

Asian Journal of Probability and Statistics

15(4): 307-314, 2021; Article no.AJPAS.81111 *ISSN: 2582-0230*

Fixed Point Results for Rational Type Contraction in A-Metric Spaces

Babita Pandey a*, Manoj Ughade ^b and Amit Kumar Pandey ^a

^aDepartment of Engineering Mathematics and Research Center, Sarvepalli Radhakrishanan University, Bhopal 462026, India.

^bDepartment of Post Graduate Studies and Research in Mathematics, Jaywanti Haksar Government Post Graduate College, College of Chhindawara University Betul, 460001, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2021/v15i430381 *Editor(s):* (1) Dr. Manuel Alberto M. Ferreira, Lisbon University, Portugal. *Reviewers:* (1) Nathier A. Ibrahim, Al – Turath University College, Iraq. (2) Aliyu Bhar Kisabo, Center For Space Transport and Propulsion, Nigeria. Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/81111

Original Research Article

Received 09 October 2021 Accepted 19 December 2021 Published 21 December 2021

Abstract

The goal of this paper is to define rational contraction in the context of A-metric spaces and to develop various fixed-point theorems in order to elaborate, generalize, and synthesize several previously published results. Finally, to illustrate the new theorem, an example is given.

__

Keywords: A-metric space; rational contraction; fixed point.

MSC: Primary 47H10; secondary 54H25

1 Introduction

In science and mathematics, fixed point theory is very important. Due to its wide range of applications in domains such as nonlinear analysis, topology, and engineering challenges, this field has drawn a lot of interest

__

^{}Corresponding author: Email: babita.pandey829@gmail.com;*

from academics in the last two decades. The Banach fixed-point theorem [1] is a key tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, as well as a constructive method for finding them. Bakhtin [2] proposed the concept of a b-metric space as a generalization of metric spaces in 1989, and numerous scholars used it to fixed point theory. Many b-metric space discoveries were expanded by Czerwik [3-5] in 1993. An S-metric space was introduced by Sedghi et al. [5]. The S-metric space is a space with three dimensions. S_b -metric space was introduced by Souayah et al. [6], and several fixed point theorems were developed. The concept of A-metric space was established by Abbas et al. [7], which is a generalisation of the S-metric space.

Das and Gupta [8,9] derived the first fixed point theorem for rational contractive type conditions.

Theorem 1.1 (see [6]. Let (Y, d) be a complete metric space, and let $T: Y \to Y$ be a self-mapping. If there exist $\alpha, \beta \in [0, 1)$ with $\alpha + \beta < 1$ such that

$$
d(\mathcal{T}\eta, \mathcal{T}\mu) \le \alpha d(\eta, \mu) + \beta \frac{[1 + d(\eta, \mathcal{T}\eta)]d(\mu, \mathcal{T}\mu)}{1 + d(\eta, \mu)}
$$
(1.1)

for all $\eta, \mu \in Y$, then T has a unique fixed point $\eta^* \in Y$.

The purpose of this article is to define Dass and Gupta's rational contraction in the context of A -metric spaces and establish some fixed-point theorems to elaborate, generalize and synthesize several known results in the literature. Finally, the example is presented to support the new theorem proved.

2 Preliminaries

In this part, some useful notions and facts will be given.

In this part, some useful notions and facts will be given. In 2015, Abbas et al. [1] introduced the notion of A metric space.

Definition 2.1 (see [1]) Let Y be a nonempty set. A mapping $A: Y^n \to [0, +\infty)$ is called an A-metric on Y if and only if for all σ_i , $a \in Y$, $i = 1,2,3, \ldots n$: the following conditions hold:

(A1). , σ_2 , σ_3 , ..., σ_{n-1} , σ_n) (A2). $\sigma_2, \sigma_3, \ldots, \sigma_{n-1}, \sigma_n$ = 0 if and only if $(A3)$. $(\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_{n-1}, \sigma_n) \leq A(\sigma_1, \sigma_1, \sigma_1, \ldots, (\sigma_1)_{n-1},$, $\sigma_2, \sigma_2, ..., (\sigma_n)_{n-1}$ $(\sigma_3, \sigma_3, ..., (\sigma_3)_{n-1},$, $\sigma_{n-1}, \sigma_{n-1}, \ldots, (\sigma_{n-1})_{n-1}$ $)_{n-1}$

The pair (Y, A) is called an A-metric space.

The following is the intuitive geometric example for A-metric spaces.

Example 2.2 (see [1]) Let $Y = [1, +\infty)$. Define $A: Y^n \to [0, +\infty)$ by

$$
A(\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_{n-1}, \sigma_n) = \sum_{i=1}^n \sum_{i < j} |\sigma_i - \sigma_j|
$$

for all $\sigma_i \in Y$, $i = 1, 2, \dots n$.

Example 2.3 (see [1]) Let $Y = \mathbb{R}$. Define $A: Y^n \to [0, +\infty)$ by

 $\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_{n-1}, \sigma_n) = |\sum_{i=n}^2 \sigma_i - (n-1)\sigma_1|$

$$
+ |\sum_{i=n}^{3} \sigma_i - (n-2)\sigma_2| + \cdots
$$

+
$$
|\sum_{i=n}^{n-3} \sigma_i - 3\sigma_{n-3}|
$$

+
$$
|\sum_{i=n}^{n-2} \sigma_i - 2\sigma_{n-2}|
$$

+
$$
|\sigma_n - \sigma_{n-1}|
$$

for all $\sigma_i \in Y$, $i = 1, 2, \dots n$.

Lemma 2.4 (see [1]) Let (Y, A) be an A-metric space. Then for all σ , $c \in Y$.

$$
A(\sigma, \sigma, \sigma, \sigma, \dots, (\sigma)_{n-1}, \varsigma) = A(\varsigma, \varsigma, \varsigma, \varsigma, \dots, (\varsigma)_{n-1}, \sigma)
$$

Lemma 2.5 (see [1]) Let (Y, A) be an A-metric space. Then for all $\sigma, \varsigma, \xi \in Y$,

$$
A(\sigma, \sigma, \sigma, \sigma, \dots, (\sigma)_{n-1}, \xi) \le (n-1)A(\sigma, \sigma, \sigma, \sigma, \dots, (\sigma)_{n-1}, \zeta) +A(\xi, \xi, \xi, \dots, (\xi)_{n-1}, \zeta)
$$

and

$$
A(\sigma, \sigma, \sigma, \sigma, ..., (\sigma)_{n-1}, \xi) \le (n-1)A(\sigma, \sigma, \sigma, \sigma, ..., (\sigma)_{n-1}, \zeta) + A(\zeta, \zeta, \zeta, \zeta, ..., (\zeta)_{n-1}, \xi)
$$

Lemma 2.6 (see [1]) Let (Y, A) be an A-metric space. Then $(Y \times Y, D_A)$ is an A-metric space on $Y \times Y$, where D_A is given by for all σ_i ,

$$
D_A((\sigma_1, \zeta_1), (\sigma_2, \zeta_2), (\sigma_3, \zeta_3), ..., (\sigma_n, \zeta_n))
$$

= $A(\sigma_1, \sigma_2, \sigma_3, ..., \sigma_n) + A(\zeta_1, \zeta_2, \zeta_3, ..., \zeta_n).$

Definition 2.7 (see [1]) Let (Y, A) be an A-metric space. Then

1. A sequence $\{\sigma_k\}$ is called convergent to σ in (Y, A) if

 $\lim_{k\to+\infty} A(\sigma_k, \sigma_k, \sigma_k, \sigma_k, \ldots (\sigma_k)_{n-1}, \sigma) = 0.$

That is, for each $\epsilon \geq 0$, there exists $n_0 \in \square$ such that for all $k \geq n_0$, we have

 $)_{n-1}$

and we write $\lim_{k \to +\infty} \sigma_k = \sigma$.

2. A sequence $\{\sigma_k\}$ is called Cauchy in (Y, A) if

$$
\lim_{k,m\to+\infty} A(\sigma_k,\sigma_k,\sigma_k,\sigma_k,..(\sigma_k)_{n-1},\sigma_m)=0.
$$

That is, for each $\epsilon \geq 0$, there exists $n_0 \in \mathbb{N}$ such that for all $k, m \geq n_0$, we have

$$
A(\sigma_k, \sigma_k, \sigma_k, \sigma_k, \dots (\sigma_k)_{n-1}, \sigma_m) \le \epsilon.
$$

3. (Y, A) is said to be complete if every Cauchy sequence in (Y, A) is a convergent.

Lemma 2.8 (see [1]) Let (Y, A) be an A-metric space. If the sequence $\{\sigma_k\}$ in Y converges to σ , then σ is unique.

Lemma 2.9 (see [1]) Every convergent sequence in A -metric space (Y, A) is a Cauchy sequence.

Lemma 2.10 (see [1]) Let (Y, A) be an A-metric space. Then for all $\sigma, \varsigma \in Y$,

 $A(\sigma, \sigma, \sigma, \ldots, \sigma, \varsigma) = A(\varsigma, \varsigma, \varsigma, \ldots, \varsigma, \sigma)$

Lemma 2.11 (see [1]) Let (Y, A) be an A-metric space. Then for all $\sigma, \varsigma, \xi \in Y$,

Pandey et al.; AJPAS, 15(4): 307-314, 2021; Article no.AJPAS.81111

$$
A(\sigma, \sigma, \sigma, \dots, \sigma, \xi) \le (n-1)A(\sigma, \sigma, \sigma, \dots, \sigma, \zeta) + A(\xi, \xi, \xi, \dots, \xi, \zeta)
$$

and

$$
A(\sigma, \sigma, \sigma, \dots, \sigma, \xi) \le (n-1)A(\sigma, \sigma, \sigma, \dots, \sigma, \zeta) + A(\zeta, \zeta, \zeta, \dots, \zeta, \xi)
$$

Definition 2.12 (see [1]) The A-metric space (Y, A) is said to be bounded if there exists a constant $r > 0$ such that $A_h(\sigma, \sigma, \sigma, \ldots, \sigma, \varsigma) \leq r$ for all $\sigma, \varsigma \in Y$. Otherwise, Y is unbounded.

Definition 2.13 (see [1]) Given a point σ_0 in A-metric space (Y, A) and a positive real number r, the set

$$
B(\sigma_0, r) = \{ \varsigma \in Y : A(\varsigma, \varsigma, \varsigma, \dots, \varsigma, \sigma_0) < r \}
$$

is called an open ball centered at σ_0 with radius r.

The set

$$
\overline{B(\sigma_0,r)} = \{ \varsigma \in Y : A(\varsigma, \varsigma, \varsigma, \ldots, \varsigma, \sigma_0) \leq r \}
$$

is called a closed ball centered at σ_0 with radius r.

Definition 2.14 (see [1]) A subset G in A-metric space (Y, A) is said to be an open set if for each $\sigma \in G$ there exists an $r > 0$ such that $B(\sigma, r) \subset G$. A subset $F \subset Y$ is called closed if $Y \setminus F$ is open.

Definition 2.15 (see [1]) Let (Y, A) be an A-metric spacewith $s \ge 1$. A map $f: Y \to Y$ is said to be contraction if there exits a constant $\lambda \in [0,1)$ such that

$$
A(f\sigma_1, f\sigma_2, f\sigma_3, \dots, f\sigma_n) \le \lambda A(\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_n)
$$

for all σ_1 , σ_2 , σ_3 , ..., $\sigma_n \in Y$. In case

$$
A(f\sigma_1, f\sigma_2, f\sigma_3, \dots, f\sigma_n) < A(\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_n)
$$

for all $\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_n \in Y$, $\sigma_i \neq \sigma_j$ for some $i \neq j$, $i, j \in \{1, 2, \dots, n\}$, f is called contractive mapping.

3 Main Results

We define rational contraction in A -metric space in this section, and then prove a fixed-point theorem.

Definition 3.1 Assume that (Y, A) be an A-metric space. A self mapping T on Y is said to be Dass and Gupta's rational contraction, if there exit $\lambda_1, \lambda_2 \in [0, 1)$ with $\lambda_1 + \lambda_2 < 1$ such that

$$
A(T\eta, T\eta, ..., T\eta, T\mu) \le \lambda_1 \frac{[1 + A(\eta, \eta, ..., \eta, T\eta)]A(\mu, \mu, ..., \mu, T\mu)}{1 + A(\eta, \eta, ..., \eta, \mu)} + \lambda_2 A(\eta, \eta, ..., \eta, \mu)
$$
(3.1)

for all $\eta, \mu \in Y$.

Theorem 3.1 Let (Y, A) be a complete A-metric space and let $T: Y \rightarrow Y$ be a Dass and Gupta's rational contraction, then T has a unique fixed point $\eta^* \in Y$. Moreover, for any $\eta_0 \in Y$, the sequence $\{\eta_k\} \subset Y$ defined by

$$
\eta_{k+1} = T\eta_k, k \in N,\tag{3.2}
$$

is convergent to η^* .

Proof. First, we observe that T has at least one most one fixed point. In fact, $u, v \in Y$ are two fixed points of T with $u \neq v, i, e$.

 $A(u, u, u, ..., v) > 0$, $Tu = u$, $Tv = v$.

As $T: Y \rightarrow Y$ is a Dass and Gupta's contraction, so

$$
A(u, u, ..., u, v) = A(Tu, Tu, ..., Tu, Tv)
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(u, u, ..., u, Tu)]A(v, v, ..., v, Tv)}{[1 + A(u, u, ..., u, v)]} + \lambda_2 A(u, u, ..., u, v)
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(u, u, ..., u, u)]A(v, v, ..., v, v)}{[1 + A(u, u, ..., u, v)]} + \lambda_2 A(u, u, ..., u, v)
$$

\n
$$
< \lambda_2 A(u, u, ..., u, v)
$$

which is a contradiction

Let $\eta_0 \in Y$ be an arbitrary element and construct a sequence $\{\eta_k\}$ by the rule (3.2). As $T: Y \to Y$ is a Dass and Gupta's contraction, so

$$
A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) = A(T\eta_{k-1}, T\eta_{k-1}, ..., T\eta_{k-1}, T\eta_k)
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, T\eta_{k-1})]A(\eta_k, \eta_k, ..., \eta_k, T\eta_k)}{1 + A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k)} + \lambda_2 A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k)
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k)]A_b(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1})}{1 + A_b(\eta_{k-1}, \eta_{k-1}, ..., \eta_k, \eta_{k+1})} + \lambda_2 A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k)
$$

\n
$$
= \lambda_1 A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) + \lambda_2 A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k)
$$

which further yields that

$$
A(\eta_k, \eta_k, \dots, \eta_k, \eta_{k+1}) \le \frac{\lambda_2}{1 - \lambda_1} A(\eta_{k-1}, \eta_{k-1}, \dots, \eta_{k-1}, \eta_k)
$$
\n(3.3)

Similarly,

$$
A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k) = A(T\eta_{k-2}, T\eta_{k-2}, ..., T\eta_{k-2}, T\eta_{k-1})
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(\eta_{k-2}, \eta_{k-2}, ..., \eta_{k-2}, T\eta_{k-2})]A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, T\eta_{k-1})}{1 + A(\eta_{k-2}, \eta_{k-2}, ..., \eta_{k-2}, \eta_{k-1})} + \lambda_2 A(\eta_{k-2}, \eta_{k-2}, ..., \eta_{k-2}, \eta_{k-1})
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(\eta_{k-2}, \eta_{k-2}, ..., \eta_{k-2}, \eta_{k-1})]A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k)}{1 + A(\eta_{k-2}, \eta_{k-2}, ..., \eta_{k-2}, \eta_{k-1})} + \lambda_2 A(\eta_{k-2}, \eta_{k-2}, ..., \eta_{k-2}, \eta_{k-1})
$$

\n
$$
= \lambda_1 A(\eta_{k-1}, \eta_{k-1}, ..., \eta_{k-1}, \eta_k) + \lambda_2 A(\eta_{k-2}, \eta_{k-2}, ..., \eta_{k-2}, \eta_{k-1})
$$

The last inequality gives

$$
A(\eta_{k-1}, \eta_{k-1}, \dots, \eta_{k-1}, \eta_k) \le \frac{\lambda_2}{1 - \lambda_1} A(\eta_{k-2}, \eta_{k-2}, \dots, \eta_{k-2}, \eta_{k-1})
$$
\n(3.4)

Let $\lambda = \frac{\lambda}{\lambda}$ $\frac{n_2}{1-n_1}$. Then from (3.3) and (3.4) and continuing the process, we get

$$
A(\eta_{k-1}, \eta_{k-1}, \dots, \eta_{k-1}, \eta_k) \le \lambda^k A(\eta_0, \eta_0, \dots, \eta_0, \eta_1), k \in \square
$$
\n(3.5)

For $m, k \in \mathbb{N}$ with $m > k$, we have by repeated use of (A3)

$$
A(\eta_k, \eta_k, ..., \eta_k, \eta_m) \le (n - 1)A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) + A(\eta_m, \eta_m, ..., \eta_m, \eta_{k+1})
$$

\n
$$
\le (n - 1)A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) + A(\eta_{k+1}, \eta_{k+1}, ..., \eta_k, \eta_m)
$$

\n
$$
\le (n - 1)A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) + (n - 1)A(\eta_{k+1}, \eta_{k+1}, ..., \eta_{k+1}, \eta_{k+2})
$$

\n
$$
+ A(\eta_m, \eta_m, ..., \eta_m, \eta_{k+2})
$$

\n
$$
\le (n - 1)A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) + (n - 1)A(\eta_{k+1}, \eta_{k+1}, ..., \eta_{k+1}, \eta_{k+2})
$$

\n
$$
+ A(\eta_{k+2}, \eta_{k+2}, ..., \eta_{k+2}, \delta \eta_m)
$$

\n
$$
\le (n - 1)A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) + (n - 1)A(\eta_{k+1}, \eta_{k+1}, ..., \eta_{k+1}, \eta_{k+2})
$$

\n
$$
+ (n - 1)A(\eta_{k+2}, \eta_{k+2}, ..., \eta_{k+2}, \eta_{k+3}) + A(\eta_m, \eta_m, ..., \eta_m, \eta_{k+3})
$$

\n
$$
\le (n - 1)A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1}) + (n - 1)A(\eta_{k+1}, \eta_{k+1}, ..., \eta_{k+1}, \eta_{k+2})
$$

\n
$$
+ (n - 1)A(\eta_{k+2}, \eta_{k+2}, ..., \eta_{k+2}, \eta_{k+3})
$$

+
$$
(n-1)A(\eta_{k+3}, \eta_{k+3}, ..., \eta_{k+3}, \eta_{k+4}) + \cdots
$$

+ $(n-1)A(\eta_{m-2}, \eta_{m-2}, ..., \eta_{m-2}, \eta_{m-1})$
+ $A(\eta_{m-1}, \eta_{m-1}, ..., \eta_{m-1}, \eta_m)$
 $\leq (n-1)[\lambda^k + \lambda^{k+1} + \cdots + \lambda^{m-2}]A(\eta_0, \eta_0, ..., \eta_0, \eta_1)$
+ $\lambda^{m-1}A(\eta_0, \eta_0, ..., \eta_0, \eta_1)$
= $(n-1)\lambda^k[1 + \lambda + \lambda^2 + \cdots + \lambda^{m-k-2}]A(\eta_0, \eta_0, ..., \eta_0, \eta_1)$
+ $\lambda^{m-k-1}A(\eta_0, \eta_0, ..., \eta_0, \eta_1)$
 $\leq (n-1)\lambda^k[1 + \lambda + \lambda^2 + \lambda^3 + \cdots]A(\eta_0, \eta_0, ..., \eta_0, \eta_1)$
 $\leq (n-1)\frac{\lambda^k}{1-\lambda}A(\eta_0, \eta_0, ..., \eta_0, \eta_1)$ (3.6)

Since $\lambda < 1, \lambda \in [0, 1)$. By taking limit as $k, m \to +\infty$ in above inequality, we get

 $\lim_{k \to \infty} A(\eta_k, \eta_k, \ldots, \eta_k, \eta_m) = 0.$

for all $m > k$. Therefore, $\{\eta_k\}$ is a Cauchy sequence in Y. But Y being complete, then there exists $u \in Y$ such that $\eta_k \to u$. We shall that u is a fixed point of T. We declare contradiction that $A(u, u, ..., u, Tu) > 0$. By (3.1), we have

$$
A(\eta_{k+1}, \eta_{k+1}, ..., \eta_{k+1}, Tu) = A(T\eta_k, T\eta_k, ..., T\eta_k, Tu)
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(\eta_k, \eta_k, ..., \eta_k, T\eta_k)]A(u, u, ..., u, Tu)}{1 + A(\eta_k, \eta_k, ..., \eta_k, u)} + \lambda_2 A(\eta_k, \eta_k, ..., \eta_k, u)
$$

\n
$$
\leq \lambda_1 \frac{[1 + A(\eta_k, \eta_k, ..., \eta_k, \eta_{k+1})]A(u, u, ..., u, Tu)}{1 + A(\eta_k, \eta_k, ..., \eta_k, u)} + \lambda_2 A(\eta_k, \eta_k, ..., \eta_k, u)
$$

Taking $k \to \infty$ in the above inequlity, we get

$$
A(u, u, ..., u, Tu) \leq \lambda_1 A(u, u, ..., u, Tu) < A(u, u, ..., u, Tu)
$$

This is contradiction. Hence, we have $A(u, u, ..., u, Tu) = 0$, *i.e.* $Tu = u$. Therefore it concludes that $u \in Y$ is the unique fixed point of T .

The following Corollary is the A-metric version of Banach's contraction principle.

Corollary 3.1 Let (Y, A) be a complete A-metric space and let $T: Y \rightarrow Y$ be a mapping such that

$$
A(T\eta, T\eta, ..., T\eta, T\mu) \le \lambda A(\eta, \eta, ..., \eta, \mu)
$$
\n
$$
(3.7)
$$

for all $\eta, \mu \in Y$, where $\lambda < 1$ Then, T has a unique fixed point $u \in Y$. Moreover, for any $\eta_0 \in Y$, the sequence $\{\eta_k\} \subset Y$ defined by

$$
\eta_{k+1} = T\eta_k, k \in \mathbb{N},
$$

is convergent to u .

Proof. It follows by $\lambda_1 = 0$ and $\lambda_2 = \lambda$ in Theorem 3.1.

Corollary 3.2 Let (Y, A) be a complete A-metric space and let $T: Y \rightarrow Y$ be a mapping such that

$$
A(T\eta, T\eta, \dots, T\eta, T\mu) \le \lambda \frac{\left[1 + A(\eta, \eta, \dots, \eta, T\eta)\right] A(\mu, \mu, \dots, \mu, T\mu)}{1 + A(\eta, \eta, \dots, \eta, \mu)}\tag{3.8}
$$

for all $\eta, \mu \in Y$, where $\lambda < 1$ Then, T has a unique fixed point $u \in Y$. Moreover, for any $\eta_0 \in Y$, the sequence $\{\eta_k\} \subset Y$ defined by

$$
\eta_{k+1} = T\eta_k, k \in \mathbb{N},
$$

is convergent to u .

Proof. Taking $\lambda_1 = \lambda$, $\lambda_2 = 0$ in Theorem 3.1, we obtain the desired result.

We conclude with an example.

Example 3.1 Let = [0,1]. Define $A: Y^n \to [0, +\infty)$ by

$$
A_b(\eta_1, \eta_2, \eta_3, \dots, \eta_{n-1}, \eta_n) = \sum_{i=1}^n \sum_{i < j} |\eta_i - \eta_j|
$$

for all $\eta_i \in Y$, $i = 1, 2, \dots, n$. Therefore, (Y, A) is an A-metric space. Let us define $T: Y \to Y$ as $T\eta = \frac{\eta}{2}$ $\frac{7}{3}$ for all $\eta \in Y$. Then, for every $\eta, \mu \in Y$, the condition (3.1) holds for $\lambda_1 = \frac{1}{f}$ $\frac{1}{4}$, $\lambda_2 = \frac{1}{9}$ $\frac{1}{9}$. Thus, T fulfill all assumptions of Theorem 3.1. Therefore T has a unique fixed point $0 \in Y$.

4. Conclusion

To elaborate, generalize, and combine various previously published results, we first defined rational contraction in the setting of A-metric spaces and constructed a fixed-point theorem for Dass and Gupta rational contraction. Finally, an example is given to explain the new theorem.

Acknowledgements

The authors are thankful to the editor and anonymous referees for their valuable comments and suggestions.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Banach S, Sur les operations dans les ensembles abstrait et leur application aux equations, integrals. Fundam. Math. 1922;3:133-181.
- [2] Bakhtin IA. The contraction mapping principle in almost metric spaces. Funct. Anal., Gos. Ped. Inst. Unianowsk. 1989;30:26-37.
- [3] Czerwik S. Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis. 1993;1:5–11.
- [4] Czerwik S. Nonlinear Set-Valued Contraction Mappings in b-Metric Spaces. Atti del Seminario Matematicoe Fisico (*Dell'Univ. di Modena*). 1998;46:263-276.
- [5] Sedghi S, Shobe N, Aliouche A. A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik. 2012;64:258 -266.
- [6] Souayah N, Mlaiki N. A fixed point theorem in S_b -metric spaces, J. Math. Computer Sci. 2016;16:131-139.
- [7] Abbas M, Ali B, Suleiman Y I. Generalized coupled common fixed-point results in partially ordered *A*metric spaces, Fixed Point Theory and Applications. 2015;64.
- [8] Dass BK, Gupta S: An extension of Banach contraction principle through rational expressions. Indian J. Pure Appl. Math. 1975;6:1455–1458.
- [9] Ughade M, Turkoglu D, Singh SR, Daheriya RD. Some Fixed Point Theorems in A_b -Metric Space, British Journal of Mathematics & Computer Science. 2016;19(6):1-24. Article no. BJMCS_29828.

__ *© 2021 Pandey et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) https://www.sdiarticle5.com/review-history/81111