1,1'bis(diethyldithiocarbamate)ferrocene, Chemical Commun. 1998;14:1481-1482.
- 28. Gimeno MC, Jones PG, Laguna A, Sarroca C. Co-ordination chemistry of 1,1'-

bis(diphenylthiophosphoryl)ferrocene (dptpf κ) towards silver(l). Crystal structure of the polymeric complex [Ag₂(µ-dptpf κ){(SPPh₂)₂CH₂}₂]_n[ClO₄]_{2n} κ ‡. J. Chem.Soc., Dalton Trans. 1998;8:1277-1280.

- 29. Melník M, Mikuš P. Structural Characterization of heterometallic PtAg complexes. New developments in chromophore research. Editors: A. Moliere and E. Vigneron, Chapter 3, Nova Science Publishers Inc. 2013, ISBN: 978-1-62417-154-3
- Melník M, Mikuš P. Structural characterization of heterometallic PtAu complexes. New developments in chromophore research. Editors: A. Moliere and E. Vigneron, Chapter 6, Nova Science Publishers Inc. 2013, ISBN: 978-1-62417-154-3.
- Melník M, Mikuš P. Structural characterization of heterometallic PtCu Complexes. New developments in chromophore research. Editors: A. Moliere and E. Vigneron, Chapter 9, Nova Science Publishers Inc. 2013, ISBN: 978-1-62417-154-3

© 2015 Melník and Mikuš; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?iid=807&id=7&aid=6838