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Abstract

Negative velocity controller (NVC) is used to reduce the vibration of a two degree of freedom nonlinear
system subjected to parametric excitation forces. The vibrating motion of the system described by two
coupled differential equation, the worst resonance case of the system near the sub-harmonic resonance

(o= 2602 ). The method of multiple scales perturbation technique (MSPT) is applied to obtain the
periodic response equation near the selected resonance case. Study the controls on the worst resonance
case numerically. The stability of the obtained numerical solution is investigated using both phase plane

methods and frequency response equations. Effects of different parameters on the system behavior are
studied numerically.
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1 Introduction

The vibration and dynamical chaos are sometimes undesired phenomenon such that the dynamical response
of mechanical and civil structures subject to high amplitude vibration is often disturbance, discomfort,
damage, dangerous and destruction of the system or the structure, so the vibration in such systems are
needed to be controlled to minimize or eliminate the hazard of damage or destruction . The nonlinear
dynamics of two degree of freedom vibration system including quadratic and cubic nonlinearities subjected
to external and parametric excitation forces is investigated by Sayed et al. [1,2].

Kamel et al. [3] discussed the system ultrasonic machining using passive control to reduce the vibration in
the tool holder and have reasonable amplitude for the tools which it is interest for the machining of non-
conductive, brittle materials such as engineering ceramics, a multi-tool technique. Rup-inder [4] and
Aspinwall [5] introduced a review for the fundamental principles of stationary ultrasonic machining, the
material removal mechanisms involved and the effect of parameters.

Amer [6] investigated the coupling of two nonlinear oscillators of the main system and absorber representing
ultrasonic cutting process subjected to parametric excitation forces, he obtained a threshold value of the
main system linear damping, where vibration can be reduced dramatically. Many nonlinear dynamical
systems using the passive vibration control to reduce the vibration are studied in Asfer [7], Eissa and
Abdelhafez [8], EL-Bassiouny [9,10] and Shitikova [11]. Eissa et al. [12-14], Amer and Bauomy [15], and
Jaensch [16] presented how the active control is effective in vibration reduction at the resonance at different
models of vibration. Eissa and EL-Ganaini [17,18] studied the control of both vibration and dynamics chaos
of mechanical system having quadratic and cubic nonlinearities, subjected to harmonic excitation using
multi-absorbers. Hamed [19] studied of an application of magnetorheological and semi-active control to
isolate the vibration of autoparametric system composed of a nonlinear oscillator with an attached pendulum.
Abdelhafez and Nassar [20] studied quantitative analysis on the nonlinear behavior of a forced and self-
excited beam coupled with a positive position feedback controller PPF. Such that the external excitation is a
harmonic motion on the support of the cantilever beam. Kecik and Borowiec [21] presented a numerical
study of an autoparametric system composed a pendulum and an excited nonlinear oscillator. Kecik and
Warminski [22] showed the chaotic motion in instability region, chaotic swings and chaotic motion
composed of swings and rotation of pendulum are discussed.

Hamed et al. [23-25] investigated the effects of an active vibration control on a nonlinear two-degree-of-
freedom system described by a nonlinear differential equations subjected to mixed excitation forces, the
stability of the systems is investigated with frequency response curves and phase-plane method. Yuejing
Zhao et al. [26] conducted the configuration and force analysis of vertical vibratory conveyor. The model of
system with considering the friction between the materials and the spiral conveying trough is developed. The
numerical simulations are done and the dynamical responses curves are studied.

Bayiroglu [27] studied the primary, Subharmonic, and superharmonic responses along with numerical
methods for vertical conveyors. The change in the parameters of motion, stability condition, and jump
phenomena has been shown graphically by mathematical software for comparing the results. Bayiroglu [28]
analyzed the nonlinear analysis of unbalanced mass of vertical conveyor with non-ideal DC motor. Sayed et
al. [29] obtained the analytical and numerical study to investigate the vibration and stability of the Van der
Pol equation subjected to external and parametric excitation forces via feedback control. El-Sayed and
Bauomy [30] used the two positive position feedback controllers (PPF) are used to reduce the vertical
vibration in the vertical conveyors. An investigation is presented of the response of a four degree-of-freedom
system (4-DOF) with cubic nonlinearities and external excitations at primary resonance. Hamed et al. [31]
investigated the nonlinear vibrations and stability of the MEMS gyroscope subjected to different types of
parametric excitations using the averaging method to obtain the frequency response equations for the case of
sub-harmonic resonance in the presence of 1:1 internal resonances, the stability of the system is investigated
with frequency response curves and phase-plane method.
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In this article we study effect of two different controls (linear and cubic) feedback on the system and ability
of both on absorber to control. The method of multiple time scales is perturbation and the technique is
applied to obtain the periodic response equation near the selected resonance case.

2 Mathematical Modeling

The system consists of parametric excited 2dof system of linear coupled oscillators (with identical mass) and
nonlinear energy sinks (NES) attached to it. By the term NES we mean a small mass (relative to the linear
oscillator mass) attached via essentially nonlinear spring and damping to the linear subsystem [32].
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Fig. 1. Mechanical model of the system

2.1 System with Linear control
V+@ly+ea(y—x)+ek,y +edy=¢cf,ycosaot—ev,y (1)
Y+woix+ew](x—y)=&f,xcosot —gv,x @)

where y, x are the displacements of the linear oscillators and nonlinear energy sink (NES), ) X derivatives
of y, X, €\ is the damping coefficient, ¢ fl (i=1, 2) are the amplitudes of excitation of each linear oscillator, €

. >k 2 . . .
is a small parameter, (@] = ., w;, = MZ ), are natural frequencies and @ is forcing frequency.

M

2.1.1 Mathematical analysis

Using the multiple time scale perturbation technique the analytical solutions of equations (1) and (2) are
given by:

x(To;Tl):XO(TO;T1)+8X1(TO;T1)+ ....... (3)
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y(T()’Tl):yO(T();]’vl)_i_gyl(TO;T’l)_i' ....... 4)

where 78 =t is fast time scale, which is associated with changes occurring at the frequencies, @, @, and @,
and T] = ¢t is the slow time scale, which is associated with modulations in the amplitudes and phases

resulting from the non-linearity’s and parametric resonance. In term of T(; and T1 the time derivatives

became
% =D, +eD, +....... (5)
d—2=D2+2gDD +&'D] + (6)
e A D, SR

0
where D, differential operators; D :E (n=0, 1). Substituting Equations (3) and (4) into Equations (1)

n
n

and (2) and equation the coefficients of same power of € in both sides, we obtain:

Order(&‘0 ):
2 2
(Dy +@y)y,=0 (7)
2 2
(Do + o, )xo =0 (®)
Order(&‘l ):

Vv

(D(f + (022 W =-2D,D\y, - a)12yo + wlzxo -k yg —AD,y, +gyo cos(at) —v,Dyy, ©

2 2 _ 2 2 fz
(Dy + @y)x, = =2D\D\x, — 0] x, + @} y, +7y0 cos(wr)—v,Dyy,  (10)
The general solution of Equations (7) and (8) can be expressed in the form:
iw,T|
yO(TO,Tl)ZAoe 0+ cc (11)
— iy Ty
xo(Ty, 1)) = Bye™ + cc (12)

where Ao and Bo are unknown function in T1 , which can be determined by imposing the solvability

condition at the next approximation order by eliminating the secular and small- divisor terms.
Substituting Equations (11) and (12) into Equations (9) and (10) we get:
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(Dz + a)zz)yl =(—2iw,D, Ao - a)leo + a)lzB =3k AOZZO —ia)2/1A0 —ia)zleo)eleT"
+(2la)2D A — @, A +601 3k A2 +la)2ﬂ.A +l(02V1A e~ ionTy

—kvAg€3ia)2TO —kvzge_Siszo +%(A0€i(w+w2)To +Ze(a)+a)2)To)

ﬁ —i(0-0)T, |, 4 _i(o-0,)T,
+E(Aoe 20+ A4e >0) (13)
(D} +2)x, =(2ix DB, — & B, + &f 4, —icov, B, +(2ie,D, B, — & B, + ) 4,

ticov,By)e ™ 4 Lo B,/ | B omitwret) Lo B @
i(0—,)T;
+B,e" )

After eliminating the secular terms, the general solution of equations (13), (14) is given by:

w1, T) = Aleiszo + ééia}zTo + gzei(wmzm +&, e tec (15)
x(T,,T) = Be™" + §4ei(w+w2)TO +&; e 1 cc (16)

where ( § ; »i=1...5)and 4, , B, are complex function in 7}, and cc is complex conjugate of the preceding

terms.
2.1.2 Stability analysis

After numerically studying the different resonance cases and deduce the worst ones, one of the worst
cases has been chosen to study the system stability. The selected resonance case is the Sub-harmonic case

(o= 2(02 ) In this case we introduce the detuning parameter O according to:

w=2w +0ol; (17)

where O is the detuning parameter .Also for stability investigation, the analysis is limited to the first
approximation . Substituting Eq. (17) into Equations (13) and (14) and eliminating the secular terms leads
to the solvability conditions

(—2ia, D, A, — 0} A, + 0 B, — 3k, A2 Ao —icr, A4, — za)leO+ Aoe“’T‘) 0 (8)

(_Zia)leBO - 0)1230 + C()IZAO +ia)2v2§0+ ];2 B e’”Tl) 0 (19)
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To analyze the solution of Equations (18) and (19), it is convenient to express 4, in the polar form as:

1

A1) = a (1) ™ 20)

Lo
By(T) = ay (1) " @n

where @, (i =1, 2), 9[ (i =1, 2) are unknown real-valued function .Inserting equation (20), (21) into
Equations (18), (19) and separating the real and imaginary parts we have the following:

2
¢ == (G+v)a +-a sin(y) +- 2 a, sin(y) 22)
2 4, 20,
2 2
, 10) 3k, 1)
Gia, = : a + a13 - U a, cos(y,) — 1 a, cos(y) (23)
20, 8w, , @,
a ——lv a +La sin( )—ia sin(y)
2 5 2% 4o, 2 7> 20, | Y (24)
2 2
, 1 ,
Ola =——a, —*2a, cos(y,) ———a, coS
pLs) 20, 2 4o, , €0s(7,) 20, 1 cos(y) (25)

where (6, =6, =y), (6T, -6, =y,) and (c1,-6,=y,).

For steady solutions ai' =0, ]/i' =0 and the periodic solution at the fixed points corresponding to
Equations (22)-(25) is given by:

1 o a, . fi .
—(A+v,)————2sin(y) =—"-sin(y,) (26)
2 20, g, 4,
2 2

B O AL S S /T @n

w, a, 20, o, 4o,
1 o a . )
—v, +———sin(y) = Lsm(?/z) (28)
2 W, a, 4(02

2 2

o o @ a 1
——+——————Lcos(y) =—"2cos(y,) (29)

2 20, 2w, a, 4w,



Amer and Agwa; ARJOM, 12(1): 1-21, 2019, Article no.ARJOM.45054

From Equations (26)-(29) we get the frequency response equation (FRE) is:

2 2 2 2 2 2
l(ﬂp+vl)— ] &sin(;/) —z+w—1—&ﬂcos(7) [ L =0 (30
2 2w, a 2 20, 2wv,a, 4o,

1 o’ a ’ o a ’ f ’
—v, +———Lsin(y) | + ————Lcos(y) = | =0

o, o
2 20, a, 2 20, 2w, a, 4o,

€L))

2.2 System with cubic control

In This subsection we study the second control using cubic negative velocity feedback the equations (1) and
(2) can by written as:

¥+ w;x+ew (x—y) =& f,xcoswt —ev,x’ (32)
V+aly+en’(y—x)+ek,y’ +ely=¢cfycoswt—evy’ (33)

where y, x are the displacements of the linear oscillators and nonlinear energy sink (NES), J X derivatives
of y, x, €\ is the damping coefficient, EE (i=1, 2) are the amplitudes of excitation of each linear oscillator, &

is a small parameter, (U, , @), are natural frequencies, (@is forcing frequency.

2.2.1 Mathematical analysis

Equations (32) and (33) can be solved analytically using multiple time scale perturbation technique as:
Order ( & ):

(D; +@3)y, =0 (38)
(D; + @)x, =0 (39)
1
Order (€ ):
(D02 + w22 v, =-2D,D,y, — wfyo + wfxo - kvyg —AD,y, + gyo cos(at) —v,(D,y, )3 (40)
(D2+a)2) =-2D.Dx, — o’ 2 é —v, (D 3
0 h )X = o Xg —@ Xy + @y, + 5 Yo cos(wt)—v,(D,y,) 41

The general solution of Equations (6), (7) can be expressed in the form

x,(T,,T)) = BoeiszO + cc (42)
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o, T,
BTy T) = 4™ +cc @
where A, and B are unknown function in 7} , which can be determined by imposing the solvability

condition at the next approximation order by eliminating the secular and small- divisor terms.

Substituting Equations (42), (43) into Equations (40), (41) we get:

(D} + @)y, = (“2iw,D, 4, - & A, + @] B, =3k, 4} Ao — i, A4, = 3icr'v, A” 4,)e "
+(2i@,D, A, — @} A, + @ B, — 3k, A2 +iw, A A, + i@, A, A7 )e "
+(—kvAg — iw;V1A3)63lw2To + (—kvAoe + l-a);vl Ag)—Sza)zTo
+£(Aoei(a)+a)z)To +A_Oe(a)+w2)To)+£(Aoe—i(w—a)2)TO +A_Oei(w_w2)ro)
2 2 (44)
(Doz + a)zz)xl =(-2iw,D\B, - 601230 + 6012/10 —iw,v,B, + 3ia)jsz()2B_o)e[“’2T°

+(2iw,D,B, — o B, + ® A, +iw,v,B,)e "

3iw, —3iw,T,

.3 3 T, - 3 3
—iw;v,Be +iw;v, e

+%(Boei((u+a)z)To + Boei((uﬂaz)To)_i_%(Boei(a)a)z)To + Boei(a)—a)z)TO) (45)

Eliminating the secular terms, the general solution of Equations (44) and (45) is given by:
(T, T)) = A" + e + £ 4 £ " 4 cc (46)
x,(T,,T)) = Be'" + £ 1 £ DT 457 e 4 cc (47)
where (é/[, i=1...5) andAl , B1 are complex function in 7}, and cc is complex  conjugate of the preceding

terms.

2.2.2 Stability analysis

After numerically studying the different resonance cases and deduce the worst ones, one of the worst
cases has been chosen to study the system stability. The selected resonance case is the Sub-harmonic case

(w= 2a)2 ) In this case we introduce the detuning parameter O according to:

= 2(()2 +O'T1 (48)

where O is the detuning parameter .Also for stability investigation, the analysis is limited to the first
approximation .

Substituting equations (48) into Equations (44), (45) and eliminating the secular terms leads to the
solvability conditions
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(—2i0,D, A, - 0] Ay + @] B, — 3k, 4] Ao —iw,AA-3iw’v, A7 Ao + gA_OeMTI )=0 (49)

(—2iw,D,B, — 0} B, + 0> 4, + 3iw}v, B B, + %B_Oei"r‘ )=0 (50)

To analyze the solution of Equations (18) and (19), it is convenient to express A4, in the polar form as:

1 ,
A,(T) = Eal(Tl)e’g‘(T‘) (51)
By(T) = 3ay(T)e™ (52)

where @, (i =1, 2), Ql(l =1, 2) is unknown real-valued function. Inserting Equations (51), (52) into
Equations (50), (49) and separating the real and imaginary parts we have the following:

3w; 5 A f . o :
a =—%*va ——a +—=1qa, sin +——q, sin (53)
1 g T4 4o, psin(y,) 20, , sin(y)
s 3k, 5 f !
0la, =——a, + —+a} ———a, cos(y,) - ——a, cos(y) (54)
2w, 8w, 4o, 2w,
307 5, f . o .
a; =—> V,a, — : a, sin(y,)— : a, sin(y) (55)
8 4, 2w,
2 2
' w .
0ra, = ——a, - J: a, cos(y,) = ———a, cos(y) (56)
2w, @, @,

where (6, —6, =y), (6T, -6, =y,) and (o1, -0, =72)'

For steady solutions ai’ = 0,]/; =0 and the periodic solution at the fixed points corresponding to
Equations (53)-(56) is given by:

1, 3w > a, . .
5 —?zvlaf—%jsm(y)=4%:)zsm(yl) (57)
o 3k
—i&cos(]/) _g +i g _S cos(7,) (58)
20, a 2 2o 8 4
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c o
-——+
2 2o,

2
v,a; + &ﬂsin(}/) = Lsin(yz)

2a2 2

2
_ O sy =2 cos(y,)
2w, a, 4o,

Form Equations (57)-(60) we get the corresponding frequency response equation (FRE) is:

2
RIOX

(59

(60)

2 2 2
1 3 2 ' 2 2 k
1,32 va; N &sm(;/) —&&COS(}/)—E-F&'FLGIQ | =0 (61)
2 2w, a, 20, q, 2 20, 8w, 4o,
, 2 5 5 2 2
w a, . (o} a, w da
v, +———Lsin(y) | +| ——+———-———Lcos(y) /

8

w, a, 2 20, 2w, a, 4o,

3 Results and Discussion

=0 (62

To study behavior of the main system numerically the (Rung-Kutta method) of the nonlinear system, given

by Equations (1) and (2) at basic without absorber, the Sub-harmonic resonance case (@ = 2(02 ) is

obtained as shown in Figs. (2)- (6). These solutions are obtained at selected values (@, = 0.1 ,® = 2®, ).

2 1
=
L] =
u 51—
2 o | 8o
= [+7]
E =
=
i . : -1
4] 500 1000 1500 2 2
Time Plant Amplitude
5 1
¥
= %‘ 0
20 o
= 2 1
E =
- 2
5 L L = L . L
] 500 1000 1500 -4 2 o 2 4
Time Absorber Amplitude
Fig. 2. Response of the system without absorber at basic case
1 06
= = 04 1
% ns 1 %
2 2 02 1
a g a
£ b= 1] fﬂﬁn\..
< @ yhiv
05 1 1 L L 0z L L L L
a 100 200 300 400 500 ] 100 200 300 400 500
Time Time

Fig. 3. Response of the system at basic with linear control

10
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Amplitudey)
(s

Amplitudelx)
U

1 1 _2 1 1
00 1000 1500 0 500 1000 1500
Time Time

Fig. 4. Response of the system at basic with cubic control

— 1
=
= =
E = o ]
5 =
=< -1
0 500 1000 1500 -2 2
Time
p— 2
= =
= R ]
= =
E =
< 5 2
a 500 1000 1500 -5 5
Time Absorber Amplitude
Fig. 5. Response of the system at worst case at basic without absorber (@ = 2a)2 )
1
= =
= = 05 1
& 05 1 [
E E
- | 3 ot
g O
2 Z
5 50 100 150 00 0% 50 100 150 200
Time Time
Fig. 6. Response of the system at Worst case at basic with linear control (@ = 20)2 )
2 2
= %
5 5
20 = 3
=5 o
= |
< - 4
) . . 2 , .
0 500 1000 1500 0 00 1000 1500
Time Time

Fig. 7. Response of the system at Worst case at basic with cubic control (W= 20)2 )
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Fig. (2) Show that study of amplitude on the main system in the basic case without absorber. Fig. (3) And (4)
Show that in each of them we study the amplitude in the system in the basic case. First, we study the effect
of linear control where the maximum stability is reached (zero), the second is the effect of cubic control
where the amplitude remains unstable (up to approximately 1.4). In comparison between the effect of linear
control and cubic control on the system it is clear that the use of linear control has better results than the use
of cubic control in controlling the intensity of vibration and dynamic chaos on the system. Fig. (§) Show that

study of amplitude on the main system in the worst case sub harmonic (@ = 2602) without absorber it is

also shown that these are the worst resonance cases such that the oscillations of the system and absorber
have multi-limit cycle and increasing dynamic chaos and this is the condition that must be controlled using
the control to fade the vibration and pressure damage. Fig. (6) And (7) Show vibration control in the system
is controlled to compare the effect of each of their ability to control the worst. First, we study the effect of
linear control where the maximum stability is reached (zero), the second is the effect of cubic control where
the amplitude remains unstable (up to approximately 1.7). In comparison between the effect of linear control
and cubic control on the system it is clear that the use of linear control has better results than the use of cubic
control in controlling the intensity of vibration and dynamic chaos on the system.

25 2 7
1.8 -
2 1.6
1.4 -
1.5 - 1.2 4
1 4
o 1 - oz -
0.6 |
0.5 - 0.4 -
0.2
L] 1 1]
o 0.5 1 1.5 0.2 € 0.5 1 15
A wl
2 - 2.5
1.5 - 2 1
1 4 15 -
1]
1 -
0.5 - ©
0.5 -
o T ,
q 0.2 0.4 0.6 0.8 o . .
-0.5 - o 0.5 1 15
w2 Kv
3 —_
2.5
2 -
1.5 +
L4 ] 1
0.5 -~
o T T !
o 1 2 3
fl

Fig. 8. Effect of parameter on amplitude of the system on the basic case

Fig.8 show effect of different parameter on the main system without absorber .can see amplitude increasing

as f, is increased .Also when decreasing the values @), , @), , k, and A are increasing as shown.

v

12
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4 Frequency and Force Response Curve

The frequency equation is represented graphically by using the numerical methods. The frequency response
equation is nonlinear algebraic equation, which are solved numerically by using Newton Raphson method

4.1 Frequency response curve from system with linear absorber

The frequency response equation (18) (19) is nonlinear algebraic equation, the results are shown in figures

(9, 10), for the steady state amplitudes @, and &, against parameter ¢

1.2 a 18 I_
1.6 186
1.4 14
a2=2
12 1z
a2—1.5
a
[ P a2=0.1
(13 o=
2=0.
06 0s
0.4 D4
0.z 02

13
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Fig. 9. Frequency response curves at the case, d; #0, 4, #0 amplitude ¢, against ¢

Fig. 9 show that the steady-state amplitude al increased as f , @ and @, increased. Also when decreasing

the values A , kv , V| and a are increasing, the frequency response curve is bend to up with increasing values

@ and W, also curve bend to down with decreasing values A and kv as shown in Fig. 10. The frequency

response curve values will stable when ), <0.3 and A<0.1.

(2]

0.5 [} 035 1 15 2 05 0 05 1 15 3

14
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c | d |
k1 5
wil=0.2
35 2=0.4 = = wl=0.3
4 . 5 wl=0.4
2=0.8
[#] @
- \ 2
2 2 wl=0.5
-1
1 \\ 1
2=1.3 J )
s -6 -4 -z i 2 4 o -1 0 1 z 3
(6] g
[e] [ f]
5 5
w2=0.1
4 \ 4
1 we-0.08, 3
[£3 a
2 2 k=15
2 2
w2=0.04 N
\ kv=1 {
1 i k=05
J . u-l\
4 2 o 2 4 [ -4 3 -2 -1 a 1 2
a (o]
3 | 5 |
4 4
3 3 v2=1
[£] /]
2 5 | = 5 v2=1.33 SN
=1 |
| v2=1.5
=08 wEhL \
1 1
a=05 \
-2 -1 0 1 : -1 i 1 2
G G

Fig. 10. Frequency response curves at the case, @, #0, d, #0 the amplitude @, against ¢
Fig. 10 shown that the steady-state amplitude al increased as kv,al, a, @), and V,increased. Also when
decreasing the values f2 and @, are increasing, the frequency response curve is bending to up with
increasing values V,, @, and (), as shown in fig. The frequency response curve values will stable when @,
>0.1.

4.2 Frequency response curve from system with cubic absorber

The frequency response equations (49), (50) is nonlinear algebraic equation, the results are shown in figures

(11, 12), for the steady state amplitudes &, and @, against parameters ¢
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Fig. 11. Frequency response curves at case, ¢, #0, &,#0 the amplitude @, against ¢
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Fig. 11 show that the steady-state amplitude &, increased as &, and @), increased. Also when decreasing the
values A, kv , f] and ol are increasing, the frequency response curve is bending to up left with increasing
values d, and @, also curve bend to down with decreasing values A, @), and kv as shown in Fig. 12. The

frequency response curve not affected by increasing or decreasing values f2 , V,and be stable when A<0.1.
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Fig. 12. Frequency response curves at the case, @, #0, d, #0 the amplitude @, against ¢
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Fig. 12 shown that the steady-state amplitude &, increased as &, kv , @, and @), increased. Also when

decreasing the values f2 is increasing, the frequency response curve is bending to up left with increasing

values @, and @), . The frequency response curve not affected by increasing or decreasing values f , A, ooand

be stable when kv <0.6.

5 Conclusions

Different controls (linear and cubic) feedback are applied on the 2dof system of linear coupled oscillators
and nonlinear energy sinks. The method of multiple time scales is perturbation and the technique is applied
to obtain the periodic response equation near the selected resonance case. Also both frequency response
equation and results based on the present investigation the above study the following conclusions:

The worst behavior of the main system occurs at sub-harmonic resonance (@ = 20)2) when the

absorbers aren’t effective.
The behavior of amplitude on the main system is more stable and control vibration is almost
nonexistent in linear control than cubic control.

The steady state amplitude of the main system is monotonic increasing function f , W and @, on
steady state amplitude &, against 6, monotonic increasing function kv ,a4,, a, @ and v2 on steady
state amplitude &, against ¢ on effect linear control.

The steady state amplitude of the main system is monotonic decreasing function ), and ), on
steady state amplitude @; against ¢, monotonic decreasing function f2 and @, on steady state
amplitude @, against o on effect linear control.

The steady state amplitude of the main system is monotonic increasing function &, and & on
steady state amplitude @, against ¢, monotonic increasing function kv , (W, and @, on steady state
amplitude &, against 6 on effect cubic control.

The steady state amplitude of the main system is monotonic decreasing function A, kv , fl and @),
on steady state amplitude &, against o, monotonic decreasing function f2 on steady state amplitude

@, against o on effect cubic control.
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APPENDIX
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