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Abstract

A commonly used rule for determining if a Binomial(n, p) distribution may be reasonably
approximated by a normal distribution is whether or not np and n(1−p) are at least some constant,
such as 10. Two competing rules, one based on the binomial variance and the other based on
the coefficient of variation, are considered when constructing confidence intervals and performing
hypothesis testing, both using and not using a continuity correction. Under one criterion the rule
based on the coefficient of variation is found to be the best in terms of coverage probabilities, and
under another criterion the rule based on the binomial variance is found to be the best.
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1 Introduction
In elementary statistics courses, a commonly
used threshold rule for approximating a
binomial(n, p) distribution with a normal
distribution is based on the minimum
mean of binomial(n, p) and binomial(n,
1−p) distributions, for sample size n and success
probability p. More specifically, this classical
binomial-mean rule is

min{np, n(1− p)} ≥ κm, (1.1)

for some positive constant κm, where κm is often
selected to be an easily memorable number such
as 5, 10 or 15; cf., [1,2,3,4]. For example, if
a coin is tossed n times where the probability
of heads is p, then X, the number of heads,
is a binomial(n, p) random variable. Thus, the
normal approximation to the binomial distribution
is deemed reasonable if np (the average number
of heads) and n(1 − p) (the average number of
tails) are at least κm, under this rule (1.1).

Using coverage probabilities, the normal
distribution reasonably approximates the
binomial distribution based on the binomial-
mean rule (1.1) [5]. The normal distribution
is a reasonable approximation to the binomial
distribution when the cumulative distribution
functions are relatively close to one another, as
demonstrated with coverage probabilities [6,7].

Herein, we consider two new rules, which are
competitors to the binomial-mean rule (1.1). One
competitor is the binomial-variance rule; i.e.,

np(1− p) ≥ κv, (1.2)

where κv is a positive constant. This rule
(1.2) is based on the concept that np(1 − p) is
the variance of a binomial(n, p) distribution, and
variance is a measure of spread. Requiring a
large enough variance ensures a large enough
sample size.

The other competing rule is based on the
coefficient of variation, np/

√
np(1− p) and n(1−

p)/
√
np(1− p), or equivalently requiring that

min{np/(1− p), n(1− p)/p} ≥ κc, (1.3)

where κc is a positive constant. This rule (1.3)
is based on the concept that the coefficient of
variation is the ratio of the mean (i.e., np) to the

standard deviation (i.e.,
√
np(1− p), which is the

squareroot of the variance) of a binomial(n, p)
distribution. Requiring a large enough coefficient
of variation ensures a large enough sample size.

Coverage probabilities using these three rules
are compared under two opposing criteria. The
equal-centers criterion is based on selecting the
three values of κ such that the three minimum
sample sizes are the same when p = 0.5. The
equal-tails criterion is based on selecting the
three values of κ such that the three minimum
sample sizes are the same in the limit as p ↓ 0
and p ↑ 1.

2 Methodology
The nominal levels are set at α = 0.05.
Considered are both one-sided confidence
intervals, p̂ − zα

√
p̂(1− p̂)/n, and two-sided

confidence intervals, p̂ ± zα/2
√
p̂(1− p̂)/n, as

well as the option for including or excluding a
continuity correction, resulting in a set of four
graphs. This continuity correction is based on
adding or subtracting 0.5 from X in the sample
proportion p̂ = X/n. Since the coverage
probabilities are determined under both the
equal-centers criterion (shown in Figure 1) and
the equal-tails criterion (shown in Figure 3), then
using confidence intervals produces two sets of
four graphs.

Here are additional details regarding the
construction of the continuity correction. Since a
binomial(n, p) random variable (e.g., the number
of heads when a coin is tossed n times, where
p is the probability of heads) can take on only
integers, then an approximation to the normal
distribution (which is continuous) typically can
be improved by adjusting halfway between these
integers; i.e., a correction of 0.5. For example, if
n = 100, then the probability of obtaining at least
43 heads is approximated by P (Y > 42.5), where
Y is a normal random variable with mean np and
variance np(1 − p). Similarly, the probability of
obtaining no more than 43 heads is approximated
by P (Y < 43.5). This improvement based on
the continuity correction is a well-known result
[8,9,10].

Additional calculations are performed based
on hypothesis tests, by replacing the standard
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error
√
p̂(1− p̂)/n by

√
p(1− p)/n, noting the

null value of p with hypothesis testing. These
calculations for hypothesis testing produce
another two sets of four graphs (shown in
Figures 2 and 4), for a grand total of 16 graphs
when α = 0.05. The R-code for producing these
graphs is shown in the appendix.

Setting κm = 5, the minimum value of n is 10,
under the binomial-mean rule. Then, for each
value of n ≥ 10, we determine the minimum
value (without loss of generality), pmin, of p
satisfying the binomial-mean rule. As an intense
grid search, we consider 10,000 values of p∗

uniformly sequenced between pmin and 0.5.
The minimum coverage probability over the valid
values of p∗, as based on binomial probabilities,
is plotted as a function of n.

When the equal-centers criterion is used, we
have κv = κm/2 and κc = 2κm, so the minimum
valid value of n is 10 for all three rules with
κm = 5. When the equal-tails criterion is used,
we then have κm = κv = κc, so the minimum
valid values of n are 10, 20, and 5, respectively,
for κm = 5.

One might naively argue that when generating
confidence intervals, the three rules should be
based on p̂ rather than p. For example, consider
the binomial-mean rule with κm = 5 and n = 10.
The only value of X which satisfies this rule
is X = 5. The two-sided confidence interval
without the continuity correction is (0.19, 0.81).
Therefore, if p < 0.19 or p > 0.81, then
the coverage probability (which is based on
a minimum for all values of X satisfying the
binomial-mean rule) is zero. Comparing the
three rules based on p̂ is hence unreasonable.
Moreover, P (X = 5) is only 0.02 when n = 10
and p = 0.19 or p = 0.81. Therefore, we decided
that our three rules should be based on p rather
than p̂.

3 Results and Discussion

With nominal coverage levels of 95%, the
empirical coverage probabilities, as based on the
minimum among all p∗ ∈ [pmin, 0.5], sometimes
tend to be too low, especially when the continuity
correction is not used, as we will note from our

graphs. The large values of n allow values
of p to be close to zero or unity. If one is
concerned about how well the normal distribution
approximates the binomial distribution for large or
small values of p, then the equal-centers criterion
should be used when comparing the rules. On
the other hand, if one is concerned about how
well the normal distribution approximates the
binomial distribution for values of p near 0.5, then
the equal-tails criterion should be used when
comparing the rules.

Herein, a rule is judged to be superior
to another rule, when the former rule has
a significantly uniformly higher coverage
probability than the latter rule, where the
comparison is made within the graphs.
Under the equal-centers criterion, when
confidence intervals are being constructed, the
coefficient-of-variation rule (1.3) is clearly
superior to the binomial-mean rule (1.1), which
is superior to the binomial-variance rule (1.2), as
illustrated in Figure 1. This superiority holds for
the one-sided and two-sided cases, both with and
without the continuity correction.

Under this same equal-centers criterion, when
hypothesis testing is being performed, the
coefficient-of-variation rule and the binomial-
mean rule are almost equivalent, except for the
two-sided case without the continuity correction,
where the coefficient-of-variation rule is slightly
superior, as illustrated in Figure 2. Furthermore,
the coefficient-of-variation rule and the binomial-
mean rule are almost equivalent, except for the
one-sided case without the continuity correction,
where the binomial-mean rule is somewhat
superior.

Under the equal-tails criterion, when one-sided
confidence intervals are being constructed, the
binomial-variance rule (1.2) is clearly superior to
the binomial-mean rule (1.1), which is superior
to the coefficient-of-variation rule (1.3), for small
sample sizes (n < 35), as illustrated in Figure 3.
This superiority of the binomial-variance rule
also holds for two-sided confidence intervals with
the continuity correction for small and moderate
sample sizes (n < 100), but the binomial-
variance and binomial-mean rules are almost
equivalent for two-sided confidence intervals
without the continuity correction for n > 30.
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Under this same equal-tails criterion, when
hypothesis testing is being performed, all three
rules are pretty much equivalent, so none of the
rules should be considered superior over the
others.

Moreover, in Figures 2 and 4, each of the red,
black, and green curves falls above the purple
horizontal line. Therefore, when the continuity
correction is used with hypothesis testing, all
three rules produce coverages exceeding the
nominal 95% coverage.
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Figure 1. Coverage probabilities, based on the equal-centers criterion for 95% confidence intervals.
The red curve represents the binomial-mean rule (1.1). The green curve represents the binomial-
variance rule (1.2). The black curve represents the coefficient-of-variation rule (1.3).
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Figure 2. Coverage probabilities, based on the equal-centers criterion for hypothesis tests of level
0.05. The red curve represents the binomial-mean rule (1.1). The green curve represents the
binomial-variance rule (1.2). The black curve represents the coefficient-of-variation rule (1.3).
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Figure 3. Coverage probabilities, based on the equal-tails criterion for 95% confidence intervals. The
red curve represents the binomial-mean rule (1.1). The green curve represents the binomial-
variance rule (1.2). The black curve represents the coefficient-of-variation rule (1.3).
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Figure 4. Coverage probabilities, based on the equal-tails criterion for hypothesis tests of level
0.05. The red curve represents the binomial-mean rule (1.1). The green curve represents the
binomial-variance rule (1.2). The black curve represents the coefficient-of-variation rule (1.3).
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4 Conclusion

If one is concerned about coverage probabilities
when p is near zero or unity when constructing
confidence intervals, then based on the
equal-centers criterion, the clear winner is the
coefficient-of-variation rule, for the one-sided
and two-sided cases, both with and without
the continuity correction, as shown in Figure 1.
Coming in second place is the binomial-mean
rule, which greatly improves over the binomial-
variance rule. When performing hypothesis
tests under the equal-centers criterion, the
coefficient-of-variation rule and the binomial-
mean rule are almost equivalent across the
board, and are somewhat superior to the
binomial-variance rule when not using the
continuity correction, as shown in Figure 2.

If one is concerned about coverage
probabilities when p is near 0.5 when
constructing confidence intervals, then based
on the equal-tails criterion, the winner is the
binomial-variance rule (1.2), especially for the
smaller sample sizes, as shown in Figure 3.
However, when performing hypothesis tests
under the equal-tails criterion, all three rules are
nearly equivalent, as shown in Figure 4.
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Appendix

R-code for producing Figures 1, 2, 3, and 4

p.minimum <- function( n.seq=c(10:50, 1000, 1e4, Inf),

mu=5, rule=c("classical","variance","coef_of_var") ) {

p.min = NULL

for ( n in n.seq ) {

if ( is.infinite(n) ) p=0

if ( is.finite(n) ) {

if ( rule[1]=="coef_of_var" ) {

p = ifelse ( n >= mu, mu / ( n + mu ), NA ) }

if ( rule[1]=="classical" ) {

p = ifelse( n >= 2 * mu, mu / n, NA ) }

if ( rule[1]=="variance" ) {

p = ifelse( n >= 4 * mu, ( 0.5 - sqrt( 1 - 4 * mu / n )/2 ), NA ) }

}

p.min = c( p.min, p ) }

return( p.min )

}

binom.error <- function( n, p, mu=NULL, rule = c("classical","variance",

"coef_of_var"),

method=c("hyptest","confint"), two.sided=TRUE, correct=TRUE, level=0.95 )

{

prob0 = ifelse( two.sided, 0.5 + level/2, level )

x = 0:n ; phat = x/n

if ( method[1]=="confint" ) me = qnorm( prob0 )*sqrt( phat*(1-phat)/n )

if ( method[1]=="hyptest" ) me = qnorm( prob0 )*sqrt( p*(1-p)/n )

indicator = 1

if (two.sided) indicator = ( (x-0.5*correct)/n-me <= p )

coverage.prob = sum( dbinom(x,n,p) * indicator * ( p <= (x+0.5*correct)/n+me ) )

the.error = level - coverage.prob

return( the.error )

}

binom.error.vec <- function( n.seq, mu, rule,

method=c("hyptest","confint"), two.sided=TRUE, correct=TRUE, level=0.95,

length.out=10000 )

{

p.min = p.minimum( n.seq=n.seq, mu=mu, rule=rule )

max.error = rep( NA, length(n.seq) )

for ( i in 1:length(n.seq) ) {

if ( is.na( p.min[i] ) ) max.error[i]=NA

else {

max.error[i] = -Inf

if (p.min[i]>0) p.seq = seq( p.min[i], 0.5, length.out=length.out )
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if (p.min[i]==0) p.seq = 0

for ( p in p.seq ) {

the.error = binom.error( n=n.seq[i], p=p, mu=mu, rule=rule, method=method,

two.sided=two.sided, correct=correct, level=level )

max.error[i] = max( c( max.error[i], c( the.error ) ) ) } } }

return( list( p.min=p.min, max.error=max.error ) )

}

all.three.rules <- function( mu=5, method, two.sided=TRUE, correct=TRUE, level=0.95,

length.out=10000, equal.tails=TRUE, n.max=100 ) {

rule = c( "classical", "variance", "coef_of_var" )

if ( equal.tails) { mu = rep( mu, length(rule) ) ;

n.seq = ceiling(mu[1]):n.max }

if (!equal.tails) { mu = c( mu, mu/2, mu*2 ) ;

n.seq = ceiling(mu[1]*2):n.max }

output1 = binom.error.vec( n.seq=n.seq, mu=mu[1], rule=rule[1], method=method,

two.sided=two.sided, correct=correct, level=level,

length.out=length.out )

output2 = binom.error.vec( n.seq=n.seq, mu=mu[2], rule=rule[2], method=method,

two.sided=two.sided, correct=correct, level=level,

length.out=length.out )

output3 = binom.error.vec( n.seq=n.seq, mu=mu[3], rule=rule[3], method=method,

two.sided=two.sided, correct=correct, level=level,

length.out=length.out )

return( list( "===============================================================",

mu=mu, rule=rule, two.sided=two.sided, correct=correct, level=level,

length.out=length.out,

two.sided=two.sided, correct=correct, level=level, method=method,

frame=data.frame( n.seq=n.seq, p.min.CV=output3$p.min,

p.min.class=output1$p.min,

p.min.var=output2$p.min, error.CV=output3$max.error,

error.class=output1$max.error,

error.var=output2$max.error ),

"=====================================================================" ) )

}

graph <- function( binom.output, level=0.95, main=NULL, sub=NULL )

{

x = binom.output$frame[,"n.seq"]

y1 = level - binom.output$frame[,"error.CV"]

y2 = level - binom.output$frame[,"error.class"]

y3 = level - binom.output$frame[,"error.var"]

xlim.range = range( x, na.rm=TRUE )

ylim.range = range( c( level, y1[is.finite(y1)], y2[is.finite(y2)],

y3[is.finite(y3)] ),

na.rm=TRUE )

plot( x[is.finite(y1)], y1[is.finite(y1)], xlab="sample size (n)", ylab="coverage",

xlim=xlim.range, ylim=ylim.range, type="s", main=main, sub=sub )

par( new=TRUE ); plot( x[is.finite(y2)], y2[is.finite(y2)], xlab="", ylab="",
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xlim=xlim.range, ylim=ylim.range, col="red", type="s" )

par( new=TRUE ); plot( x[is.finite(y3)], y3[is.finite(y3)], xlab="", ylab="",

xlim=xlim.range, ylim=ylim.range, col="darkgreen", type="s" )

abline(h=level, col="purple")

}

four.graphs <- function( mu=5, method="hyptest", level=0.95, n.max=120,

length.out=10000,

equal.tails=TRUE ) {

par( mfrow = c(2,2) )

if ( method == "confint" & equal.tails ) sub = "CI with equal tails"

if ( method == "confint" & !equal.tails ) sub = "CI with equal centers"

if ( method == "hyptest" & equal.tails ) sub = "Hypothesis test with equal

tails"

if ( method == "hyptest" & !equal.tails ) sub = "Hypothesis test with equal

centers"

graph( all.three.rules( mu=mu, method=method, two.sided=FALSE, correct=FALSE,

level=level, n.max=n.max, length.out=length.out, equal.tails=equal.tails ),

level=level, main="One-sided Without Cont. Correction", sub=sub )

graph( all.three.rules( mu=mu, method=method, two.sided=FALSE, correct=TRUE,

level=level, n.max=n.max, length.out=length.out, equal.tails=equal.tails ),

level=level, main="One-sided With Cont. Correction", sub=sub )

graph( all.three.rules( mu=mu, method=method, two.sided=TRUE, correct=FALSE,

level=level, n.max=n.max, length.out=length.out, equal.tails=equal.tails ),

level=level, main="Two-sided Without Cont. Correction", sub=sub )

graph( all.three.rules( mu=mu, method=method, two.sided=TRUE, correct=TRUE,

level=level, n.max=n.max, length.out=length.out, equal.tails=equal.tails ),

level=level, main="Two-sided With Cont. Correction", sub=sub )

}

four.graphs( mu=5, method="confint", level=0.95, n.max=120, length.out=10000,

equal.tails=FALSE )

four.graphs( mu=5, method="hyptest", level=0.95, n.max=120, length.out=10000,

equal.tails=FALSE )

four.graphs( mu=5, method="confint", level=0.95, n.max=120, length.out=10000,

equal.tails=TRUE )

four.graphs( mu=5, method="hyptest", level=0.95, n.max=120, length.out=10000,

equal.tails=TRUE )
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