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Credit Card Fraud Detection with Automated Machine 
Learning Systems
Vasilios Plakandaras a, Periklis Gogas a, Theophilos Papadimitriou a, 
and Ioannis Tsamardinos b

aDepartment of Economics, Democritus University of Thrace, Komotini, Greece; bDepartment of 
Computer Science, University of Crete and Gnosis Data Analysis, Greece

ABSTRACT
The steady increase at the turnover of online trading during the 
last decade and the increasing use of credit cards has subse
quently made credit card frauds more prevalent. Machine 
Learning (ML) models are among the most prominent techni
ques in detecting illicit transactions. In this paper, we apply the 
Just-Add-Data (JAD), a system that automates the selection of 
Machine Learning algorithms, the tuning of their hyper- 
parameter values, and the estimation of performance in detect
ing fraudulent transactions using a highly unbalanced dataset, 
swiftly providing prediction model for credit card fraud detec
tion. The training of the model does not require the user setting 
up any of the methods’ (hyper)parameters. In addition, it is 
trivial to retrain the model with the arrival of new data, to 
visualize, interpret, and share the results at all management 
levels within a credit card organization, as well as to apply the 
model. The model selected by JAD identifies 32 out of a total of 
39 fraudulent transactions of the test sample, with all missed 
fraudulent transactions being small transactions below 50€. The 
comparison with other methods on the same dataset reveals 
that all the above come with a high forecasting performance 
that matches the existing literature.
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Introduction

The creation of international agreements that promote transactions with 
credit cards such as the Single Euro Payments Area have significantly eased 
the use of card payments by consumers and businesses. The total value of card 
transactions using cards issued in the SEPA area amounted to €4.38 trillion in 
2016 (ECB, 2018) and is expected to double by 2025. Nevertheless, along with 
credit card transactions, we have seen a significant rise in credit card fraud. In 
2016, credit card fraud in the SEPA area amounted to €1.8 billion (European 
Central Bank 2018), while the worldwide incidents rose from $7.6 billion in 
2010 to $21.81 billion in 2015 and are expected to reach $31.67 billion in 2020 
(Robertson 2016). Despite the increasing effort to alleviate such fraudulent 
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transactions and the substantial resources allocated by credit card issuers 
toward this end, the rising cost of fraudulent transactions suggests that there 
is much room for improvement in this research area.

The detection of a fraudulent transaction is an ambitious task. First, frau
dulent cases are rare (in our dataset only 1 every 5000 records), rendering the 
outcome distribution severely skewed. The distribution of fraud cases seems to 
have seasonality effects and structural breaks as the attack strategies evolve 
over time (Dorronsoro et al. 1997). Another important issue is the accurate 
definition of the cost function, given that the cost of a false positive differs 
from the cost of a false negative (Dal Pozzolo et al. 2014). When the system 
characterizes a genuine transaction as fraudulent and freezes erroneously that 
transaction (false positive), the financial institution has an administrative cost 
to pay, as well as a decrease in customer satisfaction. In the case of frequent 
false-positive alarms, the financial institution faces the risk of losing customers 
and gathering adverse publicity. Conversely, when the system fails to detect 
a fraudulent transaction (false negative), the amount of that transaction is 
a loss for the financial institution or the merchant. Thus, it is very hard to 
define the asymmetric loss of each occurrence.

Another significant difficulty in fraud detection is that electronic defrauders 
perform mainly legitimate transactions and occasionally fraudulent ones, 
rendering the profiling of them into universal standard patterns difficult. 
Each transaction must be examined separately, rendering the reaction overdue, 
especially on the non-working hours of electronic transactions. For an actual 
system to be useful, response to a fraudulent transaction should be almost 
contemporaneous, which is difficult given that most systems end up forward
ing automatic flagged transactions to (human) fraud examiners for manual 
inspection. Finally, security and privacy laws limit the public availability of 
data and/or censor the performed analyses, making them difficult to assess.

Credit card fraud can be broadly separated into two categories: identity 
fraud with the physical presence of the card, and electronic fraud without the 
physical presence of the card. In the first case the fraud demands the acquisi
tion of the credit card and the identity of the actual owner. In order to perform 
a transaction, the imposter must be physically present. The second category 
does not require physical presence of the card or its owner/imposter and is 
targeted to online transactions, where only identity and safety details are 
required. The latter category accounts for more than 70% of the worldwide 
credit card fraud (Robertson 2016), given that no face-to-face contact between 
seller and buyer is required. Despite the use of several technological improve
ments such as the Address Verification System (AVS), Chip and Pin verifica
tion and the Card Verification Code (CVV), new credit card fraud strategies 
are continuously being developed. This makes the automated timely detection 
of fraudulent transactions a very significant defense mechanism in combating 
fraud and reducing the associated losses to financial institutions.
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Modern data-driven statistical and machine-learning (ML) methods can 
provide statistical-like predictive models that output the probability of 
a transaction to be fraudulent and address the above challenge. Indeed, ML 
applications have shown to be promising in fraud detection (see Related 
Work). However, each such application requires coding its own script, experi
mentation with several algorithms, and significant experience with statistical 
and machine learning methods as some ML algorithms do not converge in big 
sample data, some return sub-optimal predictive models, some are inappropri
ate for imbalanced outcomes, others require fine-tuning of their hyper- 
parameter values, others are hard to explain or interpret, or challenging to 
combine with feature selection (see Related Work Section). Manual scripting 
is also time-consuming and prone to methodological errors. Thus, the chal
lenges that arise are “can credit card fraud predictive modeling be automated? 
Do the resulting models compete with the ones developed by human experts? 
Does automation obfuscate the interpretation of the model, or can it actually 
also help in obtaining intuition into the data patterns and task?”

To respond to such challenges, systems and services that automate a large 
part of the machine learning pipeline have recently appeared under the name 
of Automated Machine Learning (AutoML) system. Such systems automate 
the selection of ML algorithms, the tuning of their hyper-parameter values, the 
estimation of performance, and the visualization and interpretation of results. 
In this paper, we demonstrate how AutoML tools could potentially increase 
the productivity of detecting fraudulent credit card transactions without 
a reduction in the prediction performance compared to a manual analysis. 
Specifically, we describe and use the Just Add Data Bio1 (hereafter JAD) 
AutoML tool on the fraud detection problem described above and achieve 
results on par with state-of-the-art previous analyses that are manually coded. 
Secondly, in addition to modeling, JAD performs automated feature selection 
to identify the most significant variables to fraud detection, providing valuable 
intuition to fraud inspectors. We’d like to note that JAD’s feature selection 
considers features jointly (multivariate) and not simply one by one. Features 
that are informative by themselves may become redundant given other fea
tures; similarly, features that are uninformative by themselves may be neces
sary for optimal prediction and become informative given other features. 
Hence, optimal feature selection is a combinatorial problem that returns the 
minimal-size feature subset that in combination leads to the optimally pre
dictive model. After examining numerous combinations of algorithms for 
feature selection and modeling, as well as their tuning hyper-parameter values, 
JAD selects the best one to create a final model for prediction. It estimates its 
predictive performance along several common metrics (e.g., AUC, accuracy, 
balanced accuracy, F1 score), the confidence intervals of performance, the 
Receiver Operating Characteristic (ROC) curve, and the contribution to per
formance for each selected feature.
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Post-analysis, JAD provides an easy way to access the trained model and 
apply it on new data to get predictions, without the need for computer coding. 
This means that any employee of a financial institution or a credit card firm 
can get predictions and try different scenarios of credit card transactions to 
gauge how predictions change with the feature values. JAD also supports 
collaborative analyses by sharing projects, data, and analyses results; the later 
can also be shared with anybody via unique links to the specific results’ page.2

The present work provides evidence that AutoML systems can indeed address 
to a large extent the challenges for automated credit card fraud detection 
modeling, at least within the limited scope of the present computational experi
ments performed. JAD does automatically output predictive models that can 
compete with prior work, selects the important features for prediction removing 
irrelevant and redundant features, and helps explain and interpret results. 
Several limitations of course, remain (see Discussion). Nevertheless, Auto ML 
can open a new path of research and provide supervision tools to the industry 
that overcome some of the limitations and obstacles of academic research. Based 
on this work, we argue that AutoML tools and services should be considered 
when analyzing credit card transaction data and potentially, other similar-type 
financial data. The simplicity, accuracy and speed of such systems make them an 
excellent fit in such financial transaction situations. The model can filter and flag 
a transaction as probably fraudulent in real time out of thousands of other 
transactions, keeping human intervention to a minimum.

The remainder of the paper is organized as follows. In section 2 we describe 
in more detail the Related Work. In Section 3, we describe the data and the 
methodology, while the empirical findings are presented in section 4. Section 5 
discusses the limitations of the study, and Section 6 concludes the paper.

Related Work

The obvious financial benefits in detecting fraudulent transactions has sparked 
a voluminous literature in the field. The first attempts to create automate 
detection systems that examine an––often—large number of transactions 
and classify them as fraudulent or legitimate, are expert systems based on 
a set of classification rules (Hanagandi, Dhar, and Buescher 1996). 
Nevertheless, given that the distribution of credit card transaction datasets 
changes due to seasonality patterns, new market trends and the evolvement of 
new fraud strategies, the applied rules should be constantly updated, making 
rule-induction systems infeasible and ineffective.

Following an econometric approach, Ng and Jordan (2002) compare 
logistic regression with Naïve Bayes classification models, showing that 
logistic regression models have a lower asymptotic error than Bayes 
classifiers, but fail to converge in very large datasets, as the ones used in 
credit card transaction problems. The Bayes classifier converges quickly, 
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but its classification accuracy is lower than that of the logistic regression 
models. On a similar path, Maes et al. (2002) compare Bayesian and 
neural networks, concluding that the Bayesian network converges faster 
and exhibits a lower classification error than neural networks. In an 
extended benchmark simulation, Lessmann et al. (2015) compare 41 
methodologies on various evaluation criteria and several credit scoring 
datasets. It is confirmed that the random forest method, i.e., the rando
mized version of bagged decision trees, outperforms logistic regression 
and has progressively become one of the standard models in the credit 
scoring industry (Grennepois, Alvirescu, and Bombail 2018).

Over the last decades, the rapid advances in the field of ML, provided 
additional tools to the satisfaction of fraud investigators. In a thorough survey 
of the relevant literature Ngai et al. (2011) conclude that the most commonly 
used ML methods in fraud detection are decision trees, Artificial Neural 
Networks (ANN), Support Vector Machines (SVM) and genetic algorithms. 
These techniques can be used alone or in collaboration using ensemble or 
meta-learning techniques to build classifiers. Most of the applications are 
based on supervised training algorithms such as ANN (Dorronsoro et al. 
1997; Prodromidis, Chan, and Stolfo 2000; Syeda, Zhang, and Pan 2002; 
Schindeler 2006; Juszczak et al. 2008; Quah and Sriganesh 2008) decision 
tree techniques like ID3, C4.5 and CART (Chen et al. 2005; Mena 2003; 
Wheeler and Aitken 2000) and SVM (Bhattacharyya, 2011).

A synopsis of the relevant literature suggests that classification performance 
of ML methodologies is heavily dependent on the dataset under study, with 
Bayesian networks and logistic regression exhibiting higher classification 
performance in smaller samples and ANNs and C4.5 decision trees outper
forming all competing methodologies in larger samples. An obvious contrast 
of the previous works to the current proposed direction, is that a large part of 
the effort goes to the identification of the best algorithms for the given task and 
the optimization of the hyper-parameter. Moreover, as the number of the 
observations increases, the task of selecting the most informative features 
becomes a computationally impossible task. Thus, many researchers select 
a number of variables (often arbitrarily), conditioning the performance of 
their model to subjective feature selection processes. In contrast, the AutoML 
approach completely automates feature selection and model tuning.

Data and Methodology

The Data

For our analysis we use a large and frequently used in the literature 
cross-sectional dataset on credit card fraud detection, available in Dal 
Pozzolo et al. (2014).3 The dataset includes online credit card 
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transactions made in September 2013 by European cardholders. It con
sists of 492 fraudulent out of a total of 284,807 transactions for a two- 
day period. Thus, the fraud rate is approximately 0.172% of all transac
tions or approximately 1 in every 579 transactions. The data contains 28 
anonymized variables, plus two named variables “Time” and “Amount.” 
The anonymized variables are the result of a Principal Component 
Analysis (PCA) transformation of the original data for confidentiality 
issues. The time feature contains the seconds elapsed between each 
transaction and the first transaction in the dataset. The “Amount” 
feature is the transaction amount. Regarding the anonymized nature of 
the features, as stated in Carneiro, Figueira, and Costa (2017), the 
variables typically collected by financial institutions regarding credit 
card transactions are similar, since they are regulated by monetary 
authorities.

Variable “Amount” ranges from €0.1 to €25,691.16, with an average of �x ¼
88:35 and a standard deviation of s ¼ 250:12. Table 1 provides an overview of 
the descriptive statistics of this variable. As we observe from Panel A, the data 
are severely skewed toward the left tail, while this finding is also highlighted in 
Panel B, since the majority of transactions are under €200. According to the 
Augmented Dickey-Fuller and the Kwiatkowski–Phillips–Schmidt–Shin tests, 
the variable is stationary.

Just-add-Data

JAD is a Software-as-a-Service platform that runs on AWS, available at jadbio. 
com. JAD employs some simple feature transformations and imputation of 
missing values. For feature selection, it employs the Statistically-Equivalent- 
Signature (Lagani et al. 2017) algorithm (SES for short). A feature selection 
algorithm ideally returns a subset of the features that is minimal in size, and 
optimally predictive in a multivariate fashion, i.e., when all features are 
considered jointly. The predictors selected by SES are the neighbors of the 
outcome in any faithful Bayesian Network representing the data distribution, 
which a subset of the full Markov Blanket. The latter has been shown to be the 
optimal solution to the feature selection problem under certain broad condi
tions (Tsamardinos and Aliferis 2003). A feature of SES is that it heuristically 
and efficiently attempts to identify statistically, equivalent solutions, i.e., mini
mal-sized feature subsets with the same optimal predictive performance. 
Identifying all equivalent solutions is important when feature selection is 
employed for knowledge discovery and getting insight to the domain under 
study. Returning an arbitrarily chosen single solution S may mislead the 
domain expert into thinking that all other variables are either redundant or 
irrelevant, when they could just be substituting for a selected feature without 
loss of predictive power.
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For classification, JAD considers Decision Trees (DT), Random Forests 
(RF), Support Vector Machines (SVM) with full polynomial and Gaussian 
kernels, and Ridge Logistic Regression. All the algorithms included above 
require the user to set the values of hyper-parameters. Hyper-parameters 
determine the behavior of an algorithm, typically regulating how sensitive 
the algorithm is in detecting patterns. The optimal values of the hyper- 
parameters must be found by trial-and-error. Results can vary greatly depend
ing on their appropriate tuning. Using an Artificial Intelligence (AI) system 
JAD automatically decides which algorithms to try and which hyper- 
parameter values, depending on the size of the data, the type of the data, 
and the user preferences. The AI system is based on a set of rules that guide the 
fine-tuning process. JAD then generates all combination of choices called 
configurations. A configuration is a pipeline of algorithms with specific hyper- 
parameters that take the data and lead to a forecasting model.

To determine which configuration leads to the best model, JAD estimates 
the performance of the average model produced by each configuration using 
a (stratified) N-repeated, K-fold cross-validation protocol. The (standard) 
K-fold cross-validation (CV) protocol splits the data into K non-overlapping 
approximately equal-sized sets (called folds) of samples. The value K to use is 
determined by the AI system. The procedure progresses by keeping each fold 
out once, training models using all configurations on the remaining K-1 
folds and estimating their performance on the held-out fold. The held-out 
test sets are used to simulate the application of the models on new, never- 
seen-before samples and to estimate the predictive performance obtained by 
training a specific configuration. In the end, the K performance estimates are 
computed on each fold, as well as the average, for each configuration. The 
configuration with the best average performance is selected as the winning 
configuration. For details on the repetition and stratification of CV see 
Tsamardinos, Greasidou, and Borboudakis (2018). To produce the final 
model, JAD applies the winning configuration on the full dataset. The 
reasoning behind this is that we expect that the model learnt on all the 
data to be best on average.

Unfortunately, the cross-validated performance estimate of the winning 
configuration is optimistically biased and should not be reported as the final 
estimate. This is because numerous configurations have been tried. This is 
a statistical phenomenon conceptually equivalent to the adjustment of 
p-values in multiple hypothesis testing and related to the “winner’s curse” in 
biostatistics (Zollner and Pritchard 2007). In computer science it is called the 
Multiple Comparisons in Induction problem (Jensen and Cohen, 2000). JAD 
estimates the bias of the performance and the confidence intervals using 
a bootstrap-based method called Bootstrap Bias Corrected CV or BBC-CV 
and removes it to return the final performance estimate (adjust estimations for 
multiple tries of algorithms/configurations).The selection of the optimum 
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forecasting model is performed based on the Area Under the Receiver 
Operating Characteristic (AUC-ROC) curve, that explores the trade-offs 
between sensitivity and specificity of the model and selects the most cost- 
effective operational point.

In addition to performance estimates, JAD provides several plots to help 
user understand and interpret results. The first is a Supervised 2D PCA plot, 
i.e., a 2D PCA plot based on the selected features (hence, the characteriza
tion “supervised”). The goal is to visually understand the data and detect 
anomalies (outliers) in the dataset. The Individual Conditional Expectation 
(ICE) plots displays how each instance’s prediction changes when a feature 
changes, in an effort to explain the role of each feature in the prediction 
output of the model. The Cumulative Variable Importance aims to explain 
the added value of each feature to the final forecast. Nevertheless, we do not 
provide extensive analysis on the feature selection abilities of JAD, given 
that the 28 variables of the credit-card transaction dataset come from a PCA 
compression of the original financial variables. Moreover, there is no 
information regarding the order of the variables; we do not possess infor
mation that the first variable is actually the first component of the PCA 
analysis, the second variable the second component etc. Thus, we do not 
present other post-analysis information, given that we cannot actually 
support evidence of the importance of an actual financial variable in 
forecasting.

Empirical Findings

In order to assess the ability of the JAD application to train and forecast credit 
card fraud in unknown data we split our sample into 2 parts using stratified 
sampling: 90% of the data are used to train the models and 10% is kept aside 
and it is only used to test the forecasting ability of the trained model to 
unknown data. Thus, we use 256,552 observations for training of which 446 
correspond to credit card fraud and we left 28,255 observations for testing (46 
are credit card fraud cases). Fraudulent transactions are labeled Class 1 and the 
rest are labeled Class 0.

Overall, it took 8 hours and 40 minutes for JAD to train 415 models and test 
alternative configurations on different subsets of the training data. The best 
overall configuration in terms of maximizing the Area Under the Curve on the 
training dataset is: a) selecting features using the SES algorithm with hyper
parameters maxK-conditioning-set = 2 and significance level a = 0.1 and b) fit 
(learn) a ridge logistic regression model with penalty hyper-parameter 
lambda = 100. In step a) JAD selected 7 out of the total 30 explanatory 
variables (features) in our sample as the ones required for the optimal credit 
card fraud detection.

The model with the highest predictive performance is: 
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ln
P yi ¼ 1jXð Þ

1 � P yi ¼ 1jXð Þ

� �

¼ 7:89þ 0:66xi;14 � 0:51xi;4 þ 0:22xi;10 þ 0:22xi;10

þ 0:22xi;13 þ 0:13xi;9 þ 0:12xi;12

(1) 

where P yi ¼ 1jXð Þ is the probability of observation yi of a transaction belong
ing to Class 1 (fraudulent) of seven regressors where xi,j is the ith observation 
of variable (feature) . The predictive performance is measured using several 
metrics reported in Table 2.

The simplest of these metrics is classification accuracy, which equals the 
probability of the model making a correct classification on a new transac
tion. As we observe from Table 2, the overall classification performance of 
the best performing model is 99,9%. Nevertheless, this metric is not suitable 
to measure predictive performance in heavily unbalanced datasets. One can 
achieve a 99.93% accuracy by classifying all transactions as Class 0, since 
Class 1 (fraudulent cases) accounts only for the 0.172% of all observations. 
Thus, classification accuracy is a metric that is affected by the class dis
tribution. A better metric typically used for binary classification, is the area 
under the ROC curve (AUC). The AUC is a metric that is independent of 
the class distribution. It is also invariant to a change in the class distribution 
between the train and test sets, in other words, it will not be affected if the 
percentage of fraudulent transactions increases in the test data (provided 
this is the only change in the data distribution). Nonetheless, as we men
tioned above, we used stratified sampling so that our test and training 
distribution remain consistent. The AUC also has another, statistically 
intuitive interpretation: it is the probability that the model will correctly 
assign a higher probability of being fraudulent to a pair of transactions, 

Table 2. Accuracy metrics.
Metrics Train Test

Overall Accuracy 0.999 [0.999,1.000] 0.999 [0.999,1.000]
Area Under the ROC Curve 0.973 0.981
Balanced Accuracy for class 0 0.891 [0.872,0.910] 0.924 [0.867, 0.972]
Balanced Accuracy for class 1 0.891 [0.872,0.910] 0.924 [0.867,0.972]
F-measure for class 0 0.999 [0.999,1.000] 0.999 [0.999, 1.000]
F-measure for class 1 0.787 [0.757,0.815] 0.821 [0.727,0.898]
Precision for class 0 0.999 [0.999,1.000] 0.999 [0.999, 1.000]
Precision for class 1 0.791 [0.752,0.828] 0.796 [0.675,0.905]
Recall for class 0 0.999 [0.999,1.000] 0.999 [0.999, 1.000]
Recall for class 1 0.783 [0.744,0.815] 0.848 [0.735,0.944]
Sensitivity for class 0 0.999 [0.999,1.000] 0.999 [0.999, 1.000]
Sensitivity for class 1 0.783 [0.744,0.820] 0.848 [0.735, 0.944]
Specificity for class 0 0.783 [0.744,0.820] 0.848 [0.735, 0.944]
Specificity for class 1 0.999 [0.999,1.000] 0.999 [0.999, 0.999]

Note: Class 0 denotes legitimate transactions, while Class 1 denotes fraudulent ones. 95% 
confidence intervals are reported in brackets.
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given that one fraudulent and the other is legitimate. In our case, the AUC 
is 0.973, suggesting a high identification ability of the legitimate vs. frau
dulent transactions.

The model estimates the probability that a new transaction is fraudulent 
i.e. P(y = 1|x), given the values x of the seven features of the transaction 
selected in the training step. To classify a new observation, one uses 
a threshold t, such that, if the probability is higher than t, the transaction 
is classified as fraudulent. Depending on t one can become more or less 
conservative in classifying any transaction as fraudulent. Depending on t one 
can achieve various values of sensitivity (percentage of fraudulent correctly 
classified), specificity (percentage of non-fraudulent correctly classified), true 
positive rate (which equals sensitivity), false-positive rate (which equals 
1-specificity), precision, and recall. The ROC curve depicts all the potential 
tradeoffs between true positive rate and false positive rate (false alarms). 
Typically, to increase the true positive rate we must accept an increase in the 
false positive (false alarms) rate as well. The rate of this trade-off is described 
by the slope of the ROC. The ROC created by JAD for this problem is shown 
in Figure 1.

The evaluation of a fraud detection model is more complex than simply 
identifying the model with the top predictive performance; the model should 
also aim at the best cost-effective classification, as it is defined a) by the cost of 

Figure 1. The ROC curve for Class 1 (fraudulent transactions), along with the respective 95% 
confidence intervals. The thick dashed (blue) line is the estimated ROC from the training data. 
Different points on the ROC curve provide a different trade-off between False Positive Rate (FPR) 
and the true positive rate (sensitivity) of the classifier. JAD can output models operating at 
different FPRs by selecting any of the circles.
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misclassifying a fraudulent (true positive) transaction as legitimate (false 
negative), b) the cost of false positives, and c) the ratio of prevalence between 
positives and negatives. JAD can produce models that operate on any thresh
old and achieve several sensitivity-specificity trade-offs.

The metrics shown in Table 2 are calculated with a threshold of 0.0481, 
selected from the ROC curve during the training phase, as the threshold that 
maximizes true positive rate and minimizes false-positive rate for Class 1. 
Balanced accuracy refers to the average of the proportion corrects of each class 
individually to account for the seriously imbalanced nature of the dataset.

As we observe from Table 2, in terms of detecting fraudulent transactions 
(sensitivity of Class 1) our classifier achieves 78% on the training and 85% on 
the test sample, while the identification of legitimate transactions (specificity) 
reaches 100% in both cases. For the visualization of our results, in Table 3 we 
report the confusion matrix of the train and test sample.

The best model identified by JAD correctly identified 39 out of the 46 
fraudulent transactions (84.78%), missing only 7 transactions (15,22%) 
and producing 10 false positives. Thus, out of the 49 cases of credit 
card transactions that would be flagged for manual inspection, only 10 
cases would be false alarms. Given that we are provided with the exact 
amount of each transaction we can study the behavior of the model on 
each of the observed instance of Table 3. The descriptive statistics are 
reported in Table 4.

The economic valuation of the credit card fraud detection by JAD is 
very interesting. The ridge regression model correctly identified 39 frau
dulent transactions saving 7,535.24€ to the financial institution, while it 
has missed 7 transactions with a total cost of 477.64€. Most of the missed 
instances are small transactions below 50€ (39.90€, 11.39€, 3.39€ and the 
rest are below 1€), while only two transactions (311,91€ and 108,51€) 
exceed the amount of 100€. The false alarm transactions are all transac
tions below 1€ except one transaction of 89.90€. Thus, JAD exhibited the 
ability to efficiently detect all financially significant fraud transactions 
(above 500€) and to minimize the financial fraud cost and the adminis
trative cost of manual inspection.

Table 3. The confusion matrix.
Train Test (Out-of-sample forecasting)

Panel A: Cases
Actual legitimate Actual fraudulent Actual legitimate Actual fraudulent

Estimated legitimate 256,014 97 28,199 7
Estimated fraudulent 92 349 10 39
Total 256,106 446 28,209 46
Panel B: Percentages

Actual legitimate Actual fraudulent Actual legitimate Actual fraudulent
Estimated legitimate 99.96% 21.75% 99.96% 15.22%
Estimated fraudulent 0.04% 78.25% 0.04% 84.78%
Total 100% 100% 100% 100%
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Comparing our findings with previous studies on the same dataset, we 
observe that our AutoML JAD setup exhibits similar or higher fraud detection 
abilities, while its AI interface simplifies the variable selection and fine-tuning 
procedures that are required compared to other applications. More specifi
cally, Dal Pozzolo et al. (2015) is the first use of the dataset in our study. The 
authors train Logit Boost, Random Forests and Support Vector Machines 
(SVM) classifiers in forecasting credit card fraud based on an under- 
sampling scheme. Awoyemi et al. (2017) train a Logistic Regression, a Naïve 
Bayes and a K-Nearest Neighbors classifier in forecasting credit card fraud 
using the same dataset, but without feature selection. Fiore et al. (2019) use the 
same dataset to produce artificial fraudulent transactions using a Deep 
Learning Artificial Neural Network (DLANN), in order to balance the dataset. 
Then, the artificial data are merged with the original dataset and a new 
DLANN is trained on the balanced dataset, keeping the last 30% observations 
for model evaluation (out-of-sample forecasting). Their application requires 
tuning 2 DLANN models that is a computationally intense and time- 
consuming procedure, while it requires expert knowledge and is prone to 
handling errors. The comparative results pertaining to fraudulent transactions 
(Class 1) in out-of-sample forecasting are reported in Table 5.

Table 4. Descriptive statistics of out-of-sample forecasts.
Fraudulent transactions 

identified
Fraudulent transactions 

missed
False 

Alarms

Minimum 0.77€ 1.00€ 0.77€
Maximum 1809,68€ 311,91€ 89,99€
Mean 193,21€ 68,23€ 10,84€
Sum 7,535.24€ 477.64€ 97.53€
Observations 39 7 10
Number of transactions below 10€ 21 3 9
Number of transactions between 10€ and 

50€
1 2 1

Number of transactions between 50€ and 
100€

4 0 0

Number of transactions between 100€ 
and 500€

8 2 0

Number of transactions above 500€ 5 0 0

Table 5. Comparison to earlier studies.

Metrics/Model
Plakandaras et al. 

(JAD)
Dal Pozzolo et al. 

(2015)
Johm, Adetunmbi, and 

Oluwadare (2017)
Fiore et al. 

(2019)

Overall Accuracy 0.999 0.969 0.999
Area Under the ROC 

Curve
0.981 0.975–0.999

Balanced Accuracy 0.924 0.928 0.851
F-measure 0.821 0.561 0.811
Precision 0.796 0.410 0.958
Recall 0.848 0.884 0.958
Sensitivity 0.848 0.884 0.702
Specificity 0.999 0.971 0.999
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Overall, our AutoML approach simplifies training and testing even in such 
an imbalanced sample, produces a battery of useful forecasting performance 
metrics, while it achieves a similar or superior detection rate to the one 
reported in the literature.

Limitations

In terms of limitations, the current version of JAD does not automatically 
detect data distribution drift, perform automated data cleaning, raise 
alarms when the model seems to be invalidated in new samples, and in 
general, lacks functionalities for automatic model maintenance. In addi
tion, it requires formatting the data as a 2-dimensional matrix. In practice 
however, credit card data are originally stored in relational databases and 
require extensive data engineering for feature extraction and construction, 
a step that is not automated. A limitation of the specific study stems from 
the fact that the features have been linearly transformed using PCA on the 
original measured quantities. This precludes the economic and financial 
interpretation of the selected features. Further experimentation with more 
financial datasets is necessary to generalize further the conclusions of the 
study.

Conclusion

In this paper we use an AutoML SaaS platform, namely JAD, to credit 
cards fraud detection on a dataset of 284,807 online transactions. JAD 
automatically performs imputation, feature selection, modeling, fine tun
ing of the hyper-parameters of a significantly large number of models 
and estimates predictive performance and confidence intervals. The 
automatic nature of the application provides model training and model 
selection in a manner that shields against methodological errors and is 
accessible to all users, expert and non-experts alike. Moreover, the user- 
friendly interface makes the retraining of the model effortless and the 
model update straightforward. The gains in generality and applicability 
do not come at the expense of forecasting performance, given that our 
approach has matched or superseded existing applications on the same 
dataset.

Notes

1. JAD Bio has been developed specifically for low-sample, high-dimensional, molecular 
biology data however, its algorithms are general enough to provide high-quality results 
in this application without any further customizations specifically for enterprise data.
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2. The results for this analysis can be found at https://app.jadbio.com/share/4589e2ee- 
70aa-4594-aa5e-bae8d36c59ce

3. The dataset can be accessed at https://www.kaggle.com/mlg-ulb/creditcardfraud
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