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Abstract

In this paper, we propose an alternative hybrid estimator of finite population mean in simple random
sampling without replacement (SRSWOR). This proposed estimator is a modification of Rashid et al. [1]
estimator. The expressions for the bias and Mean Square Error (MSE) of the estimator are derived. A
comprehensive simulation study to show the efficacy of the estimator as compared to conventional estimators
using Coefficient of Variation as a performance measure. The results are also supported with empirical
illustrations using real life data which have shown that the proposed estimator was more efficient than almost
all the existing estimators considered in this study.

Keywords: Auxiliary variable; hybrid estimators; mean square error; ratio estimators; regression estimators.

1 Introduction

The use of auxiliary information in estimation of population mean, total, or ratio got a boost when Bahl and
Tuteja [2] introduced their exponential ratio and product estimators of population mean respectively. These
estimators use a single auxiliary variable and produce more efficient estimates than the usual existing
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estimators. As noted by Rashid et al. [1], exponential estimators are preferable to classical ratio and product
estimators, especially when the linear relationship between the variable of interest and the auxiliary variable is
weak. Several authors have over the years proposed estimators based on exponentiation of the traditional ratio,
product and regression estimators respectively or a mixture of these.

Many other authors, have in one way or the other tried to make significant improvements on the efficiency of
their ratio estimators by making use of the parameters of the auxiliary variables and known constants to propose
new ratio estimators. For example, Singh and Tailor [4,5] in separate works proposed improved ratio estimators
of finite population by utilizing known correlation coefficients and coefficient of variations respectively of the
auxiliary variable. Kadilar and Cingi [5,6] made use of coefficient of Kurtosis, coefficient of variation and
correlation coefficient and their combinations to construct improved ratio estimators of population mean. The
work by Jitthavech and Lorchirachoonkul [7] investigated four new estimators in simple random sampling,
biased sample mean, ratio estimator and two linear estimators utilizing known coefficients of variation of the
variable of interest and the supplementary variable. The results of the study shows that the two proposed linear
regression estimators are more efficient than the new biased sample mean and at least as efficient as the three
traditional estimators (sample mean, ratio and product) and Sisodia and Dwivedi [8] estimator. The results
further proved that at least one of the proposed linear regression estimators is always more efficient than the
new ratio estimator and Searls sample mean.

In most of the regression type estimators encountered in literature, only a few have dealt with the problem of
handling large scale data [9] (Hanif et al., 2010; Kanwai et al., 2016), but all of them are univariate. Authors are
more interested in developing estimators that are more efficient than existing ones in terms of minimum Mean
Square Error (MSE), relative efficiency or coefficient of variation using available small sample data sets.
However, due to demand from big tech industries, governmental and NGOs, producing large chunks of data,
there is every need for researchers to rise to the task of evolving estimators that are asymptotic in nature.

This study therefore, modifies an existing estimator of finite population mean by Rashid et al. [1] to construct a
hybrid regression-cum-ratio exponential type estimators of finite population in simple random sampling using
two supplementary variables. Four partitions of the correlation coefficient parameter space are considered under
varying sample sizes to investigate the effect of correlation coefficient and ascertain asymptotic properties of the
proposed estimators as compared with some selected existing estimators.

2 Literature Review

According to Kanwai et al. (2016), the oldest estimator of population mean in the history of sampling survey
under simple random sampling is the sample mean, y, defined as the sum of all the possible observations or
units of a given sample divided by the total number of units in the sample. For simple random sampling, it is
obvious that this sample mean estimator y and Ny are consistent estimates of the population mean and the mean
total, respectively. Searls (1964) proposed a modified version of the sample mean estimator, y, where Kk is a
constant. This modified estimator like the sample mean estimator is unbiased, consistent and has been proved to
be more efficient than the sample mean estimator.

The aim of sample survey is to get information about the population by taking random samples from the
population. Population could be considered as a collection of units defined according to the objective of the
study. Estimation of the population mean is a tenacious issue in sampling surveys and several efforts have been
made by many researchers to improve the accuracy or precision of the estimates by using supplementary
information. In sampling survey, information may or may not be readily available on every unit of the
population under consideration. If there exists a variable whose attributes are known for every unit of the
population but is not the study variable but rather can be used to improve the sampling plan or to enhance the
estimation of the variable of interest, then this particular variable is called an auxiliary variable. The auxiliary
variable about a study population may include a known variable to which the variable of interest (study variable)
is approximately related (positively or negatively). This information could be used at the planning stage, the
estimation stage or both [11]. The estimation of population parameters with greater precision is a relentless issue
in sampling theory and the precision of the estimates can be improved by increasing the sample size, but by
doing so tends to sabotage the essence of sampling (saving time, labor and cost). Thus, an alternative is to
employ the use of auxiliary (supplementary) variables with a combination of an appropriate estimation
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procedure in order to increase the precision of the estimates. The auxiliary variable must be closely related to the
study variable and the employed estimator must be asymptotically optimum (Kanwai et al., 2016).

John Graunt, cited in Riaz, et al. [11] was the first believed to have used the auxiliary information to estimate
the first realistic estimates of the number of men and women in London and the whole population of England
and showed that both were increasing, with steady migration into London. However, Neyman (1934) study may
be referred to as an initial work where auxiliary information has been discussed in detail whereas Watson [12]
made use of the regression method of estimation to estimate the average area of the leaves on a plant. Cochran
[13,14] used auxiliary information in single phase sampling at estimation stage to develop the classical ratio
type estimator for the estimation of population mean as well as the regression estimator respectively. The ratio
estimator is more efficient as compared to the sample mean estimator provided the auxiliary variable and the
variables of interest are highly positively correlated and the regression line passes through the origin.

While Robson [15] and Murthy (1964) worked independently on the classical product estimator of the
population mean. The product type estimator like the ratio estimator is more efficient than the sample mean
estimator, in situations where the auxiliary variable has strong negative correlation with the variable of interest.
If, however, the regression line has an intercept, the regression estimator is preferable to the both the ratio and
product estimators as the case may be applicable. The historical development on the improvements of the ratio
method of estimation was done by Sen [16]. These improved ratio estimators, though, biased, are more efficient
than the classical ratio estimator.

Rashid et al. [1] suggested two exponential type, ratio-cum-ratio and product-cum-product class of estimators of
finite population mean. These estimators are a product of the study variable and exponent of the linear
combination of two auxiliary variables such that the sum of the constants is unity. They firstly developed the
generalized forms of the estimators and discussed special cases and conditions under which they produce
optimum estimates. Meanwhile, Shabbir et al. [17] and Jhajj and Lata [18] worked independently to improve the
difference estimator through exponentiation. The new improved estimator was achieved by averaging
exponential ratio and product estimators respectively, after drawing inspiration from Yadav and Kadilar [19]
estimator. This new estimator was validated by using ten different real datasets. Similar exponential ratio type
estimators were developed by Singh and Vishwakarma [9], Vishwakarma and Kumar [20] and Singh and
Khahid [21] with application in two phase sampling.

On the other hand, Kumar et al. [22] proposed a class of exponential chain type ratio estimator for population
mean with imputation of missing data in Two-Phase sampling. The work dealt with the challenge of non-
response in situations where the information on another additional auxiliary is available alongside the main
auxiliary variable.

Hamad et al. [23], in extending the work done by Hanif et al. (2009) developed a regression type estimator with
two auxiliary variables for two-phase sampling when there is no available information about the auxiliary
variables at the population level. This estimator is a product of the classical regression estimator, and the linear
combination of two ratio estimators. To avoid the problem of multi-linearity, they assumed there is minimum
correlation between the supplementary variables.

Saini and Kumar [24] estimator is a modified unbiased exponential type product estimator of the population
mean. This particular estimator has a unique property of a bi-serial correlation between the variable of interest
and auxiliary attributes. By using a linear combination of two auxiliary variables, Lu et al. [25] presented a new
exponential type estimator. The chosen weights satisfy the condition that their sum equals unity and by
employing Tailor series method, obtained the bias and the MSE by first order approximation.

Yadav et al. [26] showed a deviation from estimation of population mean to that of population variance using
auxiliary variables which was achieved by utilizing the auxiliary information in the context of coefficient of
kurtosis and the population mean of the auxiliary variable. Meanwhile, Jabbar et al. [27] developed an
exponential estimator of population variance in two stage sampling under the conditions where sum of the
weights was not equal to unity and secondly when the sum of weights equals unity.

Interestingly, Yadav and Misra [28] constructed an exponential estimator for population mean using median of
the variable of interest. This estimator appeared useful in practical situations where it is difficult to get
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information on the mean of the study variable from the population. Mishra [29] suggested a more generalized
square root transformed ratio type estimator and exponential ratio type estimator similar to Gupta et al. [30]
estimator except that it combined two ratio estimators in the linear combination and two ratio estimator in the
exponential component. Meanwhile, Riaz et al. [11] had constructed regression-cum-ratio/product exponential
type estimator by combining the concept of Bahl and Tujeja [2] and the regression estimator.

On the other hand, many authors have used median, coefficient of kurtosis, coefficient of skewness, deciles,
quartiles deviation, etc. [3,8,28,31-38].

Abid et al. [39] proposed a new linear combinations of ratio type estimators in SRS using non-conventional
measures such as Hodges Lehman estimator, population mid-range and population tri-mean as a supplementary
information. It is however observed that upon all these efforts, none of these seemed to have greater efficiency
than the regression estimator, but some had greater gain in efficiency as compared to the classical ratio
estimator. Motivated by Jeelani et al. [34], Misra et al. [40] developed an improved ratio type estimator of
population mean using predictive approach of estimation by using linear combination of the coefficient of
skewness and quartile deviation of the auxiliary variable. Motivated by the work done by Kadilar and Cingi [5],
Subzar et al. [36] developed a new class of more efficient ratio type estimators utilizing the linear combination
of coefficient of skewness and population deciles in place of the coefficient of Kurtosis and variation
respectively. In another vein Onyeka et al. [41] constructed a class of estimators for population ratio (R) in
simple random sampling scheme using transformation of the auxiliary variable principle. The study shows large
gains in efficiency over traditional ratio and product estimators depending on whether there is strong positive or
negative relationship between the study variable and the auxiliary variable. Diana and Perri [42] estimator of
population mean utilizes both known mean and variance of p auxiliary variables to estimate population mean of
study variable, that is, it uses multi-auxiliary variable with known mean and variances.

In another development, Hassan et al. [43] developed a regression type estimator for either positive or negative
correlation between variable of interest and supplementary variables. Unlike the usual regression estimator, this
estimator is more efficient than the classical ratio and product estimators respectively irrespective of the nature
of correlation coefficient. Recently, Shabbir et al. [44] proposed a ratio-exponential-log type estimator of finite
population mean in simple random sampling using two auxiliary variables when the population parameters are
known. Relatedly, Ahmad et al. (2021), constructed an improved class of estimators of finite population mean in
both simple random sampling and stratified Two-phase sampling using population proportion as attribute.
Zaman and Kadilar [45] ratio and product estimator in Stratified Two-phase sampling considered two cases-
when second sample of size n is drawn from first sample of size n’, and when the second and first samples are
drawn independently from the parent population of size N. Similarly, Vishwakarma and Zeeshan [46] proposed
generalized ratio-cum-product estimator for finite population mean under Two-phase sampling using optimal
samples sizes for the given cost function. While Hussain et al. [47] provided an improved version of the Bahl
and Tuteja [2] ratio estimator, Etebong et al. [48] introduces a new method of producing more accurate and
efficient estimates of ratio and product estimators that are considerably adjustable to both negatively and
positively correlated populations.

This study modifies Rashid et al. [1] estimator by replacing the sample mean with the regression mean estimator
to form a regression and ratio exponential type estimator of finite population mean in simple random sampling
without replacement. It further applies a transformation due to Srivenkataramana [49] to ascertain whether or
not the efficiency of the proposed estimator is improved.

3 Preliminaries and Notations

Consider a finite population, U = {U;, U,, ..., Uy }. Suppose that a sample of size n is drawn from this population
using Simple Random Sampling without replacement (SRSWOR) scheme. Let y be the study variable of
interest, X and z, be the respective auxiliary variables and y;, x; and z; be the observations in the i** unit of the
study variable and the two auxiliary variables under consideration.

Define e,, as error term of the study variable; e, : error term of the x variable; e, : Error term of the z variable;

J=_%D y.: | f stud iable: X = - : | f iable: z = : [
y = -Xit1yi: sample mean of study variable; X = ~3iL, x;: sample mean of x variable; Z = ~¥;_, z;: sample
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mean of z variable; Y = %Z?‘:lyi: population mean of study variable; X = %ZL X;: population mean of x

variable; Z = %Z{Ll z;: population mean of z variable; S = LN (Y, — Y)?: population variance of study

i N-1
variable;

Sz = ﬁz?‘zl(xi — X)?: population variance of x variable; S2 = ﬁz?:l(zi — Z)?: population variance of z
variable; Sy, = ﬁZiNﬂ(Xi —X)(y; — Y): population covariance between x and y; S, = ﬁZiNﬂ(Zi -7 (y; -
Y: population covariance between y and z;

1 < - . . s . .
Sez = Ezﬁzl(xi —X)(z; — Z): population covariance between x and z; py, = ;yszz: correlation coefficient

Sxz .
xSz’

between y and z denoted by p; ; pyx = SSny : correlation coefficient between y and x denoted by p,; py, =
yoxX

correlation coefficient between x and z denoted by ps; C, = %y: coefficient of variation of the study variable;

S . . .. .
Cy = ;": coefficient of variation of x variable;

Z

C,= %: coefficient of variation of z variable. Furthermore, let E(e;) = 0 for (i = x,y,2);E(e2) = 0CZ;
E(e;) = HC,?, E(ezz) = GCZZv E(exey) = gpyxCny;

1
E(ere,) = 0py,CiCy; E(eyeZ) = 0py,CyC; where, 6 = n

2=

4 Existing Ratio-exponential Estimators in Simple Random Sampling
(i) Classical regression estimator

Cochran [14] estimator of finite population mean uses one auxiliary variable like the classical ratio estimator but
produces more efficient estimates when the regression line has an intercept. It is an unbiased estimator given as:

Vir =V + By (X — %) €Y)
The MSE of the classical regression estimator is given by:

MSE(5,,) = V2C26(1 — pi,) )
(ii) Exponential ratio-cum-ratio estimator

Rashid et al. [1] used two transformed auxiliary variables to develop this estimator under single phase sampling
which is an improvement on Bahl and Tuteja [2] estimator. It is given as:

B B x—X T b =7 3)
=yexp|a| = =
Yran =Y\ § 5 Z+z
where, a = ZCyg(é’yE‘;’z’j’;"Z) b= ZCyg(é’ y(zl"’ pyzz‘;’”); g == %" and 7" are transformed auxiliary variables such
x\+"Pxz z\+"Pxz -

that x* = (1 — ge, )X and z* = (1 — ge,)Z. The bias and MSE are respectively defined as:
i 5 ?9 2 2 2 2,12 2 2
Bias(Yran) = ?{g [C7(2abK,, + b*) + a*Cg] — 4g(anyCx + bezCz )} (4)

[1 - (pjzlx + pJZ/z - Zpyxpxzpyz)]

MSE(}_]RAH) = 7296‘}% (1 _ pz )
XZ

)
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C 1 1
= D.g=1_1
where, K, = py o ] =

(iif) The Exponential ratio type estimator
Ekpenyong and Enang (2015) exponential ratio type estimator is an improvement on the classical regression and

ratio estimators. It is preferable to both the classical regression and ratio estimators respectively, in situations
where there is low positive correlation between the study variable and the auxiliary variable. It is given as:

X—x
=60,y +0,(X — 5
Veg = 01y 2( x)exp <X+x> (5)

where: 6, and 6, are suitably chosen scalars, such that 8, > 0 and —co < 8, < co. Its MSE and bias are given
as:

— 2
B(Tes) = 7[(6, — 1) + 6,K,,0 % (6)

MSE (Vgg) = Y21+ 912)/1 — 20, — 20,0,my, — 26,my; + 922m2y4] 7

~)ir=0Liy=eckm=1;

Yaty2Y: R(y2+v1Y3)
: 91=4 23,9_ 21Y1V3

viva—vy’ 2 ViVa—V3 '

'<|I i

where: y; = 1+ 6C}; vy, = C20 (ny

i =i

(iv) Exponential regression-ratio/product estimator

Riaz et al. [11] developed the regression-ratio/product exponential estimator by combining the concept of Bahl
and Tuteja [2] exponential type estimator and the classical regression estimator. It is given as:

_ X—x
% =y+a,(Z-7Z - 8
Vevw = [§ + a4 ( Z)]exp [VX ¥ (b, — 1))?] 8
where a4, b, are real positive constants and y may take the values -1 and 1.
o _ C.C, 6y¥Yc?
Bias(Yryu) = a1Y0Zpy, b + sz [1 +2(b;—1)— 2b1ny] €))
1
where:
_ Y Ky,z - Ky,xsz _ '}/(1 - pa%,z)
1 == ﬁ and b1 = C2
14 Pz K - Kx zKyz C2
= Yz 29 2.2 2 2.2 2
MSE(yRNH) - ( ) [1 —V Pxz— py,z -Y py,x + 2]/ py,sz,zpy,x (10)

5 Proposed Estimator

The proposed alternative hybrid regression-cum-ratio exponential type estimators of finite population mean
modifies Rashid et al. [1] estimator. Here, the sample mean is replaced with the classical regression estimator.
Further, it is assumed that z and x have strong and weak positive relationship with study variable respectively.
The estimator is given as:

_ X—-x
Y = [V + B(Z — 2)]exp [a <)? n f)] (11)
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where, a and g suitably chosen constants such that MSE (¥,,,) is minimized.

Theorem 1: The bias of the proposed alternative hybrid estimator when auxiliary variables are not transformed
is given as:

_ r1 1 1 _
Bias(¥,,) = Y0 (§ a’C? — Eapy,xCny> + EﬁZapr‘szCZ (12)

Theorem 2: The MSE of the proposed alternative hybrid estimator when auxiliary variables are not transformed
is given as:

MSE(J_’uu) = }_/ZHC}% (pJ%Z - 1)_1(,032/2 + p)%z + p321x - 2pyxpxzpyz - 1) (13)
where, pyx, Pyz, Px; * £1.

When the auxiliary variables are transformed, our proposed estimator becomes:

] v — X
Vew =17 +B1(Z" — 2)] exp [“1 (fm)] (14)

where, a; and B, are suitably chosen constants that minimize MSE of y,,,. x* and z* are transformed auxiliary
variables such that £* = (1 - ge,)X and z* = (1 - ge,)Z and g = -~

Theorem 3: The bias of the proposed alternative hybrid estimator when auxiliary variables are transformed is
given as:

_r1 1 _r1
Bias(F) = ¥ [ 02970CE — 501000y C.Cy | + BiZ |5 019700 C.C | (15)

Theorem 4: The MSE of the proposed alternative hybrid estimator when auxiliary variables are transformed is
given as:

MSE (Je,) = Y20C5 (03, — D7 (52 + P2z + Pyx = 2PyxPrzPyz — 1) (16)
where, pyx, Pyz, Pxz #* 1
NB: Proofs of Theorems 1-4 are found in Appendices 1-4 below.

Corollary 1: The bias of the alternative hybrid estimator when the auxiliary variables are not transformed,
Bias(¥,,,) is -1 times the bias of the alternative hybrid estimator when the auxiliary variables are transformed,

Bias(¥.,). i.e. Bias(¥,,,) = —Bias(Y,)

Corollary 2: The MSE of y,,, the alternative hybrid estimator when the auxiliary variables are transformed, is
independent of g and equals the MSE of ¥, the alternative hybrid estimator when the auxiliary variables are
not transformed,. i.e. MSE (3,,,) = MSE (¥,,)

6 Efficiency Comparison of Estimators

This study employs the Coefficient of Variation (CV) to compare performance of estimators considered in this
study. Bowerman [50] defined Coefficient of Variation as a statistical tool used to measure the size of the
standard deviation relative to the size of the population or sample mean. This is given as:

JVar(X)
X

CcV = X 100%
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For estimators that are biased, the Coefficient of Variation is given as:

JMSE(X)
X

CcV = X 100%

The estimator with the least CV is considered the “best” in the class of estimators.

7 Empirical Study

To investigate the performance of various estimators of population mean Y of study variable y, we generated
synthetic data generated according to the Uniform Distribution with the following statistics:

Statistics of Study Populations:

7.1 Population | [Source: Generated according to Normal Distribution using RNG in
Excel]

N = 1000; ¥ = 100.0786; n, = 10,n, = 25,15 = 50,1, = 100; X = 25.90251;
%, = 25.42673; %, = 26.29295; %, = 24.82662; %, = 27.15513; Z = 75.27509;

7, = 59.3777; z, = 82.72477; Z; = 70.25747 ; 7, = 89.85487; C, = 0.71745;
C, = 0.55689; C, = 0.56869; p,, = —0.0158; p,, = 0.009504; p,, = —0.0036

7.2 Population 11 [Source: Gul, 1991]

This data is a study of the effect of Managing Accounting System (X) and Perceived Environmental Uncertainty
(Z) on small business manager’s Perception of their performance (Y).

For this data we have:
N = 40; Y = 6.1532; n; = 10,n, = 25,n; = 35, X = 4.4659; Z = 4.3583; x, = 4.3847
, X, = 4.6830; ¥3 = 4.6589; z; = 4.5185; z, = 4.296; z; = 4.5191; C, = 0.7977,; C, = 0.8531; C, =
0.9601; p,, = —0.02495; p,,, = —0.01002; p,, = 0.160939
We denote the four correlation coefficient partitions by the following:
() pyLL isthe region, (0.7 < p; < 1and 0 < py, p; < 0.5)
(ii) pypy isthe region, (0.7 < pq, Pz, p3 < 1)
(iii) pyyy, is the region, (0 < pq, p2, p3 < 0.5)
(iv) pryy is the region (—0.5 < py, P2, p3 < 0)
where, p; = py,, p2 = pyx aNd p3 = Py,

7.3 Statistical Software used for Data Analysis

All calculations in this work were implemented in Maple 7 while data analysis was done in Excel, the graph
were drawn using Matlab, 2007.
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Table 1. Estimates of population | meanasn - o

S/No Corr.Coeff. Estimator Sample Size (n)
10 25 50 100
Vv 147.4198 120.4119 122.4200 116.8018
1 Vrah 153.4693 117.4461 121.6723 120.2516
PHLL Venh 194.1192 117.2039 119.5628 114.2322
Vv 145.7691 118.6578 123.0296 121.5947
Yuv 146.7985 117.5898 122.7491 122.7091
Vrah 146.7881 117.5749 122.7485 122.7097
2 Venh 135.2068 118.1773 120.0823 113.3764
PHHH Viv 146.7992 117.5802 122.7495 122.7099
Vv 103.7209 130.4219 146.8077 121.2824
Vrah 103.0653 129.4315 146.2017 121.7589
3 Venh 95.81516 133.7055 146.0153 120.2461
PLLL Viv 104.8436 128.1368 146.3138 122.1731
Vv 144.9099 129.0238 127.1195 126.0852
4 Vrah 146.3571 128.8966 127.1003 126.0653
Vinh 134.8345 127.6844 126.6791 125.6746
PLLL Viv 149.7035 129.3264 127.3368 126.2446
Table 2. Mean square error of population l asn — o
S/No Corr.Coeff. Estimator Sample Size (n)
10 25 50 100
Yuv 121.1768 7.1448 1.5136 0.5845
1 Vrah 323.3008 13.5262 2.6982 1.0518
PHLL Vrnn 121.1768 7.1448 1.5136 0.5845
Vew 121.1768 7.1448 1.5136 0.5845
Vv 83.9331 6.3376 1.5063 0.5703
Vran 10765.58 2187.5446 2498.7742 3414.1341
2 Vrnh 83.9331 6.3376 1.5063 0.5703
Punn Viv 83.9331 6.3376 1.5063 0.5703
Vv 223.4875 192.9899 69.9694 40.5525
Vrah 258.637 196.1521 71.8245 40.5574
3 Venh 223.4875 192.9899 69.9694 40.5525
PLLL Vv 223.4875 192.9899 69.9694 40.5525
Vv 329.9688 148.6753 84.50811 47.8513
Vean 344.059 148.6887 85.1384 47.8785
4 Vrnh 329.9688 148.6753 84.5081 47.8513
PLLL Vev 329.9688 148.6753 84.5081 47.8513
Table 3. Coefficient of variation of population | asn - o
S/No Corr.Coeff. Estimator Sample Size (n)
10 25 50 100
Vv 746.7133 221.9855 100.4975726 65.4559
OniL Vran 1171.607 313.1472 135.0028942 85.2867
1 Vrnh 567.0758 228.0614 102.8992177 66.9284
Viv 755.1692 225.2671 99.9996388 62.8759
Vv 624.087 214.0891 99.9858889 61.5448
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S/No Corr.Coeff. Estimator Sample Size (n)
10 25 50 100
Vran 7068.512 3977.9885 4072.369351 4761.6916
P Venn 677.5915 213.0246 102.2063491 66.6109
Vew 624.0837 214.1064 99.9855416 61.5444
Vv 1441.319 1065.1644 569.7773019 525.0625
Vran 1560.389 1082.0729 579.6739417 523.0391
PriL Venn 1560.243 1039.0064 572.8695164 529.5877
Vew 1425.886 1084.1602 571.7005986 521.2346
Vv 1253.540 945.0388 723.1641231 548.6341
Vrah 1267.368 946.0143 725.9656075 548.8764
PLLL YVinh 1347.210 954.9521 725.6784863 550.4262
Vev 1213.402 942.8273 721.9302 547.9411
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Table 4. Estimated mean of population 11

S/No Corr. Coeff. Estimator Sample Size (n)
10 25 35
Vuw 6.3383 59181 5.2240
1 Vran 6.6081 5.8879 4.3158
PHLL Venh 6.5481 5.6662 5.3222
Vew 6.5898 5.8737 6.4415
Vo 6.6134 5.8965 4.3062
Vrah 6.6110 5.8967 4.3016
2 Venh 6.6056 5.7568 5.3540
PHHH Vew 6.6111 5.8965 4.3146
Vv 6.0836 6.2053 4.6485
Vrah 6.0651 6.2137 4.3686
3 Venh 6.0330 6.1856 5.0513
PLLL Vew 6.0673 6.2146 4.8663
Yuv 6.5918 5.8971 4.3470
4 Vrah 6.6082 5.8963 4.4203
Venh 6.5364 5.8905 4.2470
PriL Vew 6.6101 5.8952 4.2828
Table 5. Mean square error of population 11
S/No Corr. Coeff. Estimator Sample Size (n)
10 25 35
Vv 1.0242 0.4526 0.2618
1 Vrah 1.0629 0.5239 0.3295
PHLL Vrnh 0.9914 0.4727 0.2571
Viw 0.9851 0.4561 0.2124
Vv 0.0031 0.0006 0.0001
Vrah 0.1146 0.0673 0.0163
2 Venh 0.0031 0.0006 0.0001
PHHH Vew 0.0031 0.0006 0.0001
Vv 0.0254 0.0073 0.0021
Vrah 0.0295 0.0078 0.0021
3 Venh 0.0254 0.0073 0.0021
PLLL Viw 0.0254 0.0073 0.0021
Vv 0.0259 0.0061 0.0026
4 Vrah 0.0262 0.0061 0.0026
Venh 0.0259 0.0061 0.0026
PriL Vew 0.0259 0.0061 0.0026
Table 6. Coefficient of variation of population 11
S/No Corr. Coeff. Estimator Sample Size (n)
10 25 35
Vv 1.0242 0.4526 0.2618
1 Vrah 1.0629 0.5239 0.3295
PHLL Venh 0.9914 0.4727 0.2571
Vew 0.9851 0.4561 0.2124
Vv 0.8289 0.4316 0.2638
Vran 5.1207 4.3994 2.9681
2 Vrnh 0.8299 0.4421 0.2121
PHHH Vew 0.8292 0.4316 0.2633
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S/No Corr. Coeff. Estimator Sample Size (n)

10 25 35
Vv 2.6196 1.3772 0.9518
Vran 2.8336 1.4252 1.0129
3 Venh 2.6415 1.3816 0.8759
PLiL Vew 2.6266 1.3751 0.9092
Vv 2.4431 1.3207 1.1775
4 Vrah 2.4510 1.3209 1.1581
Venh 2.4638 1.3222 1.2053
PriL Vew 2.4363 1.3211 1.1952
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6 Discussion of Results

In this study we have considered the performance of our proposed estimators and some selected estimators in
literature on four partitions of the correlation coefficient interval (—1,1). (i) pg., (1) pgyy (i) py and (iv)

PLLL

From Table 1, observe that as n — oo, all the estimators pinned good estimates of the population mean in the
same neighborhood at all levels of correlation coefficients. However, for small samples, ypyy exclusively
overestimated the mean at py,;; and underestimated the mean at p;;; .

In Table 2, the MSE of ¥y, is consistently higher for all sample sizes at py;;., Py and p..., but fairly stable
when n = 50 at p;;,. Observe also that the MSEs of ,,,,, ¥:,,, and ygyy in all the sampling regions decrease as
n — oo, and are the same for all sample sizes. This family of estimators are generally preferable for large scale
surveys.

From Table 3, In the parameter subspace denoted by py..., Yrvy performed better on the CV scale than the
others estimator for small sample sizes. This is followed by the proposed estimators ¥, ¥;,, and ypay. AS
sample size increases, the proposed estimators y,, and ¥, became more efficient than the other competing
estimators. Under this particular interval, we can confidently say that, y,yy estimator performs better when
sample size is very small. Whereas ¥,,,, is preferable when sample size is moderate, while, for large samples, y,,,
is preferred as shown in Fig. 1(a). In case of the real data presented in Table 6 and depicted by Fig. 2(a), the
proposed estimators are more efficient and precise than the other estimators on the entire parameter space.

Considering the second parameter subspace, pyuy, ¥+ appears to dominate throughout the parameter space
except for moderate sample sizes for the simulation study. This is closely followed by ¥, (see Fig. 1(b)). On
the other hand, the proposed estimators are more efficient for small samples (Table 6 and Fig. 2b) but one of the
competing estimators appeared more efficient as sample size increases for the real data set.

In the third region, p;;;, where all the correlation coefficients are low but positive, it is observed that , ¥, and ,
Y N @ closely dominate the for small sample size of between 10 and 25. Between n=25 and n=50, ¥y and
Yray had better performance while for n = 50, the duo, y,,,, and , ¥, have dominance over yg,y and ygyy (See
Fig. 1(c)). Considering the real data, the proposed estimators are more efficient than other estimators for small
samples (see Table 6 and Fig. 2c).

The fourth experiment considered the region, pz;,. For the simulation study, one of the proposed estimators, y.,,
dominated all other estimators throughout the parameter domain. This is followed by y,,,, and then yg .y (see
Table 3 and Fig. 1d). In case of real data, The proposed are more efficient for small samples as shown in Table 6
and depicted in Fig. 2d. Both y,, and yr,y utilize two auxiliary variables that are transformed according to
Srivenkataramana (1980) yet y,,, performed better than y,, for all the experiments conducted in this study.
Reason is not far-fetched, as y,,, belongs to the regression family whereas, y,y is @ member of the ratio family.
Thus, ¥4y Would dominate y,,, only if the regression line between y and x or z passes through the origin [10].
The transformation of the auxiliary variables has also shown improvement on efficiency of y,,, as compared to
that of ¥,,,.

7 Conclusion

This study proposed an alternative hybrid exponential type estimator of finite population mean in simple random
sampling under two cases:

e  When the auxiliary variables are not transformed
e  When the auxiliary variables are transformed

The study also considered four partitions of the correlation coefficient parameter space for which:

e Only one correlation coefficient is high, and all three are positive, pyy;.
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e All correlation coefficients are high and positive, pyyy-.
e All correlation coefficients are low and positive, p, ;.
e All correlation coefficients are low and negative, p;; .

Coefficient of Variation (CV) of different estimators for different sample sizes as given in Tables 3 and 6
respectively, for the synthetic and real data, have shown that the proposed estimators, ¥,,,,, and y,,, are:

e More efficient than the existing estimators for both small and large samples when at least one of the
correlation coefficient is high.

e More efficient than the existing estimators for only small samples when the correlation coefficients are
low and positive or negative.

The proposed estimators are therefore recommended for use in simple random sampling for both small- and
large-scale surveys.
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Appendix 1. Proof to Theorem 1

Consider the expression in (11) above,

Yuw =¥+ B(Z — D)]exp [a

Uba et al.; AJPAS, 15(4): 276-298, 2021; Article no.AJPAS.79568

Appendix

=]

By substituting the definitions for x, ¥ and Zz from section 1, we have:

=[(1+e)V+BZ -1+

e Dlexp [a ()? —(1+ ex))?>]

X+1+e)X

=V +Ye, + B(Z—Z - Ze,)|exp [a (M)]

= [V +Ye, + B(~Ze,)]exp
Y+Ye, + B(—Ze,)|exp
+ Ve, + B(—Ze,)|exp

~l

~l

+

~l

Y +Ye, + p(—Ze,)|exp

Y +

|
|
=
—[F+7
= [V +Ye, + B(—Ze,)]exp

e, + B(—Ze,)|exp

X +X+ Xe,

(e i)
Al ——
|\ 2X + Xe,
[ —Xe,
(o)

(@ren)

]
ot )

[ 1 2

_ ae, ey t+—ey— -
[ 1 1

| 2 4 8 ]

By First order approximation principle, we have:

_ _ 1
= [V +Ye, + B(~Ze,)|exp [—zaex] 17)
Expanding the exponential part in expression in (17), we have
vV > oy 1 1 52 1 53
= [V +Ye, + B(~Ze,)] :1 —?aex + %! 52 ex1—§ PR + -
= [V +Ye, + B(~Ze,)] :1 —%aex +§aze,§ —4—80(363 + ]
= [V +Ye, + B(—Ze,)| |1 S ey + gazef]
—7[1-Zae +1a292:+ Ye [1 1oce +1a2e2] —BZe [1 —lae +lazez]
! % X ? X: y 12 X 81 X z 2 X 8 X
=Y|1- Saex + gazef +¥ [ey — s aecey + gazexey] -BZ [ez — 5 aexe, + gazeﬁez]
T 1 1 1 - 1 1 _ 1 1
=Y|1- S @ex + gazef +Y [ey — S aexey + gazexey] - Bz [ez — 5 aexe, + gazeﬁez]
.1 1 ' 1 1 _ 1 1
=Y »1 — e+ gaze,? tey —Saee, + gaze,?ey] - BZ [ez —paexe; + gazeﬁez]
_ 1 1 1 1 _ 1
=Y+Y [—Eaef + gazle,? +e, — Eae;ey] - BZ [ez - Eae;ez]
V=Y =Y [—Eaex + gazef +e, — Eaexey] -BZ [ez - Eaexez] (18)

Taking expectation on both sides of (18),
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= 1 1
Bias(¥,,) = E(}‘/u,, -Y)=YE [—Eaex + §aze,§ +e,— aexey] BZE [ez aexez]
1
=Y [— —aE(e,) += azE(ef) +E(e,) — EaE(exey)] - BZ [E(ez) - EaE(exez)] (19)
Applying the definitions of Expectations in section 1 to (19), we have
_ 1., 1 _ 1
=Y [O + ga 6Cs +0— EaprxCny] - Bz [0 - Ea@pszxCZ]
I | 1 _
=Y <§a C; — EapyxCny) + E,BZaBpXZCXCZ
Therefore,

_ /71 1 1 _
Bias(¥,,) = Y0 (§ a’C? — EapyxCny> + EﬁZaprszCZ

Appendix 2. Proof to Theorem 2

The MSE (3,,) = E (¥, — Y)?, therefore, squaring both sides of (19), we have:

1 1 _ 1 2
G — 1?2 = —ae, + a it+e, —caee, | —pZ(e, —saee,
2 2 2

(-
[ (e - —aex) BZ(ez)]
e, — —aex) —2pBZe, (ey — %aex) + p?Z%e}

2 1 2 4 1 272,2
<e - 2.= aexey+4a ) —ZﬁYZ(eyez—Eaexez)+,BZ e;

'"<I
N

I
~l

2
E(Wyu,—-Y)2=Y? [E(eﬁ) - aE(exey) + %azE(e,?)]

—-2p8YZ [E(eyez) - %aE(exez)] + B?Z%E(e?)

MSE(J_’uv) = E()_/uv - 7)2
V2 2 1 2 2 2 V7 1 272 2
—7 [ecy — aBpy CiCy + 7 ecx] —2BYZ [epy,zcycz - Eoz@p,c,zcxcz] + B2726C2 (20)

To obtain the optimal value of a that minimizes the MSE (3,,,,), we differentiate (20) with respect to «, 8 and

equate to zero.
OMSE (Yup) 2
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OMSE (Y,,,,)
B

__/1 _

YZ (E abp,,C,C, — epyzcycz) +BZ2C20 =0

__/1 _
=277 <Ea9pszxCZ - epyzcycz) +2B7%C20 =0

_ _ 1
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2 ZC,
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Putting (21) into (22a), we have:
Y Cy, — BZp2,C, — Ypy,C _ _ _ _ _ _
- Pyabez”y BZ—CPXZ £ Pyz’y - BZCZ = YPnyszy - BZ p;%zcz - YPysz BZ szCz - ,BZCZ
— Z —
=YpyxprzCy — Yy Cy
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Z_pa%zcz - Z_Cz

B =

(22b)

Substituting the value of (21) and (22b) into Equation (20), gives on simplification using Maple 18, we have:
V2r2

MSE (Yy) = pz—il (p)zl,x + pJ%,Z + p)ZI,z - Zpy,xpx,zpy,z - 1); Pxz * £1; Pyx Py,z * 1 (23)

X,Z

We now, substitute the values of a and g from (21) and (22b) respectively, into (20) to obtain bias of y,,, as:

_ /71 1 1 _
Bias(y,,) = Y6 (§ a’C? — zapy,xCny) + EﬁZaprjox C,
1 Ycze 2
= _E(pgziil)z(pxzpyz - pyx) s Pxz F 1 (24)

Appendix 3. Proof to Theorems 3

By substituting the definitions for,y, x* and Z* in section 1 and 2 respectively, into (14), we have:

(1 - gex))? - X)]

Yoo = [(1+ )Y +B,(0 - 9627 — D) =P [“1 ()? + (1 - ge)X

_ _ —ge,X
= [Y +Ye, — ,BlgeZZ] exp |, (Lﬂ

2X —ge X
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| " \2 —ge,
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_ _ 1 1
= [Y+Yey —BlgezZ] exp|—-aigey (1—§gex

2 1

= [}_’ +Ye, - ﬁlgezZ_] exp [—%algex + ialgzef —§a1g3e,§ + ]
By first order approximation,
= [}_’ +Ye, - ﬁlgezZ_] exp [—%algex] (25)
Expanding the exponent in the expression (25) we have:
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1,1 3

L age) + -

T 1 1 2.2, 1
=[Y+Yey—ﬁlgezZ] l—galgex+§a1g 48“1‘9 ex ]

_ [ 1
=[Y+Yey Bige,Z ] 1——a1gex+§alzgzex]

1, _ 1 1
=Y [1 - algex + 8a1g ex] +7Ye, [1 —5mge + galzgze,%]
1
_ﬂlgezz [1 __algex +_a12g263]
1 1
—Y+Y[ algex+8a1g ]+Y[ey algexey+8a1g exey]

1
—mZbQ %g@%+8mg%%]

1 1
ytu -Y=v [_Ealgex — €y — Ealgexey +§a12gze£]
_ 1
_ﬂlz geéz _Ealgzexez] (26)

Taking expectation on both sides of (26) and subsequent application of the definitions in section 1 gives us the
bias.

Bias(ytv) = E(}_/tv - Y)

- [——aigE(ex) +E(ey) ——algE(exey) +o alng(e,%)] Bz [gE(ez) - St gPE(ese,)
_ 1

= Y[ algepyxC Cy +8angGC2] BiZ [0——alg 0055 Cx C]
_ 1 1 1

=7 |- 50190, C.Cy + 5atg?0CE | + AiZ |5 019700000

Therefore,

_r1 1 1l
Bias(Fu) = ¥ [ a2970C% — 5 01000, CCy | + BiZ |5 016700 C.C |
Appendix 4. Proof to Theorem 4

In order to obtain the MSE of y,,,, we square both sides of Equation (26) and take expectations.

2

= V)2 vV 1 1 1 22,2 7 1 2

(th - Y) = {Y <_§algex + ey - Ealgexey + galg ex) _:812 <gez - Ealg exez)}
(1 _ 2

= [Y (_Ealgex + ey) - .BZ(gez)]
V2 1 ’ V7 1 272 2,2

=Y (—Ealgex + ey) —2p,YZge, (—Ealgex + ey> + p°Zg%e

V2 1 22,2 1 2 V7 1 2
=Y [Zalg e —2 <§> a;gexey, + ey] —-2pYZ [—Ealg e.e, + geyez]
+ B2Z2g%e? (27)

Taking expectations on both sides of (27) and substituting the definition of section 1, we have:

_ .1 __7 1
EGo =70 = 7?70t g?E(ed) — argB(ecey) + E(ed)| = 2 BVZ| -5 cng?Eeve) + gE(eyer)
HBZ G (eD)
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=721229C2— 0p,,C,.C, +0C2) —2BYZ (g0 CC—1 20p,,C,C 272g%0C?
4alg x gpyxxy+ y ﬁ gpyzyz Zalg Pxzlxlz +ﬁ g z

Therefore,

_ _ 512 52 (1
MSE(5e) = E(p — 7)* = 72 (3a?g?0C% — a190p,xCCy + 6CF )

_ 1 _
-2 .81YZ <gepyszCz - Ealgzgpxzcxcz) + 31222929622 (28)

To obtain the value of a4, 8, that minimizes the MSE, we differentiate Equation (28) partially with respect to
a4, B; and equate to zero:

OMSE (¥ 9 (5, (1
Vev) _ —{YZ (Z a?g?ec2 — 196y, CCy + HCf)

Jda, "~ day
(1 2 272 2 2
—2p,YZ <Ealg prszCz _ggpyzcycz) +ﬁlz ) GCZ} =0
72216! 20C% — g0p,C,C +2,817le9 C,C,)=0
-4_ 19 x g pyx x“y 1 Zg PxzCxlz

_. /1 __
72 (30170C2 = 90pyuCiCy ) + F1TZg%0pCuC, = 0

1 Y C, — B1Zg%p,,C
S, = 9PyxCy Yﬁl 9°PxzCs
_ 2(ngyxcy - ﬁlZ_gszzCz)
! Yg2C,
Therefore,

_ Z(YPyny - ﬁlZ_gpszz) (29a)
YgC,

ay

OMSE (J,) - 1 )
g = 2V (00, C — 5 010%00,C,C.08) + 2 uZ27CE = O
1

__( 1 _
~VZ (=5 019700 CC, + 90pyCyC,) — F177g70CE = 0
Solving for @, again we have

— Z(przcy + .Blz_gcz) (29b)
Y 9Pz Cx

(451

Equating 29a) to (29b) and solving for S; we have

_ ch(pyxpxz - pyz) (30)
T ZgC(pk - 1)

Substituting (27) into (26a) and simplifying we have

2C -
= y(pyxpzxz_ pyz) (31D
9C (3. — 1)

We finally substitute the expressions for a; and g; in (31) and (30) above into (28) and simplify using maple to
obtain the MSE (y,,,) as:

720C2(p3, + p2, + ply — 2 ~1
MSE,) = 1 0GPz + P pzpy_x : PyxPxzPyz — 1)
XZ
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Therefore,
MSE(ytv) = YZQCJ% (p)%z - 1)_1(p3212 + p)%z + Pﬁx - zpyxpxzpyz - 1) (32)
Where, pyy, Pyz, Pxz * 1

Recall from (15) that:

_r1 1 _1
Bias(F) = ¥ [ 02070CF — 501900y C.Cy | + BiZ |5 016700 C.C |

Substituting (31) and (30) into the above expression gives on simplification (using Maple),

o 1 7C§9 2
Blas(ytv) = E (p (pxzpyz - pyx) ; Pxz 1 (33)

)%z - 1)2
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