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Abstract
In this paper, we present a new iterative scheme for finding a common point among the set of
solution of equilibrium problems, the set of solution to a variational inequality problem and the fixed
point set of k̃-strictly pseudo-contractive mappings in a real Hilbert space. We then prove that the
proposed scheme converges strongly to a common element which is the solution of a variational
inequality problem, system of equilibrium problems, and a fixed point of k̃-strictly pseudo-contractive
mappings. These results improve and generalize recent works in this direction.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed and
convex subset of H and {Fk}k∈∆ a countable family of bifunctions from C × C to R. The equilibrium
problem associated with the family {Fk}k∈∆ where ∆ is an arbitrary index set, is to find x ∈ C such
that

Fk(x, y) ≥ 0,∀k ∈ ∆, ∀y ∈ C. (1.1)

Assume ∆ is singleton, we have that (1.1) becomes the equilibrium problem of finding x ∈ C such
that

F (x, y) ≥ 0, ∀y ∈ C. (1.2)
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We denote the set of solutions of (1.2) by EP(F ).
Combettes and Hirstoaga [1] in 2005, proved a strong convergence theorem for an iterative scheme
for finding the best approximation to the initial data when EP(F ) is nonempty, Korpelevich [2].

Given a map T : C → H, let F (x, z) = 〈Tx, z− x〉, ∀x, z ∈ C. Therefore problem (1.2) becomes
a variational inequality problem of finding x ∈ C such that

F (x, z) = 〈Tx, z − x〉 ≥ 0, ∀z ∈ C (1.3)

The set of solution of (1.3) is denoted by VI(C,A).
Problem (1.1) is general since numerous problems in optimization, physics, economics, variational

inequalities and minimax problems are special cases; see ([3],[4],[5]).

Definition 1.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. A map
T : C → H is said to be nonexpansive if for all x, z ∈ C we have

‖Tx− Tz‖ ≤ ‖x− z‖.

We denote the fixed point set of T by Fix(T).

Definition 1.2. Let C be a nonempty closed and convex subset of a real Hilbert space H. A map
T : C → H is said to be k-strictly pseudo-contractive if there exists a constant 0 ≤ k < 1 such that
for all x, z ∈ C

‖Tx− Tz‖2 ≤ ‖x− z‖2 + k‖(I − T )x− (I − T )z‖2. (1.4)

In a real Hilbert space it follows that (1.4) is equivalent to

〈Tx− Tz, x− z〉 ≤ ‖x− z‖2 − 1− k
2
‖(I − T )x− (I − T )z‖2. (1.5)

Definition 1.3. For any x ∈ H, we define the map PC : H → C satisfying

‖x− PCx‖ ≤ ‖x− z‖ ∀z ∈ C

PC is called the metric projection of H onto C. It is well known that PC is nonexpansive and

〈x− PCx, PCx− z〉 ≥ 0 ∀x ∈ H and ∀z ∈ C. (1.6)

Clearly (1.6) is equivalent to

‖x− z‖2 ≥ ‖x− PCx‖2 + ‖z − PCx‖2 ∀x ∈ H and ∀z ∈ C. (1.7)

Definition 1.4. A mapping A of C into H is called monotone if

〈Ax−Az, x− z〉 ≥ 0 ∀x, z ∈ C,

A is called α-inverse-strongly monotone if there exists α > 0 such that

〈x− z,Ax−Az〉 ≥ α‖Ax−Az‖2 ∀x, z ∈ C,

also A is L-Lipschitz-continuous if there exists L > 0 such that for all x, z ∈ C

‖Ax−Az‖ ≤ L‖x− z‖.

513



British Journal of Mathematics and Computer Science 4(4), 512-527, 2014

Given a monotone mapping A of C into H, (1.6) implies the following:

x ∈ VI(C,A)⇒ x = PC(x− λAx), ∀λ > 0,

and
x = PC(x− λAx), for some λ > 0⇒ x ∈ VI(C,A).

It is well known thatH satisfies the Opial’s condition [?], i.e., for any sequence {xn} ⊂ H with xn ⇀ x,
we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − z‖ ∀z ∈ H with x 6= z.

Observe that the class of k-strictly pseudo-contractive mappings includes as a sub class of the
class of nonexpansive mappings i.e., when k = 0. The mapping T is as well said to be pseudo-
contractive if k = 1, and T is said to be strongly pseudo-contractive if there exists k ∈ (0, 1) such that
T − kI is pseudo-contractive.

Definition 1.5. A set valued Mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx and
g ∈ Ty imply that 〈x − y, f − g〉 > 0. A monotone mapping T : H → 2H is said to be maximal if the
graph G(T ) of T is not properly contained in the graph of any other monotone mapping, and we say
T is maximal monotone.

It is well known that a mapping T : H → 2H is maximal monotone if and only if for any (x, f) ∈
H ×H, 〈x− y, f − g〉 > 0 for every (y, g) ∈ G(T ) imply that f ∈ Tx.
Given A a monotone mapping of C into H and NCw the normal cone to C at w ∈ C,i.e., NCw =
{x ∈ H : 〈w − y, x〉 > 0, ∀y ∈ C} and define

T (w) =

{
Aw +NCw, w ∈ C,
∅, w ∈ C.

Then T is maximal monotone and 0 ∈ Tw if and only if w ∈VI(C,A); see[6].
Many studies have been done on iterative methods for nonexpansive mappings in the literature,

see ([7],[8]), but that of strictly pseudo-contractive maps are far less developed because the second
term appearing in the right hand side of (1.4) posses a lot of treat in computations. However, in
1967, Browder and Petryshyn initiated the study of fixed point of strictly pseudo-contractive maps in
their work. Since strictly pseudo-contractive maps is one of the most important class of mappings in
nonlinear mappings, and has more interesting and powerful applications in solving inverse problems
see Scherzer [9], it is of high importance to develop iterative methods for strictly pseudo-contractive
maps. Recently, see ([10],[11],[12],[13]), many authors have devoted time in developing schemes for
finding fixed points for strictly pseudo-contractive maps.

Some methods, see ([3],[14],[15],[16],[17]), have been proposed by many authors to solve the
problem (1.2). Also, some authors, see ([18],[19]), have proposed iterative methods for finding
common element of fixed point set of nonexpansive mappings and the set of solutions to the variational
inequality for monotone, Lipschitz continuous mappings, the set of solution to a system of equilibrium
problems.

Combining the Mann iteration technique, the extragradient methods for variational inequality and
system of equilibrium problems proposed by Korpelevich in [2], Jian-Wen Peng, Soon-Yi Wu, Gang-
Lun Fan in [4] as well as Yonghong Yao, Yeong-Cheng Liou, Jen-Chih Yao in [20]. We consider a
new iterative scheme for finding a common element of the set of solution to a system of equilibrium
problems, the fixed point set of a k-strictly pseudo-contractive map and the set of solutions to the
variational inequality for a monotone, Lipschitz continuous mappings. We obtain a strong convergence
result for the sequence generated by our scheme. The results in this paper generalize and improve
so many well known results in the literature.
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2 Preliminaries
We present, in this section, some useful lemmas that will be used to prove our main results.

Lemma 2.1. Let H be a real Hilbert space. Then the following inequality holds;

‖x− y‖2= ‖x‖2−2〈x, y〉+ ‖y‖2 (2.1)

for all x, y ∈ H.

Lemma 2.2. Let H be a real Hilbert space. Then the following inequality holds;

‖x+ y‖26 ‖x‖2+2〈y, x+ y〉 (2.2)

for all x, y ∈ H.

Lemma 2.3. [21] Let H be a real Hilbert space. Then the following inequality holds;

‖λx+ (1− λ)y‖2= λ‖x‖2+(1− λ)‖y‖2−λ(1− λ)‖x− y‖2 (2.3)

for all x, y ∈ H, λ ∈ [0, 1].

Lemma 2.4. [22] Let {an} be a sequence of non negative real numbers such that

an+1 6 (1− σn)an + σnηn + δn, n > 1 (2.4)

where

(i) {σn} ⊂ [0, 1],

∞∑
n=1

σn =∞;

(ii) lim sup
n→∞

ηn 6 0;

(iii) δn > 0, n > 1,
∞∑

n=0

δn <∞.

Then,
lim

n→∞
an = 0.

Lemma 2.5. [23] Let X be a Banach space, {xn}, {yn} be two bounded sequences in X and {βn}
be a sequence in [0, 1] satisfying

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

Suppose that xn+1 = βnxn + (1− βn)yn, ∀n ≥ 1 and

lim sup
n→∞

{‖yn+1 − yn‖−‖xn+1 − xn‖} ≤ 0,

then lim
n→∞

‖yn − xn‖ = 0.

In order to solve the equilibrium problem, we assume that the bifunction F satisfies the following
conditions imposed in [3]:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e F (x, y) + F (y, x) 6 0 for any x, y ∈ C,
(A3) For each x, y, z ∈ C,

lim
t→0

F (tz + (1− t)x, y) 6 F (x, y);

(A4) For each x ∈ C, y 7−→ F (x, y) is convex and lower semicontinuous.
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Lemma 2.6. [3]Let C be a nonempty, closed and convex subset of H and let F be a bifunction from
C × C to R satisfying (A1)-(A4). Let x ∈ H and r > 0. Then there exists c ∈ C such that

F (c, y) +
1

r
〈y − c, c− x〉 > 0

for all y ∈ C.

Lemma 2.7. [1]Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let F
be a bifunction from C × C to R satisfying (A1)-(A4). For x ∈ H and r > 0, define a mapping
TF
r : H −→ C as follows:

TF
r (x) =

{
c ∈ C : F (c, y) +

1

r
〈y − c, c− x〉 > 0,∀y ∈ C

}
for all x ∈ H. We then have that the following statements hold:
(1) TF

r is singled-valued;
(2) TF

r is firmly nonexpansive, i.e, for any x, y ∈ H,

‖TF
r (x)− TF

r (y)‖26 〈TF
r (x)− TF

r (y), x− y〉;

(3) Fix (TF
r ) = EP (F );

(4) EP (F ) is closed and convex.

Lemma 2.8. [24]Let T : C −→ H be k̃-strictly pseudo-contractive mapping.
Define S : C −→ H by

Sx = αx+ (1− α)Tx

for each x ∈ C.
Then, as α ∈ [k̃, 1), S is nonexpansive such that Fix(S) = Fix(T ). We call S the S-mapping
generated by T .

Lemma 2.9 (Demi-closed principle). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a λ-strictly pseudo-contractive mapping. Then I − T is demi-closed at
0, i.e., if xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.

3 Main Results
Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. For each
k = 1, 2, · · · ,m, let Fk be a bifunction from C × C to R satisfying (A1)-(A4) and A be a strongly
monotone and L-Lipschitz continuous mapping of C into H. Let T : C −→ C be a k̃-strictly pseudo-
contractive mapping and S be the S-mapping generated by T , such that Ω := Fix(T ) ∩ V I(A,C) ∩(⋂m

k=1 EP (Fk)
)
6= ∅. Suppose {xn}∞n=1 is iteratively generated by u, x1 ∈ C,

un = TFm
rm,nT

Fm−1
rm−1,n · · ·TF2

r2,nT
F1
r1,nxn,

yn = PC(un − λnAun),

qn = PC(un − λnAyn),

xn+1 = (1− βn)xn + βnSqn − αn(xn − u)

(3.1)

for all n = 1, 2, · · · , and {αn}, {βn}, {λn} and {rk,n}, k ∈ {1, 2, · · · ,m} are sequences of real
numbers satisfying the following conditions:
(B1) limn→∞ αn = 0 and

∑∞
n=1 αn =∞;
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(B2) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(B3) (λn)n ⊂

(
0, 1

L

)
, limn→∞ λn = 0;

(B4) lim infn→∞ rk,n > 0 and limn→∞ |rk,n+1 − rk,n| = 0 for each k ∈ {1, 2, · · · ,m}.
Then the sequences {xn}, {un}, {qn} and {yn} converge strongly to the common point
x∗ ∈ Ω, given by x∗ = PΩ(u).

Proof. We shall divide the proof into 8 steps as follows:

Step 1: We show that the sequence {xn} is bounded.
Let p ∈ F (T ). We take Gk

n = T
Fk
rk,n · · ·T

F2
r2,nT

F1
r1,n for each k ∈ {1, 2, · · · ,m} and G0

n = I for all n,
hence un = Gm

n xn.
Let p ∈ Ω. By (3) of Lemma2.7 for each k ∈ {1, 2, · · · ,m} TFk

rk,n is nonexpansive and p is a fixed
point of TFk

rk,n, we have that

‖un − p‖ = ‖Gm
n xn −Gm

n p‖ ≤ ‖xn − p‖, ∀n ∈ N (3.2)

By using (1.7), the fact that A is monotone and that p ∈ VI(C,A), we have the following

‖qn − p‖2 ≤ ‖un − λnAyn − p‖2 − ‖un − λnAyn − qn‖2

= ‖un − p‖2 − ‖qn − un‖2 + 2λn〈Ayn, p− qn〉
= ‖un − p‖2 − ‖qn − un‖2 + 2λn(〈Ayn −Ap, p− yn〉+ 〈Ap, p− yn〉

+〈Ayn, yn − qn〉)
≤ ‖un − p‖2 − ‖qn − un‖2 + 2λn〈Ayn, yn − qn〉
≤ ‖un − p‖2 − ‖un − yn‖2 − 2〈un − yn, yn − qn〉 − ‖yn − qn‖2

+2λn〈Ayn, yn − qn〉
= ‖un − p‖2 − ‖un − yn‖2 − ‖yn − qn‖2 + 2〈un − λnAyn − yn, qn − yn〉.

Now, yn = PC(un − λnAun) and A L-Lipschitz continuous gives that

〈un − λnAyn − yn, qn − yn〉 = 〈un − λnAun − yn, qn − yn〉+ 〈λnAun − λnAyn, qn − yn〉
≤ 〈λnAun − λnAyn, qn − yn〉
≤ λnL‖un − yn‖‖qn − yn‖.

Therefore

‖qn − p‖2 ≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − qn‖2 + 2λnL‖un − yn‖‖qn − yn‖
≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − qn‖2 + λ2

nL
2‖un − yn‖2 + ‖qn − yn‖2

= ‖un − p‖2 + (λ2
nL

2 − 1)‖un − yn‖2

≤ ‖un − p‖2 (3.3)

Now using the fact that A is L− Lipschitz continuous and monotone, we have

‖yn − p‖2 = ‖PC(un − λnAun)− PC(p− λnAp)‖2

6 ‖un − p− λn(Ap−Aun)‖2

6 ‖un − p‖2 + L2λ2
n‖un − p‖2 + 2Lλn‖un − p‖2

= (1 + Lλn)2‖un − p‖2.

Hence by (3.2) we have
‖yn − p‖ 6 (1 + Lλn)‖xn − p‖ ∀n > 1. (3.4)
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We have

‖xn+1 − p‖ = ‖(1− βn)xn + βnSqn − αn(xn − u)− p‖
= ‖(1− βn)(xn − p) + βn(Sqn − p)− αn(xn − u)‖
= ‖(1− βn)(xn − p) + βn(Sqn − p)− αn(xn − p) + αn(u− p)‖
= ‖(1− βn − αn)(xn − p) + βn(Sqn − p) + αn(u− p)‖.

Using (3.2), (3.3) and Lemma2.8 we have

‖p− Sqn‖2 = ‖Sp− Sqn‖2 ≤ ‖p− qn‖2 ≤ ‖xn − p‖2. (3.5)

Hence

‖xn+1 − p‖ 6 (1− βn − αn)‖xn − p‖+ βn‖xn − p‖+ αn‖(u− p)‖
= (1− αn)‖xn − p‖+ αn‖u− p‖
≤ max{‖xn − p‖, ‖u− p‖}. (3.6)

Inductively, we get
‖xn − p‖6 max{‖x1 − p‖, ‖u− p‖}.

Hence, {xn} is bounded. From (3.2), (3.3) and (3.4) we as well obtain that {un},{qn} and {yn}
are bounded.
Since the mapping A is Lipschitz continuous, we also obtain the boundedness of the sequences
{Axn}, {Aun}, {Ayn}.
Also, since S is nonexpansive, we obtain that {Sxn} and {Sqn} are bounded, using Lemma 2.8.
Indeed,

‖Sxn − p‖= ‖Sxn − Sp‖6 ‖xn − p‖ (3.7)

and

‖Sqn − p‖= ‖Sqn − Sp‖6 ‖qn − p‖. (3.8)

Hence, boundedness of {Sxn} and {Sqn} follows from the boundedness of {xn} and {qn} respectively.

Step 2

Let {sn} be a bounded sequence in C. We shall show that

lim
n→∞

‖Gm
n sn −Gm

n+1sn‖= 0. (3.9)

By step 2 of the proof of Theorem 3.1 in [25], it follows that for any k ∈ {1, 2, · · · ,m},

lim
n→∞

‖TFk
rk,n+1sn − T

Fk
rk,nsn‖= 0. (3.10)

Using condition 2 of Lemma 2.7 (TFk
rk,n is nonexpansive) and the definition of Gm

n , we have

‖Gm
n sn −Gm

n+1sn‖ = ‖TFm
rm,nG

m−1
n sn − TFm

rm,n+1G
m−1
n+1 sn‖

≤ ‖TFm
rm,nG

m−1
n sn − TFm

rm,n+1G
m−1
n sn‖+‖TFm

rm,n+1G
m−1
n sn − TFm

rm,n+1G
m−1
n+1 sn‖

≤ ‖TFm
rm,nG

m−1
n sn − TFm

rm,n+1G
m−1
n sn‖+‖Gm−1

n sn −Gm−1
n+1 sn‖

≤ ‖TFm
rm,nG

m−1
n sn − TFm

rm,n+1G
m−1
n sn‖+‖T

Fm−1
rm−1,nG

m−2
n sn − T

Fm−1
rm−1,n+1G

m−2
n sn‖

+‖Gm−2
n sn −Gm−2

n+1 sn‖

≤ ‖TFm
rm,nG

m−1
n sn − TFm

rm,n+1G
m−1
n sn‖+‖T

Fm−1
rm−1,nG

m−2
n sn − T

Fm−1
rm−1,n+1G

m−2
n sn‖

+ · · ·+ ‖TF2
r2,nG

1
nsn − TF2

r2,n+1G
1
nsn‖+‖TF1

r1,nsn − T
F1
r1,nsn‖.
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from which (3.9) follows by (3.10).

Step 3: limn→∞‖xn+1 − xn‖= 0.
We know that un = Gm

n xn and un+1 = Gm
n+1xn+1. We then have that

‖un − un+1‖ = ‖Gm
n xn −Gm

n+1xn+1‖
≤ ‖Gm

n xn −Gm
n+1xn‖+‖Gm

n+1xn −Gm
n+1xn+1‖

≤ ‖Gm
n xn −Gm

n+1xn+1‖+‖xn − xn+1‖. (3.11)

Now observe that

‖qn+1 − qn‖ = ‖PC(un+1 − λn+1Ayn+1)− PC(un − λnAyn)‖
≤ ‖(un+1 − λn+1Ayn+1)− (un − λnAyn)‖
= ‖un+1 − un − λn+1(Aun+1 −Aun) + λn+1(Aun+1 −Ayn+1 −Aun) + λnAyn)‖
≤ ‖un+1 − un‖+λn+1‖Aun+1 −Aun‖+λn+1‖Aun+1 −Ayn+1 −Aun‖+λn‖Ayn‖
≤ ‖un+1 − un‖+Lλn+1‖Aun+1 −Aun‖+λn+1‖Aun+1 −Ayn+1 −Aun‖+λn‖Ayn‖
≤ ‖un+1 − un‖+(λn+1 + λn)M, (3.12)

where M is a constant such that

M > sup
n>1
{k‖Aun+1 −Aun‖+‖Aun+1 −Ayn+1 −Aun‖+‖Ayn‖}.

Hence, from (3.11) and (3.12) we have

‖qn+1 − qn‖ ≤ ‖Gm
n xn −Gm

n+1xn‖+‖xn − xn+1‖+(λn+1 + λn)M.

We define the sequence {zn} to be such that for any n > 1,

βnzn = xn+1 − (1− βn)xn. (3.13)

Therefore

‖zn+1 − zn‖ =

∥∥∥∥xn+2 − (1− βn+1)xn+1

βn+1
− xn+1 − (1− βn)xn

βn

∥∥∥∥
= ‖ (1− βn+1)xn+1 + βn+1Sqn+1 − αn+1(xn+1 − u)− (1− βn+1)xn+1

βn+1

− (1− βn)xn + βnSqn − αn(xn − u)− (1− βn)xn
βn

‖

=

∥∥∥∥Sqn+1 − Sqn −
αn+1

βn+1
(xn+1 − u) +

αn

βn
(xn − u)

∥∥∥∥
6 ‖qn+1 − qn‖+

αn+1

βn+1
‖u− xn+1‖+

αn

βn
‖u− xn‖. (3.14)

Hence, by (3.13) and (3.15), we obtain

‖zn+1 − zn‖−‖xn − xn+1‖ 6 ‖Gm
n xn −Gm

n+1xn‖+
αn+1

βn+1
‖u− xn+1‖+

αn

βn
‖u− xn‖

+(λn+1 + λn)M.

Therefore, by conditions (B1)-(B3) we have

lim sup
n→∞

(‖zn+1 − zn‖−‖xn − xn+1‖) 6 0.
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By Lemma 2.5, we then have
lim

n→∞
‖zn − xn‖ = 0,

from which it follows that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

βn‖zn − xn‖ = 0. (3.15)

We obtain also from (3.9), (3.11), (3.12) and (3.15) that

lim
n→∞

‖qn+1 − qn‖ = 0

and
lim

n→∞
‖un+1 − un‖ = 0.

Step 4: limn→∞‖un − qn‖= 0.
We know that

xn+1 = (1− βn)xn + βnSqn − αn(xn − u). (3.16)

Observe that

‖xn − Sqn‖ 6 ‖xn+1 − xn‖+ ‖xn+1 − Sqn‖
= ‖xn+1 − xn‖+ ‖(1− βn)xn + βnSqn − αn(xn − u)− Sqn‖
6 ‖xn+1 − xn‖+ (1− βn)‖xn − Sqn‖+ αn‖xn − u‖. (3.17)

Hence,

βn‖xn − Sqn‖ 6 ‖xn+1 − xn‖+ αn‖xn − u‖. (3.18)

It follows from conditions (B1) and (B2) that

lim
n→∞

‖xn − Sqn‖= 0. (3.19)

Now

‖yn − qn‖ 6 ‖PC(un − λnAyn)− PC(un − λnAun)‖
6 ‖un − λnAyn − un − λnAun‖
6 λnL‖yn − un‖
6 λnLM1, for some M1 > 0. (3.20)

Therefore by condition (B3), we have

lim
n→∞

‖yn − qn‖= 0. (3.21)

For all p ∈ Ω, by using Lemma (2.8), (3.2) and (3.3), we have

‖xn+1 − p‖2 6 ‖(1− βn)xn + βnSqn − αn(xn − u)− p‖2

6 ‖(1− βn)xn + βnSqn − p‖2 + 2αn‖xn − u‖‖(1− βn)xn + βnSqn − p‖
+α2

n‖xn − u‖2

6 (1− βn)‖xn − p‖2 + βn‖Sqn − p‖2

+2αn‖xn − u‖‖(1− βn)xn + βnSqn − p‖+ α2
n‖xn − u‖2

6 (1− βn)‖xn − p‖2 + βn‖qn − p‖2 + 2αn‖xn − u‖‖(1− βn)xn

+βnSqn − p‖+ α2
n‖xn − u‖2

6 (1− βn)‖xn − p‖2 + βn
[
‖xn − p‖2 − (1− λ2

nL
2)‖un − yn‖2

]
+2αn‖xn − u‖‖(1− βn)xn + βnSqn − p‖+ α2

n‖xn − u‖2. (3.22)
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It follows that

‖un − yn‖2 6
1

1− λ2
nL2

[(‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖

+α2
n‖xn − u‖‖(1− βn)xn + βSqn − p‖+ α2

n‖xn − u‖2]. (3.23)

By condition (B1) and step 3, we have

lim
n→∞

‖un − yn‖= 0. (3.24)

Hence, since
‖un − qn‖ 6 ‖un − yn‖+ ‖yn − qn‖, (3.25)

we have
lim

n→∞
‖un − qn‖= 0. (3.26)

Step 5: limn→∞‖Gk
nxn −Gk−1

n xn‖= 0, k = 1, 2, · · · ,m.
Let p ∈ Ω. Firmly nonexpansiveness of TFK

rk,n for each k = 1, 2, · · · ,m gives

‖Gk
nxn − p‖2 = ‖TFk

rk,nG
k−1
n xn − TFk

rk,np‖
2

6 〈Gk
nxn − p,Gk−1

n xn − p〉

=
1

2

(
‖Gk

nxn − p‖2 + ‖Gk−1
n xn − p‖2 − ‖Gk

nxn −Gk−1
n xn‖2

)
. (3.27)

Therefore, we obtain that

‖Gk
nxn − p‖2 6 ‖Gk−1

n xn − p‖2 − ‖Gk
nxn −Gk−1

n xn‖2, for k = 1, 2, · · · ,m, (3.28)

which implies that for each k ∈ {1, 2, · · · ,m},

‖Gk
nxn − p‖2 6 ‖G0

nxn − p‖2 − ‖Gk
nxn −Gk−1

n xn‖2 − ‖Gk−1
n xn −Gk−2

n xn‖2

− · · · − ‖G2
nxn −G1

nxn‖2 − ‖G1
nxn −G0

nxn‖2

6 ‖xn − p‖2 − ‖Gk
nxn −Gk−1

n xn‖2. (3.29)

Now, using the fact that un = Gm
n xn, Lemma 2.2 and (3.3) , we have

‖xn+1 − p‖2 = ‖(1− βn)xn + βnSqn − αn(xn − u)− p‖2

6 ‖(1− βn − αn)(xn − p) + βn(Sqn − p)‖2 + 2αn〈u− p, xn+1 − p〉
= ‖[1− (βn + αn)](xn − p) + (αn + βn)(Sqn − p)− αn(Sqn − p)‖2

+2αn〈u− p, xn+1 − p〉
6 [1− (βn + αn)]‖xn − p‖2 + (αn + βn)‖un − p‖2

+2αn〈p− Sqn, xn+1 − p〉+ 2αn〈u− p, xn+1 − p〉
6 [1− (βn + αn)]‖xn − p‖2 + (αn + βn)‖Gk

nxn − p‖2

+2αn〈p− Sqn, xn+1 − p〉+ 2αn〈u− p, xn+1 − p〉.

Therefore,

(αn + βn)‖Gk
nxn −Gk−1

n xn‖2 6 ‖xn − p‖2 − ‖xn+1 − p‖2

+2αn[‖xn+1 − p‖‖xn − p‖+ ‖u− p‖‖xn+1 − p‖]
6 (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖

+2αn[‖xn+1 − p‖‖xn − p‖+ ‖u− p‖‖xn+1 − p‖].

Using condition (B1) and that ‖xn+1 − xn‖ → 0, we obtain that

lim
n→∞

‖Gk
nxn −Gk−1

n xn‖= 0. (3.30)
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Step 6: limn→∞‖Syn − yn‖= 0.
Observe that

‖Syn − yn‖ 6 ‖Syn − Sqn‖+‖Sqn − xn‖+‖G0
nxn −G1

nxn‖+‖G1
nxn −G2

nxn‖
+ · · ·+ ‖Gm−1

n xn −Gm
n xn‖+‖un − yn‖

6 ‖yn − qn‖+‖Sqn − xn‖+‖G0
nxn −G1

nxn‖+‖G1
nxn −G2

nxn‖
+ · · ·+ ‖Gm−1

n xn −Gm
n xn‖+‖un − yn‖. (3.31)

Therefore,
lim

n→∞
‖Syn − yn‖= 0. (3.32)

Step 7: lim supn→∞〈u− x∗, xn − x∗〉 6 0 where x∗ = PΩ(u),
i.e.,〈x∗ − u, z − x∗〉 > 0 ∀z ∈ Ω.
Let {xnj} be a subsequense of {xn} such that

lim
j→∞
〈u− x∗, xnj − x

∗〉 = lim sup
n→∞

〈u− x∗, xn − x∗〉. (3.33)

Using the boundedness of {xn}, there exist a subsequence {xnjk
} of {xnj} such that xnjk

⇀ w.
Without loss of generality, we assume that xnj ⇀ w.
We show that w ∈ Ω.
By step 5,

‖Gk
nxn −Gk−1

n xn‖ → 0 for each k = 1, 2, · · · ,m,
which implies that Gk

nxnj ⇀ w for each k = 1, 2, · · · ,m.
Since ‖un − yn‖ → 0 and ‖un − qn‖ → 0, we have that unj ⇀ w, ynj ⇀ w and qnj ⇀ w.
Also, {unj} ⊂ C and C is closed and convex implies that w ∈ C.
(i) We show that w ∈ Fix(S) = Fix(T ).
By Lemma 2.9 and step 6, we obtain that w ∈ F (S) = F (T ).
(ii) We show that w ∈

⋂m
k=1 EP (Fk).

By Lemma 2.6, for each k = 1, 2, · · · ,m, we have

Fk

(
Gk

nxn, y
)

+
1

rn

〈
y −Gk

nxn, G
k
nxn −Gk−1

n xn
〉
> 0, ∀y ∈ C.

It follows from (A2) that

1

rn

〈
y −Gk

nxn, G
k
nxn −Gk−1

n xn
〉
> Fk

(
y,Gk

nxn
)
, ∀y ∈ C.

Therefore, for each k = 1, 2, · · · ,m, we have〈
y −Gk

nj
xnj ,

Gk
nj
xnj −Gk−1

nj
xnj

rnj

〉
> Fk

(
y,Gk

nj
xnj

)
, ∀y ∈ C.

By (A4), we have
Gk

nj
xnj −Gk−1

nj
xnj

rnj

−→ 0 and Gk
nj
xnj ⇀ w.

Hence, for each k = 1, 2, · · · ,m,
Fk(y, w) 6 0, ∀y ∈ C.

Define
ys = (1− s)w + sy, ∀y ∈ C and s ∈ (0, 1].

By the convexity of C, we have that ys ∈ C from which it follows that

Fk(ys, w) 6 0, for each k = 1, 2, · · · ,m.
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Using (A4), we have

0 = Fk(ys, ys) 6 sFk(ys, y) + (1− s)Fk(ys, w)

6 sFk(ys, y).

Since s 6= 0, we obtain that
Fk(ys, y) > 0.

By (A3), for any y ∈ C, Fk(w, y) = lim
s→∞

Fk(ys, y) > 0, for each k = 1, 2, · · · ,m.
Therefore for each k = 1, 2, · · · ,m, w ∈EP(Fk), which gives that

w ∈
m⋂

k=1

EP(Fk).

(iii) We show that w ∈VI(C,A).
Define the set-valued mapping T from H to 2H i.e., T : H → 2H by

Tw1 =

{
Aw1 +NCw1, w1 ∈ C,
∅, w1 /∈ C.

Where NC is the normal cone to C at w1 ∈ C.
The mapping T in this case is maximal monotone, and 0 ∈ Tw1 if and only if w1 ∈VI(C,A), see[6].
Let (w1, h) ∈ G(T ). It follows that Tw1 = Aw1 +NCw1, therefore h−Aw1 ∈ NCw1. Hence we obtain
that 〈w1 − s, h−Aw1〉 > 0 for any s ∈ C. Since qn = PC(un − λnAyn) and w1 ∈ C, we have

〈un − λnAyn − qn, qn − w1〉 > 0.

Therefore
〈w1 − qn,

qn − un

λn
+Ayn〉 > 0 for each n > 1.

Hence

〈qnj − w1, h〉 6 〈qnj − w1, Aw1〉

6 〈qnj − w1, Aw1〉 − 〈qnj − w1,
qnj − unj

λnj

+Aynj 〉

= 〈qnj − w1, Aw1 −Aynj −
qnj − unj

λnj

〉

= 〈qnj − w1, Aw1 −Aqnj 〉+ 〈qnj − w1, Aqnj −Aynj 〉

−〈qnj − w1,
qnj − unj

λnj

〉.

So
〈qnj − w1, h〉 6 〈qnj − w1, Aqnj −Aynj 〉 − 〈qnj − w1,

qnj − unj

λnj

〉.

Hence it follows that
〈w1 − w, h〉 > 0.

Since T is maximal monotone, we have w ∈ T−10, and it follows that w ∈VI(C,A).
(i),(ii) and (iii) give that w ∈ Ω.
Therefore

lim sup
n→∞

〈u− x∗, xn − x∗〉 = lim
j→∞
〈u− x∗, xnj − x

∗〉

= 〈u− x∗, w − x∗〉 6 0. (3.34)
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Step 8: limn→∞‖xn − x∗‖= 0.

‖xn+1 − x∗‖2 = ‖(1− βn)xn + βnSqn − αn(xn − u)− x∗‖2

= ‖(1− βn)(xn − x∗) + βn(Sqn − x∗)− αn(xn − x∗) + αn(u− x∗)‖2

= ‖(1− βn − αn)(xn − x∗) + βn(Sqn − x∗) + αn(u− x∗)‖2

6 ‖(1− βn − αn)(xn − x∗) + βn(Sqn − x∗)‖2 + 2αn〈u− x∗, xn+1 − x∗〉
6 (1− αn)2‖xn − x∗‖2 + 2αn〈u− x∗, xn+1 − x∗〉

= (1− 2αn)‖xn − x∗‖2 + 2αn

[αn

2
‖xn − x∗‖2 + 〈u− x∗, xn+1 − x∗〉

]
.

Using Lemma2.4 and (3.34), it follows that lim
n→∞

‖xn − x∗‖ = 0.

Using (3.3),(3.2) and (3.4) we obtain that the sequences {qn}, {un} and {yn} converge to x∗. This
completes the proof.

4 Applications
The following are direct applications of our main result:

Corollary 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. For each
k = 1, 2, · · · ,m, let Fk be a bifunction from C × C to R satisfying (A1)-(A4) and A be a strongly
monotone and L-Lipschitz continuous mapping of C into H. Let T : C −→ C be a nonexpansive
mapping such that Ω := Fix(T ) ∩ V I(A,C) ∩

(⋂m
k=1 EP (Fk)

)
6= ∅. Suppose {xn}∞n=1 is iteratively

generated by u, x1 ∈ C, 

un = TFm
rm,nT

Fm−1
rm−1,n · · ·TF2

r2,nT
F1
r1,nxn,

yn = PC(un − λnAun),

qn = PC(un − λnAyn),

xn+1 = (1− βn)xn + βnTqn − αn(xn − u)

(4.1)

for all n = 1, 2, · · · , and {αn}, {βn}, {λn} and {rk,n}, k ∈ {1, 2, · · · ,m} are sequences of real
numbers satisfying the following conditions:
(B1) limn→∞ αn = 0 and

∑∞
n=1 αn =∞;

(B2) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(B3) limn→∞ λn = 0;
(B4) lim infn→∞ rk,n > 0 and limn→∞ |rk,n+1 − rk,n| = 0 for each k ∈ {1, 2, · · · ,m}.
Then the sequences {xn}, {un}, {qn} and {yn} converge strongly to the common point
x∗ ∈ Ω, given by x∗ = PΩ(u).

Proof. The conclusion follows immediately by Theorem 3.1, since we have that T is a nonexpansive
mapping.

Corollary 4.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A
be a strongly monotone and L-Lipschitz continuous mapping of C into H and T : C −→ C be a
nonexpansive mapping such that Γ := Fix(T ) ∩ V I(A,C) 6= ∅. Suppose {xn}∞n=1 is iteratively
generated by u, x1 ∈ C,

yn = PC(xn − λnAxn),

xn+1 = (1− βn)xn + βnTPC(xn − λnAyn)− αn(xn − u)
(4.2)
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for all n = 1, 2, · · · , and {αn}, {βn} and {λn} are sequences of real numbers satisfying conditions
B1-B3.
Then the sequences {xn} and {yn} converge strongly to the common point
x∗ ∈ Γ, given by x∗ = PΓ(u).

Proof. Let Fk(x, y) = 0 for any k ∈ {1, 2, · · · ,m}, for all x, y ∈ C and rn = 1 ∀n ∈ N in Theorem
3.1. It follows that TFm

rm,n = I (the identity mapping) ∀n,m ∈ N, i.e., un = xn ∀n ∈ N. Clearly
the conditions of Theorem 3.1 hold. Therefore we obtain that the sequence {xn} generated by 4.2
converges to the point x∗ ∈ Γ with x∗ = PΓ(u).

Corollary 4.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A be a
strongly monotone and L-Lipschitz continuous mapping of C into H. Suppose {xn}∞n=1 is iteratively
generated by u, x1 ∈ C,

yn = PC(xn − λnAxn),

xn+1 = (1− βn)xn + βnPC(xn − λnAyn)− αn(xn − u)
(4.3)

for all n = 1, 2, · · · , and {αn}, {βn} and {λn} are sequences of real numbers satisfying conditions
B1-B3.
Then the sequence {xn} converges strongly to x∗ ∈ C, given by x∗ = PV I(A,C)(u).

Proof. Let Fk(x, y) = 0 for any k ∈ {1, 2, · · · ,m}, for all x, y ∈ C and rn = 1 ∀n ∈ N in Theorem 3.1.
It follows that TFm

rm,n = I (the identity mapping) ∀n,m ∈ N, i.e., un = xn ∀n ∈ N. Letting T = I (the
identity mapping), clearly the conditions of Theorem 3.1 hold. Therefore we obtain that the sequence
{xn} generated by 4.3 converges to the point x∗ ∈ V I(A,C) with x∗ = PV I(A,C)(u).

Remark 1. Using Corollary 4.3, we have an iterative scheme to obtain the solution of a variational
inequality problem involving a monotone and L-Lipschitz continuous mapping A.

We apply Corollary 4.3 directly to the following variational inequality problem.

Proposition 4.1. Let M be a n×n positive definite matrix, let C be a M -invariant closed subspace of
Rn and b ∈ C. We define F : C → C by F (x) = Mx+ b. Suppose {xn}∞n=1 is iteratively generated
by u, x1 ∈ C, 

yn = PC(xn − λnAxn),

xn+1 = (1− βn)xn + βnPC(xn − λnAyn)− αn(xn − u)
(4.4)

for all n = 1, 2, · · · , and {αn}, {βn} and {λn} are sequences of real numbers satisfying conditions
B1-B3.
Then the sequence {xn} converges strongly to a unique point x∗ ∈ C, given by x∗ = PV I(A,C)(u).

Proof. Since M is positive definite, we obtain that F is strongly monotone. It is also easy to see that
F is a Lipschitzian mapping with Lipschitz constant ‖M‖. The strong monotonicity of F guarantees
a unique solution x∗ ∈ V I(F,C). Therefore, by Corollary 4.3, the sequence {xn} generated by 4.4
converges to the point x∗ ∈ V I(A,C) with x∗ = PV I(A,C)(u).

5 Conclusion
In this work, we have shown that the proposed scheme (3.1) converges strongly to a common point
of the set of solution of equilibrium problems, variational inequality problem and the fixed point set
of a k-strictly pseudo-contractive mapping in Hilbert spaces. We also gave some applications of our
result. More interestingly we applied our result in solving a classical variational inequality problem.
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