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ABSTRACT 
 
Instead of electric charge, as the basic substance of EM theory, its static potential, as some 
energetic fluid, in the dielectric, non-resistive and reactive medium, is here taken as the 
starting quantity. All the remaining EM quantities are thus defined in the succession, by the 
standard differential equations, with algebraic relations and central laws derived as their 
formal consequences. Not only that majority of the former results are confirmed, but some of 
them are completed, rationally interpreted and mutually related. On the other hand, a few 
formal concepts appear as inadequate or excessive at least.  
 

 
Keywords: EM theory; differential equations; algebraic relations; central laws. 
 
1. INTRODUCTION  
 
EM forces are ascribed to electricity, as the bipolar substance. Elementary forces between 
two charges, in the functions of their mutual position, simultaneous motion and acceleration 
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of one of them, are to be expressed by respective central laws. On one hand, these laws 
should be generalized into algebraic relations between moving bodies – as the carriers and 
objects, and – on the other, into respective differential relations in the medium. Not only that 
such two-directional development is very complicated, but it is only incompletely carried out 
in [1]. Apart from convincing explanation of already known intuitive and empirical relations, 
remaining problems are mainly resolved in [2], with consistent fillings in of the inherited gaps. 
Instead, successive introduction and relation of EM quantities here starts from the static 
potential, as some energetic fluid, at least in the conditional sense.  
 
Bipolar static potential, as some electric disturbances around carrying charges, is projected 
from 4D space, along temporal axis [3]. Tending to the absolute medium homogeneity and 
neutrality [4], two equipolar particles mutually repel, and opposite ones attract each other. A 
moving potential is followed by the medium polarization, as the opposite reaction. Its own 
variations form respective displacement currents. Being elastically restricted by the medium, 
these currents demand the continual motion of the carriers through 3D/4D space. Such two 
parallel currents interact by transverse kinetic forces, expressed by magnetic field. Against 
their variation, the medium reacts by the dynamic forces, as induction or inertia, proportional 
to its own density. The speed of propagation is determined by the product of the two medium 

features, its elasticity (ε)  and density (µ) : c 1/ εµ= .  

 
After successive introduction of the standard differential equations, relating EM fields and/or 
potentials on the three kinematical states, their carriers and objects, as the moving bodies, 
are then related algebraically. In the final instance, central laws determine the elementary 
interactions of two punctual charges, in the functions of their respective kinematical relations: 
mutual position, simultaneous motion and acceleration of at least one of them. The two latter 
basic sets are elaborated and completed. All their equations are finally formulated, and the 
ranges of their application precisely determined. With mutual relation of the known, so far as 
if independent empirical facts and/or particular mathematical relations, a few nearly forgotten 
problematic experimental results are convincingly explained. The completed, consistent and 
convincing EM theory is thus obtained and briefly presented.  
 
2. STATIC RELATIONS 
 
The static potential is proportional to the energy density. Its own gradient is balanced by the 
opposite medium polarization. With respect to the inverse field function, it is denser around 
smaller (positive), and sparser around greater (negative) particles. Tending to the medium 
homogeneity, equipolar particles mutually repel, and opposite ones attract each other. One 
medium strain, as the elementary potential, provides the energy for all other such strains, as 
the objects. This potential determines the static field (1a), as the medium stress. Depending 
on the medium elasticity and this field, some electric displacement (1b) is thus formed, and 
its divergence just represents the carrying charge (1c):  
 

Φ∇ = −E ,      ε =E D  ,      Q∇⋅ =D .                               (1)       
 
Each new member of the four static quantities is the formal feature of the preceding one. 
The static field is the mere gradient of respective potential. The field line beginnings are 
considered as positive, and terminals – as negative charges. Thus introduced, the static 
quantities are the bases for following definition of kinetic ones.  
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3. KINETIC RELATIONS 
 
3.1 Convective Phase  
 
This phase of the kinetic interactions concerns the production of kinetic, by motion of static 
quantities. The medium non-resistance enables the smooth displacement currents, at motion 
of the static quantities through 3D space or along temporal axis. In parallel with the current 
field defined (2a), the common motion of respective static potential, as the medium strain, 
forms kinetic potential (2b), as the linear momentum density: 
 

 Q=J V ,     Φ= εµA V .                                          (2) 
 

The product of the elasticity, density and strain disturbance, gives the density 
disturbance (εµ )Φ , and its motion represents the kinetic potential ( )A . The moving charges 
and their potentials form the two collinear quantities: electric current and kinetic potential. At 
motion of the negative static quantities, the two kinetic are opposite. 
 
Starting from (2), as the two definitions of kinetic, – by motion of static quantities, let us now 
determine respective two continuity equations. Div-operation applied to (2) gives these two 
equations, via the sums of respective middle terms: 
 

 tQ Q Q∇⋅ = ∇⋅ + ⋅∇ = − ∂J V V ,                              (3a) 
 

 εµ ( )  εµ tΦ Φ Φ∇⋅ = ∇⋅ + ⋅∇ = − ∂A V V .                     (3b) 
 
Dilatations and convections of the two static, form respective kinetic quantities. The static 
potential carried by respective charge behaves as a rigid structure, of the homogeneous 
speed. The former terms thus annul, with the convective derivatives ( )t⋅∇ = − ∂V  – in the 
latter terms. Of course, it is opposite to the moving gradient. 
 
In analogy with Bernoulli’s effect in fluids, two parallel flows interact by transverse kinetic 
forces, and crosswise ones – by respective torques [4]. Both these interactions, conditioned 
by the transverse gradient or curl 1 of the kinetic potential (2b), are determined by magnetic 
field (4a). On the other hand, its own curl will be soon identified as the total current field (4c), 
flowing in the conducting and dielectric structural layers. 
 

 ∇× =A B ,       µ=B H ,      t∇× = + ∂H J D .                                (4)              
 
The ratio of the two magnetic fields equals to the medium density. The two force fields 
( , )E B , introduced via potentials (1a,4a), are formally covariant, and two rational ( , )D H  – 
related with the carriers (1c,4c), – contra-variant. The constitutive relations (1b,4b) point to 
their cross-classification: the total fields ( , )D B  and their vacuum components ( , )E H . At 
least in the homogeneous isotropic media, the two constants are scalar quantities.2  
 
Each new kinetic quantity is the formal feature of preceding one. The magnetic field, as the 
intermediate quantity, is perpendicular to the external two, usually mutually collinear, kinetic 

                                                      
1 At least for the unidirectional field A, ∇l A = ∇⋅A & ∇tA = ∇× A. 
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quantities. Alike the relations (2) – of the carriers or potentials, the intermediate quantities 
can be similarly related. The substitution of (2b) into (4a) gives: 
 

 εµ( ) µΦ Φ= ∇× − ×∇ = ×B V V V D .                                 (5) 

 
At motion of rigid, stably oriented static quantities, the former middle term annuls. In accord 
with (1a), the latter term gives the kinetic convective relation. A moving electric, forms 
respective magnetic field, causing the transverse kinetic forces. Really, curl applied to (5), 
excluding spatial derivatives of the field speed, gives (4c): 
 

  t∇× = ∇⋅ − ⋅∇ = + ∂H V D V D J D .                                       (6) 
 

Here Q∇⋅ = =V D V J  is the current of free electricity, and ( ) t⋅∇ = ⋅∇ = − ∂V D V D D  – the 
convective derivative of the displacement, or respective current. Of course, the two orders of 
the formal operations in the last equation are equivalent.3 
 
3.2 Relative Phase  
 
The relative phase concerns the actions of kinetic fields upon moving static, or respective 
kinetic quantities. Apart from the present kinetic fields, respective forces also depend on the 
object motion. The interaction of the two currents or respective kinetic potentials, at least in 
their parallel position, may be expressed by the two equivalent (nominally – static, but in fact 
– kinetic) quantities, the charge and respective potential: 
 

kΦ = − ⋅v A ,         k  εµQ = − ⋅v J .                                     (7) 
 
This pair can be introduced by formal inversion of the definitions (2), with the negative signs, 
and the product εµ  – consequently replaced. They concern the parallel motion, but speak 
nothing about the torque between crosswise currents. Negative signs point to the transverse 
attraction in the parallel motion. Grad applied to (7b), without spatial derivatives of the speed 
of a punctual object, gives the equivalent (kinetic) electric field: 
 

k   = ×∇× + ⋅∇ = ×E v A v A v B .                                      (8) 
 

With respect to the two collinear speeds, l∇ = ∇⋅A A . Therefore, in the case of two moving 
charges, with the divergence (3b) – of the potential, the latter term thus tends to equalize the 
two speeds. It forms the torque acting on the ‘dipole’ consisting of the two charges moving at 
their different speeds. However, in the case of a line current, with longitudinal homogeneity 
of its kinetic potential ( 0)∇⋅ =A , the latter term annuls. 

 
In the transverse speed direction, with ∇ = ∇× =A A B , the two terms cancel each other, in 
accord with the defective sense of (7). Therefore, the latter term may be finally missed. The 
remaining term causes a torque tending to the same courses of the two crosswise currents. 
Div operation applied to (8) gives the equivalent charge: 
 

                                                                                                                                                      
2 In general, the two constants are treated as respective two square matrixes. 
3 Instead of the symbolic tensor ∇D, symbolic scalar V⋅∇ is usually used. 
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k ε ( )Q = ⋅∇× − ⋅∇×B v v B .                                       (9) 
 
The condition of the zero charge points to circular motion of a free charge around magnetic 
field. This is expressed by curl of the object speed – in the former term. At rectilinear motion 
– this term annuls, and the letter term just returns to (7a). 
 
4. DYNAMIC RELATIONS 
 
With respect to reactive media, time derivative of the kinetic potential, as linear momentum 
density, gives the dynamic forces, expressed by electric field: 
 

t= −∂E A ,        t∇× = −∂E B .                                 (10) 
 
Curl applied to (10a), with respect to (4a), gives (10b). On the other hand, div applied to (4a) 
gives the trivial Maxwell’s equation: 0∇⋅ =B . It only speaks against existence of any free 
magnetic poles and respective non-vortical    field.4 
 
The kinetic potential and magnetic field are the two perpendicular vortical fields, with their 
gradient perpendicular to the common surface. The motion in this direction varies them at a 
resting point, with production of the dynamic field (10a): 
 

  t= − ∂ = ⋅∇ = ×E A U A B U  .                             (11) 
 
Here U  is the transverse speed of the kinetic potential and magnetic field, restricted to the 
field line plains, and so ∇ = ∇× =A A B . Really, in the inverse mathematical sense, curl 
applied to the external equality of (11) just gives (10b): 
 

  t∇× = ⋅∇ − ∇⋅ = −∂E U B U B B  .                        (12) 

 
The speed derivatives of the rigid magnetic field – stably oriented in space – are missed. 
Magnetic field moving along its gradient, in its own field line planes, induces the dynamic 
forces, represented by respective electric field (11).  
 
5. DIFFERENTIAL SET 
 
5.1 Basic Equations   
 
The three differential pairs – static (1a,c), kinetic (4a,c) and dynamic (10) – taken together 
form the two subsets: gauge conditions (13) and Maxwell’s equations (14). The former set 
defines the fields by potentials, and latter – the carriers by fields. In fact, the fields are formal 
features of respective potentials, and the carriers – of fields.  
 

sΦ−∇ = E ,     ∇× =A B ,   dt−∂ =A E ;                                (13) 

       
Q∇⋅ =D ,      t∇× − ∂ =H D J ,      t∇× + ∂ =E B 0 .                         (14)          

                                                      
4 Not only that free magnetic poles – speculatively predicted by Dirac – are thus denied, but the electric poles in (1) 
are identified as the formal features of respective field, in fact – as its terminals. In comparison with the apparent 
electric poles, magnetic ones may be considered as transparent, i.e – less relevant. 
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Owing to their distinct origins, static and dynamic fields demand respective indexes (13a,c). 
With respect to their geometrical forms, these indexes are excessive in (14a,c). Unlike the 
former EM theory, founded on electricity and its currents, the two potentials appear as the 
most relevant EM quantities. Describing the energetic states of the medium, they are the 
starting notions in this brief presentation of EM theory. 
 
The three pairs of the equations concern mutual differential relations of the quantities on 
respective three kinematical states – static, kinetic and dynamic – being dependent on the 
presence, motion or acceleration, respectively, of the three static quantities. Apart from the 
two potentials, time derivative of the kinetic potential may be taken as the dynamic potential. 
Irrespective of the trivial one, 0∇⋅ =B , three relevant Maxwell’s equations, in common with 
respective gauge conditions, form the hierarchical trinity. 
 
5.2 Field Tensors  
 
The two pairs of Maxwell’s equations (static & kinetic with trivial & dynamic) in their compo-
nential forms represent the two sets of four partial differential equations each. With general 
ordinal indexation, they form the two tensor equations: 
 

n n mn mR JΣ ∂ = ,   0n n mnFΣ ∂ = .                                         (15) 

 
Here 0 1 2 3m , , ,=  is the ordinal number of the equations, with the summation of the terms per 
the index n m≠ . The electric charge carried by the cosmic expansion along temporal axis 
forms respective current component o( )J . In the absence of the free magnetic poles and 
respective currents, the latter equation fails of the free term. The field components are 
identified by the two following tensors, as the bi-vectors: 
 

 

0

0

0

0

x y z

x z y
m n

y z x

z y x

D D D

D H H

D H H

D H H

R  =

+ + +

− + −

− − +

− + −

 
 
 
 
 
 

,   (16a)    

0

0

0

0

x y z

x z y
m n

y z x

z y x

B B B

B E E

B E E

B E E

F  =

− − −

+ + −

+ − +

+ + −

 
 
 
 
 
 

.        

(16b) 
 
They express all the field components, the former – of rational ( , )mnR D H= , and latter – of 

the force fields ( , )mnF B E= . Their formal classification, as contra-variant and co-variant, is 
neglected.5 The six term pairs accord to the six planes, as the field locations. The first rows 
and columns concern longitudinal planes ( tx , ty , tz ) – in the temporal, and remaining sub-
tensors – transverse planes ( xy , yz , zx ) – in spatial domains. Due to disparate term signs, 

these two tensors cannot be dually related even at vacuum.6 
 
Each tensor affirms 4D space, as the ambient of EM phenomena. The opposite positions of 
the rational and force fields point to the two structural levels, electric and magnetic ones. 
With respect to the apparent – electric, and transparent magnetic poles, the former tensor is 
more relevant. Therefore, EM potentials, forming 4D vector, belong to the four axes: static 
                                                      
5 From the physical point of view, this mathematical formalism seems to be artificial. 
6 The forcible attempt of their dual relation can be met in some textbooks. 
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to t , and kinetic to x , y , z . The field carriers, as the tri-vector, belong to respective 3D sub-

spaces. The projection into 3D reduces -t axis into the scalar time, and electric quantities 
(from respective subspaces) lose this one dimension. 
 
5.3 Derived Equations   
 
Apart from the three relevant Maxwell’s equations and respective gauge conditions, relating 
the successive ranks of EM quantities, the carriers and potentials can be related directly, by 
the two Riemannian, second order differential equations:  
 

2 2 εµ  /εt QΦ Φ∂ −∇ = ,                                            (17a) 
  

2 2 εµ  µt∂ − ∇ =A A J .                                            (17b) 
 

With respect to (3b), (14a) applied to the sum of (13a,c) relates the two electric quantities, 
charge and static potential (17a). With respect to (2b), (17a) multiplied by εµV  gives (17b). 
Their temporal terms arise from dynamic, and spatial – from static electric fields. Maxwell’s 
equations thus understand both electric fields s d( )+E E , speaking in favour of their final unity 

in -tr planes. At dielectric media, without free electricity and current, the pair (17) reduces 

into wave equations, with the common solution: / εµ cr t t= = . 

 
The moving fields carry their energies. Dot multiplication of the kinetic Maxwell’s equation 
by E , and of dynamic one – by H , with subtraction of the latter from former results, gives a 
5D continuity equation, with the spatial, temporal and substantial terms. As such, it affirms a 
structural dimension, as the fifth [4]. EM processes thus develop in and/or between the four 
structural layers: vacuum, dielectric, magnetic & conducting ones. 
 

 ( )  0tW∇⋅ × + ∂ + ⋅ =E H E J ,                                   (18a)                      
 

2  c= × = ×S E H D B .                                               (18b) 
 
The equation (18a) is well-known as Poynting’s theorem. Its temporal term expresses the 
variation of energy density, and substantial one ( )⋅ = ⋅E J F V  – the power of its dissipation. 
This term may be understood as the energy dislocation along the fifth axis, from one into 
another structural layers. Cross product of the two fields, in the spatial term, is the current 
field ( )S  of EM energy (18b).  In comparison with Einstein’s equation, the product of the two 
total fields is equivalent with the linear momentum density.  
 
6. ALGEBRAIC SET 
 
6.1 Basic Equations 
 
The algebraic equations, derived from differential ones, may be taken as the basic set. The 
associated total fields, moving in common with their carriers, produce dissimilar vacuum 
fields (19): transverse motion of one, produces the other EM field. Apart from the electric 
field (19b), affecting all present electricity – in the field line direction, the magnetic field (19a) 
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acts kinetically on moving electricity or respective current, by the magnetic, – or equivalent 
electric forces (20a). And finally, two EM fields – mutually causally related by (19) – form the 
energetic current (20b), perpendicular to the related fields. 

 
= ×H V D ,       = ×E B U ;                                                    (19) 

           

k = ×E v B  ,       = ×S E H .                                                (20) 

 
Though formally similar, the two relations (19) are distinctly restricted. With respect to the 
differential elaboration, a field motion is effective only along the field gradient. Unlike non-
vortical fields, generally inhomogeneous in any direction, the gradients of vortical fields are 
usually restricted to the field line planes. Excluding electro-static, this restriction concerns 
both – magnetic and electro-dynamic – moving fields. 
 
The simplest technical situation, convenient for the measurement and consideration, is the 
motion and mutual affection of the line – current carrying and object – conductors. The free 
electrons and their electric fields, moving along a conductor, form magnetic field (19a). This 
is the case irrespective of the resting protons and their associated fields, compensating only 
statically the moving fields. Transverse motion of the carrying conductor, in the planes of the 
magnetic field lines, causes the longitudinal induction (19b). In fact, the moving field gradient 
changes the field in the observed locations, with respective medium reaction. Similar effect 
arises around a variable current, as the accelerated electricity, causing the circular magnetic 
field, expanding or shrinking radially. These contractions cause the longitudinal inductions in 
parallel conductors, including the carrying conductor itself. 
 
On the other hand, the relative relation (20a) is effective in any direction – perpendicular to 
magnetic field. A parallel object conductor – moving transversally – suffers the longitudinal 
induction, and vice versa. Two parallel currents thus attract, and anti-parallel – repel each 
other. Consequently, by such interactions in the pairs of their legs, two crosswise conductors 
tend to the same courses of their currents. A punctual object charge is thus compelled to the 
circular motion, around a tube of the present magnetic field.  
 
The two convective relations (19) were initially emphasized by J. J. Thomson. With respect 
to the neglected spatial derivatives of the field speeds, during their comparison – with the 
differential set, this pair is restricted to the rigid moving fields stably oriented in space. The 
moving fields form the gyroscopes in common with their apparent elementary carriers. In the 
absence of this explanation, the two convective relations seemed to be nearly problematic. 
In spite of their simple forms and practical evidences, they have so far been neglected in the 
standard presentations of EM theory, as possible basic laws. 
 
6.2 Derived Equations  
 
Above basic relations are variously combined. Let us consider two parallel conductors, one 
of them with its free electricity, and the other with electric current and magnetic field (19a). At 
their transverse motion – along the field gradient, the dynamic (19b) and kinetic (20a) 
inductions superimpose (21). On the basis of this case, the principle of relativity, calculating 
by the mutual speed ' = −v v U , is understood. However, in the case of the two crosswise 
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conductors, at motion along the current, in the direction of the field homogeneity, the 
dynamic induction (19b) fails, and (21) reduces into (20a). 7 

 

kd  ( )= − ×E v U B .                                                   (21) 

 
In the case of a dielectric medium, without free electricity and conduction currents, the two 
moving fields can form EM wave only. The substitution of (19a) into (19b) – or vice versa, 
gives (22a/b). Their former terms concern the collinear speeds of the two transverse EM 
fields. The latter terms express the boundary region of the wave beam, with the longitudinal 
direction of one of the two fields. With respect to the energetic current (20b), these terms 
express transverse expansion or diffraction of the wave beams. 
 

εµ[( ( ) ]= ⋅ − ⋅E U V)E E U V ,                                     (22a)                   

 
εµ[( ( ) ]= ⋅ − ⋅H U V)H H V U .                                      (22b) 

 
The kinetic interactions of two moving (punctual or distributed) charges is achieved by the 
production of magnetic field – at motion of one, with action of this field on the other moving 
charge. In this sense, (19a) substituted into (20a) gives:  

 

k  µ [( ) ( ) ]= ⋅ − ⋅E v D V v V D .                                        (23a)  
            

The double cross product resolves the interaction into the two vector components: axial and 
radial ones. Though both obey the force symmetry, ( ) ( )− = −f r f r , the axial interaction would 
produce some torque on a moving dipole consisting of the two mutually connected charges. 
In fact, the above made substitution implicitly understood resting magnetic field of a moving 
charge. Its indispensable motion is taken into account by substitution of (19a) into (21), thus 
obtaining the adequate, a little more complex equation:  

 

kd  µ [( ) ] µ[( ) ]= − ⋅ − − ⋅E v U D V v U V D .                          (23b)    
 

The zero torque on a dipole moving at the common speed ( )=V v  is satisfied by the zero 

axial force, and this one – by the transverse field speed, U V cotθ= , where θ  is the polar 
angle between moving electric field and its speed. Magnetic field lines expand in the front, 
and shrink behind a moving charge. This result can be interpreted and confirmed by the 
transverse convective derivative of the moving central potential: 
 

     
xy y x

U V Vcot
yt x t

θ∂ ∂ ∂= = − = =
∂ ∂ ∂

.                             (24) 

 

As in (3), the convective derivative is opposite to the moving gradient, with / /y x x y∂ ∂ = −  as 

the derivative of a moving circle: 2 2 2x y r+ = . The transverse gradient of the moving static 
potential (2b) is nothing else but magnetic field (13b). 
The moving fields carry by themselves their energies. In this sense, the substitution of (19) 
into (20b) gives two respective energetic currents:  
 
                                                      
7 Not only that relativity concerns the sum of the two distinct effects, but its validity is also restricted. 
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e ( ) ( )= ⋅ − ⋅S E D V V E D ,                                                  (25a)                     
 

m ( ) ( )= ⋅ − ⋅S H B U U H B .                                                 (25b) 
 
Their former terms express the two main currents, and two latter – accessory ones, existent 
in respective physical processes. In the case of EM waves, these terms have the same roles 
as respective terms of (22). In the open causal processes, with only one moving field, one of 
the two equations (25) is applied. Around a moving punctual charge, with the transverse 
motion of its magnetic field (24), the latter term of (25b) annuls. 
 
7. CENTRAL LAWS 
 
7.1 Static Law 
 
The elementary EM interactions are caused by the presence, motion and acceleration of the 
punctual charges. At first, the application of the static equation (14a) to such a carrying 
charge 1( )q  gives the force acting on similar object 2( )q , or vice versa. One of the charges 
thus affects the other, in accord with the static central law: 

 
2

s o o /εµ  cn n= =f r r ,                                           (26a)        
 

2
1 2 1 2 /4 ,n q q r= µ π .                                               (26b) 

 
The factor n  simplifies the equations and enables their comparison. Radial integration of this 
force gives respective potential energy, expressed by the alternative static law (27), with the 
new factor m nr= , determining the induction or self-induction: 

 
2 /  cw m m= εµ = ,                                           (27a) 

                   
2 µ /4m q r= π .                                                (27b) 

 
This is Einstein’s equation, with the factor ( )m  – of self-induction, as the proper mass. As 
the condition of the two laws (26a,27a) equivalence, (27b) is the basis for calculation of the 
particle radius. It thus expresses the proper particle mass, where r  denotes its radius, as 
the distance of the surface charge from its own centre. 
 
With respect to (27b), a lesser charged particle is of the greater mass and energy, and vice 
versa. This fact points to indispensable location of the mass and energy in the surrounding 
electric field. If this mass were equivalent to the inertial mass, a complex – globally neutral – 
body, as the structural multi-pole, would manifest the resultant summary mass of all its 
constituent poles. Owing to cancelation of the distant fields of the opposite poles in the multi-
pole, this sum is slightly defected. There is very difficult to believe that possibly exists some 
another cause of the inertial mass and respective forces.8 

                                                      
8 Unfortunately, the recent Nobel prize may be thus also called in question. 
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7.2 Kinetic Law 
 
The substitution of the transverse speed (24) of magnetic field into the combined force (23b) 
gives this force resolved into the following three terms: 

 

kd t l l t l[( ) ]nV v v sin Vcosθ θ= − −f i i i .                        (28) 

 
The two former components represent the kinetic force (20a) acting on an object charge 
moving through the resting magnetic field. Apart from the carrier, it also depends on the 
object motion, or – on that of a detector substituting the object. In the case of the two parallel 
speeds t( 0)v = , it is restricted to the transverse component: 
 

kd t l( )nV v sin Vcosθ θ= − +f i i .                                 (29) 
 

The last force component, of the dynamic field (11) – directed towards the moving charge, 
from both axial sides – is independent of the object (or respective detector) motion. Affecting 
all present charges, it looks as an associated wave period. Subtracted from the static field – 
extracted from (26), it gives the ellipsoidal field deformation, initially somehow predicted by 
H. A. Lorentz, without a needed causal explanation.9 
 
Radial integration of (29) gives the mutual kinetic energy (30). In such the ellipsoidal form, 
this energy depends on the angle of integration. 

 
2 2 ( )w mV v sin Vcosθ θ= − + .                                    (30) 

 
In the case of the equal speeds of the field carrier and its object, the force (29) and energy 
(30) reduce into respective, centrally symmetric forms: 

 

o ( )n= − ⋅f V v r ,      w m= − ⋅V v  .                           (31) 

 
Though mutually equal – in this particular case, the two speeds keep their distinct roles, 
concerning the carrier or object. Apart from the force symmetry, this case also satisfies the 
zero torque on a moving dipole. The comparison with (26a, 27a) identifies the static laws as 
the particular cases of these ones, at the speed ic  – of all the particles. This analogy points 
to a common motion along temporal axis, possibly related with the cosmic expansion. The 
imaginary unit (i)  points to some circulation in -tr planes [3]. 
 
7.3 Mass Variation 
 
Affecting in return the carrier itself (at =V v  thus understood), the combined central force 
(31a) is subtracted from the static force (26). Thus obtained total force is evenly distributed 
about the particle surface, forming respective pressure: 

 
2 2 2 2 2 2 2

tot  (c ) c (1 /c ) cf n v n v n g= − = − = .                            (32) 
 

                                                      
9 In the absence of such explanation, this is in SRT ascribed to the amplified transverse electric field [3]. 
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The factor n  depends on the radius, and g  – on speed. Tending to zero approaching the 

speed c , from 2
o ocf n= , where o o( )n n r=  – at rest, this force strives to expand the particle. It 

is restricted by the opposite internal reaction of the polarized medium, the same as at rest. 
The balance o( )f f=  gives the two following relations: 

 

o r r g= ,  o /m m g= .                                           (33) 
 
The latter of them is nothing else but Lorentz’ mass function, estimated on the empirical 
bases. It is here derived directly, by the simple theoretical procedure. Thus dependent on 
speed, mass is minimal when resting in a preferred frame.10 This frame, as the basis for the 
speed determination, is somehow related with the medium [4].  
 
The mass function (33b) further confirms the above reduction of inertia to induction. As such, 
it was the known basis for indirect derivation of Einstein’s equation (27a). According to the 
mass function, there finally follows its differential (34a). The further formal procedure gives 
the proper kinetic energy of a moving (charged) particle: 

 
2 2/(c )m mv v v∂ = ∂ − ,                                           (34a)                              

 
2 2c m mv v v m∂ = ∂ + ∂ :                                            (34b) 

 

k    ( )w p t vf t v mv∂ = ∂ = ∂ = ∂ ,                                (35a) 
               

2 2( )    cv mv mv v v m m∂ = ∂ + ∂ = ∂ ;                          (35b) 
 

2
k o o  ( )cw w w m m= − = − ,                                   (36a)                     

 
2

o o (1/ 1/ )/4πεw w q r r− = − .                                 (36b) 
 
Assuming the constant mass ( 0)m∂ = , with annulment of the latter term in (35b), the former 

term integral gives the classical kinetic energy 2( /2)mv . The complete integral gives (36a). 

The substitution of (27b) relates the kinetic energy with that of the electric field between the 
two radii, – of the moving and resting particle (36b). 
 
7.4 Dynamic Law 
 
Variation in time of the kinetic energy can be caused only by acceleration or deceleration of 
the carrier. In this sense, time derivative of (31b), partially – per mV , gives the power of the 
energy transfer – on the left of (37). The two speeds of the same particle just concern its two 
roles, – of the field carrier ( )qV  and object ( )qv . 

 

d( )t k tw m∂ = ⋅∂ = − ⋅v V v f .                                           (37 
 

                                                      
10 The concepts of inertial frames and principle of relativity are thus overcome. 
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On the other hand, the same power equals to the negative scalar product of the object 
speed and reactive dynamic force – in continuation. The reduction finally gives force action 
law, dependent on the variable mass and its acceleration. 
 
With respect to (33b) and its derivative (34a), the dynamic force can be further elaborated, 
with the linear momentum as the product of the three factors: 
 

o o o o( )  t t t tmv v m m v mv∂ = ∂ + ∂ + ∂v v v v  .                                 (38) 
 

Here v  is the speed modulus, and ov  – unit vector. The two former terms are transformed 
into inertial, and latter one gives well-known centrifugal forces: 

 

i o o o2  
m v v m v

v m
v t t tg

∂ ∂ ∂ ∂= − − = −
∂ ∂ ∂ ∂

f v v v ,                        (39) 

      
2

o o
c o     

s mv
mv mv

t s t r
∂ ∂ ∂= − = − =
∂ ∂ ∂
v v

f r .                       (40) 

 
Here or=r r  is the path curvature radius. Both force components are additionally scaled, by 
the variable mass. Instead of the two different masses estimated empirically, there are the 
two distinct functions of the same variable mass. 11 
 
The former force changes the energy of the moving body, and latter one only strives to strait 
motion. The former of them may be understood as the difference of the opposite dynamic 
forces from (29), being unequal at acceleration. On the other hand, the transverse direction 
of the centrifugal force, and its independence of the linear acceleration, point to its kinetic 
nature. The terms ‘static, kinetic & dynamic’ are here used in the relative sense, dependent 
on the observed objects and respective levels of observation. 
 
8. CONCLUSION 
 
1. EM quantities and standard differential equations are introduced in the axiomatic order, 
starting from the static potential and its linear motion. 2. The four algebraic relations are thus 
reaffirmed, re-examined and elementarily applied. 3. With respect to magnetic field motion, 
the general kinetic law is here finally formulated. 4. These considerations mutually relate a 
number of former independent results: Coulomb’s law, Einstein’s equation, electron radius & 
EM mass, EM induction, force action law, inertial & centrifugal forces, mass function, mass 
defect, associated wave and ellipsoidal field deformation. 5. The three sets of basic laws 
supplement each other in interpretations and applications. 6. By the way, the principle of 
relativity and assumption of elementary mass are called in question.  
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11 The longitudinal and transverse masses of Lorentz and Einstein are thus overcome. 
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