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Abstract 

 
The conventional technique to determine classification performance for the linear classification 

techniques strictly depends on the mean probabilities of correct classification or 

misclassification. Based on the mean probabilities of correct classification, robustness can be 

determined. In this paper, a new analytic procedure based on the joint and marginal 

probabilities is applied to determine robustness and the number of sample observations 

correctly classified. The classification results computed using this approach is unbiased. This 

technique is applied to investigate the classification performance of the Fisher linear 

classification analysis and the robust Fisher’s technique based on the minimum covariance 

determinant. The performance analysis when compared to the conventional procedure revealed 

that this technique is very informative. Relying on the analysis and the data set used, the 

recognition rate of the conventional approach is more accurate than the robust Fisher’s 

technique. 

Keywords: Classification, mean probability, joint probability, marginal probability. 

 

1 Introduction 
 
The Fisher linear classification analysis (FLCA) [1], is a dimension reduction technique used prior 

to classification and discrimination [2]. Conventionally, the FLCA procedure was proposed for 
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two groups. Its basic advantage is the graphical representation in two dimensions. The FLCA 

assist in gaining information regarding the separation between the two groups with regards to the 

within group mean and the contribution of the profile variables [3,4]. It belongs to the class of 

supervised linear classification technique [5-6]. The basic assumption of the FLCA is the equality 

of the within group covariance matrices. The coefficient of the FLCA is computed based on the 

difference between the within group mean vectors and the pooled common covariance matrix. The 

sample mean and covariance estimates are the building blocks of the FLCA but are sensitive to 

influential observations [7-12-15]. The sample mean vectors and covariance matrices computed 

based on data set generated from a multivariate normal distribution enhances the performance of 

the FLCA maximally [16-17]. On the other hand, if the data set is not drawn from a multivariate 

normal distribution, the sample mean and covariance estimates computed are influenced by 

influential observations hence when these sample estimates are applied to develop the FLCA; the 

misclassification rate for the FLCA tends to increase maximally. 

 

It has been suggested that when the data set are not normally distributed the sample estimates are 

influenced by influential observations, hence various propositions have been proposed to robustify 

the sample estimates to enhance maximum classification performance. The maximum likelihood 

estimator (M estimator) [18], generalized maximum likelihood estimator (GM estimators) [19], 

Smooth estimator (S estimator) [20], minimum volume ellipsoid (MVE) [21] and the minimum 

covariance determinant estimator (MCD) [22] were proposed to robustify the sample mean and 

covariance matrices. The robustified mean vectors and covariance matrices are substituted into the 

conventional Fisher linear classification technique to obtain robust Fisher’s classification 

technique. The MCD procedure has been applied to robustify the Fisher linear discriminant 

analysis and the quadratic discriminant analysis [23]. The MCD procedure strictly depends on 

information glean from the half set. Detail of this robust high breakdown method and its 

application to classification is contained in [24]. This paper is concerned on methods to determine 

robustness and the number of sample sizes correctly classified or misclassified. The conventional 

approach applies the mean probability of correct classification or the apparent error rate using 

information from the confusion matrix. In this paper we apply a new technique to determine 

robustness and the number of sample observations correctly classified using joint and marginal 

probabilities respectively. 

 

The remainder of this paper is organized as follows. The Fisher linear classification analysis is 

described in Section Two. Section Three contains robust Fisher linear classification analysis based 

on minimum covariance determinant. Section Four describes the performance of linear 

classification techniques. Simulation and conclusions are described in Sections Five and Six, 

respectively. 

 

2 Conventional Fisher Linear Classification Analysis (FLCA) 

 
The Fisher linear classification analysis [1] for two groups problem is defined mathematically as 

follows, 

 

_ ,T
h pv u x=                                                          (1) 

 

where u  denotes the Fisher linear coefficient, x is the sample observation and _h pv  denotes 

the Fisher’s classification sore, a scalar. The Fisher’s technique is a linear combination of the 
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observed variables that best describes the maximum separation between the groups [5]. Since the 

population mean vectors and covariance matrices are unknown, the sample estimates are used to 

estimate the population mean vectors and covariance matrices respectively. The estimate of the 

population covariance matrix is unbiased and the evaluation of the Fisher’s linear classification 

scores based on the group mean vectors and the difference between the mean of the Fisher’s linear 

classification score is approximately the Mahalonobis distance [6].   

 

The following equation in comparison with the classification score allows an observation to be 

assigned to the correct group, say, 

 
2

1_ .
2

i
Ti

x

mean cut u==
∑

                                                         (2) 

 

Where  _mean cut  denote the midpoint and 
i

x  are the within group mean vectors. The 

computation of the Fisher linear coefficient is possible if the group means are unequal.  To design 

the allocation rule for the two groups based on the multivariate sample observations, let 

( 1,2)
i

iβ =  denote the prior probabilities for the two groups and let us assume that 

1 2β β=  with the basic understanding that 

2

1

1.i

i

β
=

=∑  Define 1 (2 /1)
c

η ϖ= to be the cost of 

misallocating an observation in group two into group one and let 2 (1/ 2)
c

η ϖ=  be the cost of 

misallocating an observation from group one into group two, respectively. The total probability of 

misallocation is given as 1 1 2 2.
c c

β η β ηΩ = +  The total probability of correct allocation is 

obtained by taking the sum of the diagonal of the confusion matrix divided by the total sample 

size and the misallocation probability otherwise. In practice, the cost of misallocation is not 

known; hence Fisher’s allocation rule is based on the assumption that the prior probabilities and 

misallocation cost for both groups are equal. The comparison between the classification score and 

the midpoint defines the linear classification rule. The Fisher linear classification rule is obtained 

by comparing the classification score with the classification midpoint. The allocation rule is based 

on Equations (1-2). An observation is assigned to group one if the classification score is greater 

than or equal to the midpoint otherwise the observation is assigned to group two if the 

classification score is less than the midpoint. Interestingly, the technique discussed above 

underperforms if the data set contains influential observations. In order to enhance the 

performance of the FLCA, robust procedures based on clean data was proposed. The following 

section three gives detailed account of robust technique based on the minimum covariance 

determinant estimators.  

 

3 Robust Fisher Linear Classification Analysis Based on 

Minimum Covariance Determinant (FMCD) 

 
In general, robust linear classification procedures are based on weighting approach, say assigning 

zero to influential observations and one to regular observations. Specifically, there are no basic 

rules on applying the weighting technique on the training or test data set or weighting before 
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splitting the data set into training/testing. Relying on the weighting technique a less technical 

robust procedure computes its estimates (mean vectors and covariance matrices) and applies these 

estimates to the conventional FLCA. In this consideration, a more technical approach based on the 

minimum covariance determinant is considered. This procedure is described based on the half set. 

The minimum covariance determinant procedure searches for the subset ih  (out of in (sample 

size)) of the data set whose covariance matrix has the minimum determinant [23]. The sample 

observations based on the half set are chosen from the multivariate data set to obtain the MCD 

estimates of mean vectors and covariance matrices. These robust estimates are computed based on 

the clean data set selected by the half set. The MCD estimates are substituted into the conventional 

Fisher’s equations, say Equations (1-2) to obtain the robust Fisher linear classification rule. 

Detailed description of this method is contained in [23]. The MCD approach requires the 

correction factor to obtain unbiased and consistent estimates if the data set comes from a 

multivariate normal distribution. The correction factor is used for the FAST-MCD algorithm to 

compute the MCD estimates. Detailed description and theorem to compute the concentration steps 

based on the half set of the MCD technique is contained in [24]. The allocation procedure for this 

method is the same as that of the Fisher linear classification analysis. 

 

4 The Performance of Linear Classification Techniques 

 
When the data set used in training the model is applied to validate the model, the classification 

performance is upward bias. In this case, the result is totally bias because the same data is used for 

both training and validation. An unbiased classification results can be obtained if the data set is 

splitted into two, say training and validation. Under this consideration, the training data is used to 

training the model while the validation set is used to validate the model. A stable and accurate 

classification results are obtained if the two categories of data set are reshuffled and replicated 

over a well defined Monte Carlo sample size.  

 

5 Simulation 

 
This simulation is designed to investigate the comparison between classification performance 

based on the mean of the optimal probability and the mean of the marginal probability. The aim is 

to compute the number of correct classification for each group, the overall mean probability and 

the marginal probability is compared in order to determine performance and to investigate if the  

marginal probabilities sum up to unity. In a general note, the mean of the optimal probability of 

correct classification only specifies the performance benchmark and satisfy the first axiom of 

probability. In this simulation, the data set is generated based on the contaminated normal model, 

say 3 340 (0,1) 10 (0.9,9),N N+ the meaning of this is that majority of the data set was drawn 

from the normal distribution 340 (0,1)N  and the remaining data set was generated from the 

contaminated normal portion 310 (0.9,9)N  respectively.  The generated data set was added 

together and reshuffled and divided into 58 % ( 29) training and 42 % ( 21) validation. The result 

reported is based on 1000 replications. The marginal probabilities of correct classification and 

misclassification for the Fisher’s technique are reported in Table 1. 
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Table 1. Probabilities of correct classification (optimal=0.8907) 
 

Performance  Group one Group two Total  

Correct classification 0.4524 0.4762 0.9286 

Misclassification  0.0476 0.0238 0.0714 

 0.5000 0.5000 1.0000 

 

From the marginal probabilities both groups account for 0.5 sample observations which satisfies 

the axioms of probability, 93% of the sample observations were correctly classified while 7% 

were misclassified. The mean probability of correct classification (0.8765) and standard deviation 

(0.0277) has 0.9286 marginal probability of correct classification. The marginal probability 

revealed that 39 out of the 42 sample observations were correctly classified and 3 misclassified. 

Table 2 below contain the classification result for the robust Fisher’s approach based on the 

minimum covariance determinant. 

 

Table 2. Probability of correct classification (optimal=0.8907) 

 

Performance  Group one Group two Total  

Correct classification 0.4524 0.4524 0.9048 

Misclassification  0.0476 0.0476 0.0952 

 0.5000 0.5000 1.0000 

 

The marginal probability indicates that 90% of the sample observations were correctly classified 

whereas about 10% were misclassified. The mean probability of correct classification (0.8668) 

and the standard deviation (0.0274) revealed that the conventional Fisher linear classification 

analysis is robust. The robust Fisher’s approach account for 90% (38 out of 42) of the sample 

observation whereas the conventional approach account for 93% (39 out of 42) of the total sample 

observations for both groups. 

 

6 Conclusion 

 
The new procedure adopted revealed the proportion of sample observation correctly classified and 

misclassified, respectively. The approach is useful in determining the number of sample 

observations classified and can also be used to determine robustness. The limitation of this 

technique is that the standard deviations for the respect technique cannot be computed 

automatically. However, we have introduced a new procedure for analyzing the classification 

performance of the linear classification techniques based on two groups. The new technique of 

analyzing the performance also satisfies the two axioms of probability. We are investigating 

classification performance based on Type 1 and Type 2 errors. Indeed, performance analysis based 

on Type 1 and Type 2 errors with respect to probability of correct classification or 

misclassification only symbolizes the rejection of the null hypothesis or the acceptance of the 

alternate hypothesis. 
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