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Abstract

Recently the existence of random attractors for a stochastic reaction-diffusion equation without
distribution derivatives has been studied by many authors, the existence of global attractors
was established for the deterministic reaction-diffusion equation with distribution derivatives has
been studied by Sun et al. in [1, 2]. In this paper, we prove the existence of random attractors
for a stochastic reaction-diffusion equation with distribution derivatives and multiplicative noise
defined on unbounded domains. In order to obtain the asymptotic compactness of the random
dynamical system, we make use of a priori estimates for far-field values of solutions as well as
the cut-off technique.
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1 Introduction

In this paper, we investigate the asymptotic behavior of solution to the following stochastic reaction-
diffusion equation with distribution derivatives and multiplicative noise defined in the entire space
Rn :

du+ (αu−∆u)dt = (g(x, u) + f(x) +Djf
j)dt+ bu ◦ dW (t), (1.1)

with the initial value condition

u(x, 0) = u0(x) , x ∈ Rn, (1.2)

where −∆ is the Laplacian operator with respect to the variable x ∈ Rn, u = u(x, t) is a real function
of x ∈ Rn and t ≥ 0; α, b are proper positive constants; Dj = ∂

∂xj
is distribution derivatives; f j , f ∈

L2(Rn) (j=1,2,....,n); g is a nonlinear function satisfying certain conditions; W (t) is a two-sided
real-valued Wiener process on a probability space (Ω,F ,P), where Ω = {ω ∈ C(R,R) : ω(0) = 0},
F is the Borel σ -algebra induced by the compact-open topology of Ω, and P is the corresponding
Wiener measure on F ; ◦ denotes the Stratonovich sense in the stochastic term. We identify ω(t)
with W (t), i.e., W (t) = W (t, ω) = ω(t), t ∈ R, (see [3]).

It is well known that the asymptotic behavior of a random dynamical system is presented by a
random attractor. The existence of random attractors without distribution derivatives has been
studied by many authors, see [4, 5, 6, 7, 8, 9, 10, 11, 3] and the reference therein. Notice that
the partial differential equations (PDEs) studied in these literatures are all defined on the bounded
domains.

In the case of unbounded domains, the existence of random attractors without distribution derivatives
was established for the stochastic reaction-diffusion equation with additive noise in Bates et al. [12],
and with multiplicative noise in Wang and Zhou [13].

Recently, in our case of distribution derivatives on unbounded domains, the existence of global
attractors was established for the deterministic reaction-diffusion equation with distribution
derivatives in [1, 2], and for the stochastic reaction-diffusion equation with distribution derivatives
and additive noise in [14].

However, there are no results on random attractors for stochastic reaction-diffusion equation with
distribution derivatives and multiplicative noise on unbounded domain.

In this article, we will use the idea of uniform estimates on the tail of solutions to investigate
the existence of a random attractor of the stochastic reaction-diffusion equation with distribution
derivatives and multiplicative noise on unbounded domain. Since the equation (1.1) include the
distribution derivatives, we cannot use −∆v as the test function to obtain a priori estimates of
solution in a higher regular space. That is the essential difference from [13]. Besides, we decrease
the condition of the nonlinear function g(x, u) comparing the condition of [13].

This paper is organized as follows. In section 2, we recall some basic concepts and properties for
general random dynamics system. In section 3, we provide some basic settings about (1.1) and
show that it generates a random dynamical system on L2(Rn). In section 4, we prove the uniform
estimates of solutions, which include the uniform estimates on the tails of solutions. In the last
section, we first establish the asymptotic compactness of the solution operator by given uniform
estimates on the tails of solutions, and then prove the existence of a random attractor.

In the sequel, we use ∥ · ∥ and (·, ·) to denote the norm and inner product of L2(Rn) , respectively.
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2 Preliminaries

As mentioned in the introduction, our main purpose is to prove the existence of the random
attractor. For that matter, first, we will recapitulate basic concepts related to random attractors
for stochastic dynamical systems. For more details, see [4, 15].

Let (X, ∥ · ∥X) be separable Hilbert space with the Borel σ-algebra B(X). Let (Ω,F ,P) be a
probability space.

Definition 2.1. [4] (Ω,F ,P, (ϑt)t∈R) is called a metric dynamical system if ϑ : R × Ω → Ω is
(B(R)× F ,F)-measurable, ϑ0 is the identity on Ω, ϑs+t = ϑt ◦ ϑs for all s, t ∈ R and ϑtP = P for
all t ∈ R.

Definition 2.2. [4] A continuous random dynamical system (RDS) on X over a metric dynamical
system (Ω,F ,P, (ϑt)t∈R) is a mapping

ϕ : R+ × Ω×X −→ X, (t, ω, x) 7→ ϕ(t, ω, x),

which is (B(R+)×F × B(X),B(X))- measurable and satisfies, for P-a.e. ω ∈ Ω,

(i) ϕ(0, ω, ·) is the identity on X,
(ii) ϕ(t+ s, ω, ·) = ϕ(t, ϑsω, ·) ◦ ϕ(s, ω, ·) for all t, s ∈ R+,
(iii) ϕ(t, ω, ·) : X → X is continuous for all t ∈ R+.

Hereafter, we always assume that ϕ is continuous RDS on X over (Ω,F ,P, (ϑt)t∈R).

Definition 2.3. [4] Let D be a collection of random subset of X and {K(ω)} ∈ D. Then {K(ω)}
is called a random absorbing set for ϕ in D for every D ∈ D and P-a.e, ω ∈ Ω, there exist t0(ω)
such that

ϕ(t, ϑ−tω,D(ϑ−tω)) ⊆ K(ω) for all t ≥ t0(ω).

Definition 2.4. [4] Let D be the set of all random tempered sets in X. Then ϕ is said to
be asymptotically compact in X if for P-a.e. ω ∈ Ω, {ϕ(tn, ϑ−tnω,Xn)}∞n=1 has a convergent
subsequence in X whenever tn → ∞, and Xn ∈ B(ϑ−tnω) with {B(ω)} ∈ D.

Definition 2.5. [4] A random compact set {A(ω)} is said to be a random attractor if it is a
random attracting set and ϕ(t, ω,A(ω)) = A(ϑ−tω) for P-a.e. ω ∈ Ω and all t ≥ 0.

Theorem 2.6. [15] Let ϕ be a continuous random dynamical system on X over (Ω,F ,P, (ϑt)t∈R).
If there is a closed random tempered absorbing set {K(ω)} of ϕ and ϕ is asymptotically compact
in X, then {A(ω)} is a random attractor of ϕ, where

A(ω) =
∩
t>0

∪
τ≥t

ϕ(τ, ϑ−τω,K(ϑ−τω)), ω ∈ Ω.

Moreover, {A(ω)} is the unique attractor of ϕ.

3 Random Dynamical System

In this section, we show that there is a continuous random dynamical system generated by the
stochastic reaction-diffusion equation defined on Rn with distribution derivatives and multiplicative
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noise in (1.1) - (1.2), where g(x, u) in (1.1) is a nonlinear function satisfying the same condition as
[13], but except the condition | ∂g

∂x
(x, u)| ≤ g̃(x) for all x ∈ Rn and u ∈ R.

g ∈ C1(Rn × R,R), (3.1)

g(x, 0) = 0, g(x, u)u ≤ 0, for all x ∈ Rn, and u ∈ R, (3.2)

∂g

∂u
(x, u) ≤ ϵ, for all x ∈ Rn, and u ∈ R, (3.3)

sup
x∈Rn

sup
|u|≤r

| ∂g
∂u

(x, u)| ≤ L(r), for all x ∈ Rn, u ∈ R and r ∈ R+, (3.4)

where ϵ is a non-negative constant, L(·) ∈ C(R+,R+).

To model the random noise in (1.1), we need to define a shift operator {ϑt}t∈R on Ω (where Ω is
defined in the introduction) by

ϑtω(·) = ω(·+ t)− ω(t), t ∈ R,

then (Ω,F ,P, {ϑt}t∈R) is an ergodic metric dynamical system, see [4, 15].

For our purpose, it is convenient to convert (1.1) into a deterministic system with a random
parameter, and then show that it generates a random dynamical system.

We now introduce an Ornstein-Uhlenbeck process given by the Brownian motion. Put

z(ϑtω) := −
∫ 0

−∞
es(ϑtω)(s)ds, t ∈ R, (3.5)

which is called the Ornstein-Uhlenbeck process (see [4]) and solves the Itô equation

dz + zdt = dW (t). (3.6)

From [4, 12, 16, 17], it is known that the random variable z(ω) is tempered, and there is a ϑt-
invariant set Ω̃ ⊂ Ω of full P measure such that for every ω ∈ Ω̃, t 7→ z(ϑtω) is continuous in t;

limt→±∞
|z(ϑtω)|

|t| = 0; and limt→±∞
1
t

∫ t

0
z(ϑsω)ds = 0.

To show that (1.1) generates a random dynamical system, like in [13], we let

v(t) = e−bz(ϑtω)u(t), (3.7)

where u is a solution of (1.1). Then we can consider the following evolution equation with random
coefficients but without white noise:

dv

dt
+ αv −∆v = e−bz(ϑtω)(g(x, ebz(ϑtω)v) + f(x) +Djf

j) + bz(ϑtω)v, (3.8)

with the initial value condition

v(x, 0) = v0(x) = e−bz(ϑtω)u0(x), x ∈ Rn. (3.9)

We will consider (3.8)-(3.9) for ω ∈ Ω̃ and write Ω̃ as Ω from now on.

By using the standard Galerkin method following, see [18, 19], one may show that (3.8) has a
unique solution v(t, ω, v0) which is continuous with respect to v0 in L2(Rn) for all t > 0. Then (3.8)
generates a continuous random dynamical system {ϕ(t)}t≥0 over (Ω,F ,P, {ϑt}t∈R), where

ϕ(t, ω, v0) = v(t, ω, v0), for v0 ∈ L2(Rn), t ≥ 0 and for all ω ∈ Ω.
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We define mapping φ : R+ × Ω× L2(Rn) → L2(Rn) by

φ(t, ω, u0) = u(t, ω, u0) = ebz(ϑtω)ϕ(t, ω, v0), for v0 ∈ L2(Rn), t ≥ 0 and for all ω ∈ Ω.

Then φ is a continuous random dynamical system associated with (1.1) on L2(Rn).

Note that the two random dynamical system φ and ϕ are equivalent. It is easy to check that φ has
a random attractor provided ϕ possesses a random attractor. Then, we only need to consider the
random dynamical system ϕ.

4 Uniform Estimates of Solutions

In this section, we derive uniform estimates on the solutions of (1.1)-(1.2) defined on Rn when t → ∞
with the purpose of proving the existence of a bounded random absorbing set and the asymptotic
compactness of the random dynamical system associated with the equation. In particular, we
will show that the tails of the solutions for large space variable are uniformly small when time is
sufficiently large.

From now on, we always assume that D is the collection of all tempered random subsets of L2(Rn)
with respect to (Ω,F ,P, {ϑt}t∈R). The next lemma shows that ϕ has a random absorbing set in D.

Lemma 4.1. Assume that f j , f ∈ L2(Rn), and (3.1)-(3.4) hold. Then there exists a random
ball {K(ω)} ∈ D centered at 0 with random radius ρ(ω) > 0 such that {K(ω)} is a random
absorbing set for ϕ in D, that is, for any {B(ω)} ∈ D and P-a.e. ω ∈ Ω, there is TB(ω) > 0 such
that

ϕ(t, ϑ−tω,B(ϑ−tω, )) ⊆ K(ω) for all t > TB(ω). (4.1)

Proof. The following estimates is the same as (Lemma 4.1, [13]) except the estimates of the term
Djf

j . Taking the inner product of (3.8) with v in L2(Rn), we have

1

2

d

dt
∥v∥2 + α∥v∥2 + ∥∇v∥2 = e−bz(ϑtω)

∫
Rn

g(x, ebz(ϑtω)v)vdx

+ e−bz(ϑtω)((f, v) + (Djf
j , v)) + bz(ϑtω)∥v∥2. (4.2)

In line with (3.2) and (3.4), we get

−∞ < −L(ebz(ϑtω)∥v∥)∥v∥2 ≤ e−2bz(ϑtω)

∫
Rn

g(x, u)udx ≤ 0. (4.3)

By the Hölder, inequality and the Young inequality (see [20]), we conclude

e−bz(ϑtω)(f, v) ≤ 1

2α
e−2bz(ϑtω)∥f∥2 + α

2
∥v∥2, (4.4)

e−bz(ϑtω)(Djf
j , v) = e−bz(ϑtω)(f̃ ,∇v) ≤ e−bz(ϑtω)∥f̃∥·∥∇v∥ ≤ 1

2
e−2bz(ϑtω)∥f̃∥2+ 1

2
∥∇v∥2, (4.5)

where f̃ = (f1, ..., fn) and ∥f̃∥2 =
∑n

j=1 |f
j |2.

Then inserting (4.3)-(4.5) into (4.2), it yields

d

dt
∥v∥2 − (2bz(ϑtω)− α)∥v∥2 + ∥∇v∥2 ≤ 1

α
e−2bz(ϑtω)(∥f∥2 + α∥f̃∥2). (4.6)
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Hence, we can rewrite (4.6)as

d

dt
∥v∥2 − (2bz(ϑtω)− α)∥v∥2 ≤ 1

α
e−2bz(ϑtω)(∥f∥2 + α∥f̃∥2). (4.7)

By applying the Gronwall,s lemma (see [20]) to (4.7), we find that

∥v(t, ω, v0(ω))∥2 ≤ e2
∫ t
0 bz(ϑsω)ds−αt∥v0(ω)∥2

+
∥f∥2 + α∥f̃∥2

α
e2b

∫ t
0 z(ϑsω)ds−αt

∫ t

0

e−2bz(ϑsω)−2b
∫ s
0 z(ϑτω)dτ+αsds. (4.8)

By replacing ω by ϑ−tω in (4.8), we get

∥v(t, ϑ−tω, v0(ϑ−tω))∥2 ≤ e2b
∫ 0
−t z(ϑsω)ds−αt∥v0(ϑ−tω)∥2

+
∥f∥2 + α∥f̃∥2

α

∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds. (4.9)

By the properties of Ornstein-Uhlenbeck process,∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds < +∞. (4.10)

Notice that {B(ω)} ∈ D is tempered, then for any v0(ϑ−tω) ∈ B(ϑ−tω),

lim
t→+∞

e2b
∫ 0
−t z(ϑsω)ds−αt∥v0(ϑ−tω)∥2 = 0. (4.11)

We can choose

ρ(ω) = 1 +
∥f∥2 + λ∥f̃∥2

λ

∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+αsds. (4.12)

And let

K(ω) = {u ∈ L2(Rn) : ∥u∥2 ≤ ρ(ω)}.

Then {K(ω)} ∈ D, and {K(ω)} is a random absorbing set for ϕ in D, which completes the proof.
2

Lemma 4.2. Assume that f j , f ∈ L2(Rn), and (3.1)-(3.4) hold. Then there exists a tempered
random variable R̃1(ω) > 0 such that for any {B(ω)} ∈ D and v0(ω) ∈ B(ω), there exists a
TB(ω) > 0 such that the solution ϕ of (3.8) satisfies for P-a.e. ω ∈ Ω, for all t ≥ TB(ω),∫ t+1

t

∥∇ϕ(s, ϑ−t−1ω, v0(ϑ−t−1ω))∥2ds ≤ R̃1(ω). (4.13)

Proof. Using the analogous calculation of (Lemma 4.2, [13]), we can conclude (4.13). However,
in order to convenient to read, we outline the proof. By substituting t by T̂ and ω by ϑ−tω in (4.8)
for any T̂ ≥ 0, we find that

∥v(T̂ , ϑ−tω, v0(ϑ−tω))∥2 ≤ e2b
∫ T̂
0 z(ϑs−tω)ds−αT̂ ∥v0(ϑ−tω)∥2

+
∥f∥2 + α∥f̃∥2

α
e2b

∫ T̂
0 z(ϑs−tω)ds−αT̂

∫ T̂

0

e−2bz(ϑs−tω)−2b
∫ s
0 z(ϑτ−tω)dτ+αsds. (4.14)

6



Mosa et al.; ARJOM, 12(1): 1-15, 2019; Article no.ARJOM.46304

Multiplying two sides of (4.14) by e2b
∫ t
T̂

z(ϑτ−tω)dτ−α(t−T̂ ), then simplifying it, we find that for all
t ≥ T̂

e2b
∫ t
T̂

z(ϑτ−tω)dτ−α(t−T̂ )∥v(T̂ , ϑ−tω, v0(ϑ−tω))∥2 ≤ e2b
∫ t
0 z(ϑs−tω)ds−αt∥v0(ϑ−tω)∥2

+
∥f∥2 + α∥f̃∥2

α

∫ T̂

0

e−2bz(ϑs−tω)+2b
∫ t
s z(ϑs−tω)ds−α(t−s)ds. (4.15)

By the Gronwall,s lemma to (4.6), we get that for all t ≥ T̂ ,

∥v(t, ω, v0(ω))∥2 ≤ e2b
∫ t
T̂

z(ϑsω)ds−α(t−T̂ )∥v(T̂ , ω, v0(ω))∥2

+
∥f∥2 + α∥f̃∥2

α

∫ t

T̂

e−2bz(ϑsω)+2b
∫ t
s z(ϑτω)dτ+α(s−t)ds

−
∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ+α(s−t)∥∇v(s, ω, v0(ω))∥2ds, (4.16)

which obviously gives∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ+α(s−t)∥∇v(s, ω, v0(ω))∥2ds ≤ e2b

∫ t
T̂

z(ϑsω)ds−α(t−T̂ )∥v(T̂ , ω, v0(ω))∥2

+
∥f∥2 + α∥f̃∥2

α

∫ t

T̂

e−2bz(ϑsω)+2b
∫ t
s z(ϑτω)dτ+α(s−t)ds. (4.17)

By replacing ω by ϑ−tω into (4.17), we get∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ+α(s−t)∥∇v(s, ϑ−tω, v0(ϑ−tω))∥2ds

≤ e2b
∫ t
T̂

z(ϑs−tω)ds−α(t−T̂ )∥v(T̂ , ϑ−tω, v0(ϑ−tω))∥2

+
∥f∥2 + α∥f̃∥2

α

∫ t

T̂

e−2bz(ϑs−tω)+2b
∫ t
s z(ϑτ−tω)dτ+α(s−t)ds. (4.18)

Together with (4.15) and (4.18), we have∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ+α(s−t)∥∇v(s, ϑ−tω, v0(ϑ−tω))∥2ds

≤ e2b
∫ 0
−t z(ϑsω)ds−αt∥v0(ϑ−tω)∥2 +

∥f∥2 + α∥f̃∥2

α

∫ 0

−t

e−2bz(ϑsω)+2b
∫ 0
s z(ϑτω)dτ+αsds. (4.19)

Replacing T̂ by t and t by t+ 1 in (4.19), we have∫ t+1

t

e2b
∫ t+1
s z(ϑτ−t−1ω)dτ+α(s−t−1)∥∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))∥2ds

≤ e2b
∫ 0
−t−1 z(ϑsω)ds−α(t+1)∥v0(ϑ−t−1ω)∥2 +

∥f∥2 + α∥f̃∥2

α

∫ 0

−t−1

e−2bz(ϑsω)+2b
∫ 0
s z(ϑτω)dτ+αsds.

(4.20)
For s ∈ [t, t+ 1], to yield that∫ t+1

t

e2b
∫ t+1
s z(ϑτ−t−1ω)dτ+α(s−t−1)∥∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))∥2ds

≥
∫ t+1

t

e−2bmax0≤τ≤1 |z(ϑτω)|−α∥∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))∥2ds. (4.21)

7
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By the property of z(ω) and temperedness of ∥v0(ω)∥, there exists TB(ω) > 0 such that for all
t ≥ TB(ω), from (4.20) and (4.21) we find that∫ t+1

t

∥∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))∥2ds

≤ 1 +
∥f∥2 + α∥f̃∥2

α

∫ 0

−∞
e−2bz(ϑsω)+2bemax0≤τ≤1 |z(ϑτω)|+2b

∫ 0
s z(ϑτω)dτ+α(s+1)ds

= R̃1(ω). (4.22)

It is easy to check that R̃1(ω) is tempered.This completes the proof. 2

Lemma 4.3. Assume that f j , f ∈ L2(Rn),(3.1)-(3.4) hold. The random dynamical system
{ϕ(t)}t≥0 has a (L2(Rn), L2(Rn)) and (L2(Rn), H1(Rn))-bounded absorbing set, that is, there exists
a random radius ρ̃(ω) such that for any {B(ω)} ∈ D and v0(ω) ∈ B(ω), there exists a TB(ω) > 0
such that the solution ϕ of (3.8) satisfies for P-a.e. ω ∈ Ω, for all t ≥ TB(ω),

∥ϕ(t, ϑ−tω, v0(ϑ−tω))∥2 + ∥∇ϕ(t, ϑ−tω, v0(ϑ−tω))∥2 ≤ ρ̃(ω). (4.23)

Proof. Taking the inner product of (3.8) with v in L2(Rn), we have

1

2

d

dt
∥v∥2 + α∥v∥2 + ∥∇v∥2 = e−bz(ϑtω)

∫
Rn

g(x, ebz(ϑtω)v)vdx

+ e−bz(ϑtω)((f, v) + (Djf
j , v)) + bz(ϑtω)∥v∥2. (4.24)

By (4.3) - (4.5) and Lemma 4.1, we conclude from (4.24) that

d

dt
∥v∥2 + α∥v∥2 + ∥∇v∥2 ≤ 1

α
e−2bz(ϑtω)∥f∥2 + 2b(z(ϑtω))ρ(ω) + e−2bz(ϑtω)∥f̃∥2 (4.25)

Noticing that

∥∇v + f̃∥2 ≤ 2∥∇v∥2 + 2∥f̃∥2. (4.26)

Together with (4.25) and (4.26), we conclude that

d

dt
∥v∥2+C(∥∇v+f̃∥2+∥v∥2) ≤ 1

α
e−2bz(ϑtω)∥f∥2+2b(z(ϑtω))ρ(ω)+(1+e−2bz(ϑtω))∥f̃∥2 ≤ ρ̃(ω),

(4.27)
where C = min{α, 1

2
}. Integrating (4.27) from t to t + 1, and using Lemma 4.1, we can find a

TB(ω) > 0, such that for all t ≥ TB(ω),∫ t+1

t

(∥∇v+ f̃∥2 + ∥v∥2) ≤ ρ̃(ω) . (4.28)

On the other hand , multiplying (3.8) with vt, and integrating over Rn we find that

∥vt∥2 +
1

2

d

dt
(∥∇v∥2 + α∥v∥2)

= (e−bz(ϑtω)g(x, ebz(ϑtω)v), vt) + e−bz(ϑtω)((f, vt)−
d

dt
(f̃ ,∇v)) +

1

2
b2|z(ϑtω)|2∥v∥2 +

1

2
∥vt∥2.

(4.29)
By the Hölder inequality and the Young inequality, we conclude

e−bz(ϑtω)(f, vt) ≤ e−2bz(ϑtω)∥f∥2 + 1

4
∥vt∥2, (4.30)

8
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and

(e−bz(ϑtω)g(x, ebz(ϑtω)v), vt) ≤ e−2bz(ϑtω)∥g(x, u)∥2 + 1

4
∥vt∥2. (4.31)

Then inserting (4.30)-(4.31) into (4.29), it yields

d

dt
(∥∇v∥2 +2(f̃ ,∇v) + ∥f̃∥2 +α∥v∥2) ‘

≤ 2e−2bz(ϑtω)∥f∥2 +2e−2bz(ϑtω)∥g(x, u)∥2 + b2|z(ϑtω)|2∥v∥2. (4.32)

By (3.3), we conclude that

∥g(x, u)∥2 ≤
∫
Rn

| ∂g
∂u

(x, θu)|2|u|2dx ≤ ϵ2∥u∥2, (4.33)

where 0 < θ < 1.
By (4.33) and Lemma 4.1, we can rewrite (4.32) as

d

dt
(∥∇v + f̃∥2 + α∥v∥2) ≤ 2e−2bz(ϑtω)∥f∥2 + (2ϵ2 + b2|z(ϑtω)|2)ρ(ω) ≤ ρ̃(ω). (4.34)

Combining with (4.28) and (4.34), by the uniform Gronwall lemma, we deduce that

∥∇v + f̃∥2 + α∥v∥2 ≤ ρ̃(ω). (4.35)

Thus, thanks to ∥∇v∥2 ≤ 2∥∇v + f̃∥2 + 2∥f̃∥2 and (4.35), we achieve that for t ≥ TB(ω) + 1,

∥∇v∥2 + ∥v∥2 ≤ ρ̃(ω). (4.36)

This proof is completed. 2

Now we will prove the solution is enough small in a large space using the method and skill of [21, 13].

Lemma 4.4. Assume that f j , f ∈ L2(Rn), and (3.1)-(3.4) hold. Let {B(ω)} ∈ D and v0(ω) ∈
B(ω). Then, for any ζ > 0, there exist T̃ = T̃ (ζ, ω,B) > 0 and K̃ = K̃(ζ, ω) > 0, such that the
solution ϕ of (3.8) satisfies for P-a.e. ω ∈ Ω, ∀t ≥ T̃ ,∫

|x|≥R̃

|ϕ(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ ζ. (4.37)

Proof. We first need to define a smooth function σ(·) from R+ into [0, 1] such that σ(·) = 0 on
[0, 1] and σ(·) = 1 on [2,+∞), which evidently implies that there is a positive constant c such that

the |σ′(s)| ≤ c for all s ≥ 0. For convenience, we write σκ = σ( |x|
2

κ2 ).
Multiplying (3.8) with σκv and integrating over Rn, we have

1

2

d

dt

∫
Rn

σκ|v|2dx+ α

∫
Rn

σκ|v|2dx =

∫
Rn

(∆v)σκvdx+ bz(ϑtω)

∫
Rn

σκ|v|2dx

+e−bz(ϑtω)(

∫
Rn

σκg(x, u)vdx+

∫
Rn

σκfvdx+

∫
Rn

Djf
jσκvdx), (4.38)

where ∫
Rn

(∆v)σκvdx = −
∫
Rn

|∇v|2σκdx−
∫
Rn

vσ′
κ
2x

κ2
(∇v)dx

≤ −
∫
Rn

|∇v|2σκdx+
C0

κ
(∥v∥2 + ∥∇v∥2), (4.39)
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where C0 is a non-negative constant.
By (3.2) and (3.4), we get

−∞ < e−bz(ϑtω)

∫
Rn

σκg(x, u)vdx = e−2bz(ϑtω)

∫
Rn

σκg(x, u)udx ≤ 0. (4.40)

For the fourth term on the right-hand side of (4.38), we have that

e−bz(ϑtω)

∫
Rn

σκfvdx ≤ α

2

∫
Rn

σκ|v|2dx+
1

2α
e−2bz(ϑtω)

∫
Rn

σκ|f |2dx. (4.41)

Next, we estimate the last term on the right-hand side of (4.38), we get that

e−bz(ϑtω)

∫
Rn

Djf
jσκvdx = −e−bz(ϑtω)

∫
Rn

f̃
2x

κ2
σ′
κ v dx−e−bz(ϑtω)

∫
Rn

σκ f̃ (∇v)dx

≤ C1

κ
(∥f̃∥2 + ∥v∥2) + 1

2
e−2bz(ϑtω)

∫
Rn

σκ|f̃ |2dx+
1

2

∫
Rn

σκ|∇v|2dx, (4.42)

where C1 is a non-negative constant. Then inserting (4.39) - (4.42) into (4.38) to see that

d

dt

∫
Rn

σκ|v|2dx− (2bz(ϑtω)− α)

∫
Rn

σκ|v|2dx+

∫
Rn

|∇v|2σκdx

≤ 1

α
e−2bz(ϑtω)

∫
Rn

σκ(|f |2 + α|f̃ |2)dx+
C2

κ
∥f̃∥2 + C3

κ
∥v∥2 + C4

κ
∥∇v∥2, (4.43)

where C2, C3 and C4 are non-negative constants. Hence, we can rewrite (4.43) as

d

dt

∫
Rn

σκ|v|2dx− (2bz(ϑtω)− α)

∫
Rn

σκ|v|2dx

≤ 1

α
e−2bz(ϑtω)

∫
Rn

σκ(|f |2 + α|f̃ |2)dx+
C2

κ
∥f̃∥2 + C3

κ
∥v∥2 + C4

κ
∥∇v∥2. (4.44)

By applying the Gronwall,s lemma to (4.44), for every t ≥ T̂ , we find that∫
Rn

σκ|v(t, ω, v0(ω))|2dx ≤ e2b
∫ t
T̂

z(ϑτω)dτ−α(t−T̂ )

∫
Rn

σκ|v(T̂ , ω, v0(ω))|2dx

+
1

α

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)−2bz(ϑsω)

∫
Rn

σκ(|f |2 + α|f̃ |2)dx

+
C3

κ

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)∥v(s, ω, v0(ω))∥2ds

+
C4

κ

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)∥∇v(s, ω, v0(ω))∥2ds

+
C2

κ

∫ t

T̂

e2b
∫ t
s z(ϑτω)dτ−α(t−s)∥f̃∥2ds. (4.45)

Then, substitutingω by ϑ−tω into (4.45), we have that∫
Rn

σκ|v(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ e2b
∫ t
T̂

z(ϑτ−tω)dτ−α(t−T̂ )

∫
Rn

σκ|v(T̂ , ϑ−tω, v0(ϑ−tω))|2dx

+
1

α

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
Rn

σκ(|f |2 + α|f̃ |2)dxds

+
C3

κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)∥v(s, ϑ−tω, v0(ϑ−tω))∥2ds

10
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+
C4

κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)∥∇v(s, ϑ−tω, v0(ϑ−tω))∥2ds

+
C2

κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)∥f̃∥2ds. (4.46)

Then,we estimate every term on the right-hand side of (4.46). Firstly by (4.8) replacing t by T̂ and
ω by ϑ−tω, then we get

e2b
∫ t
T̂

z(ϑτ−tω)dτ−α(t−T̂ )

∫
Rn

σκ|v(T̂ , ϑ−tω, v0(ϑ−tω))|2dx

≤ e2b
∫ t
0 z(ϑτ−tω)dτ−αt∥v0(ϑ−tω)∥2 +

∥f∥2 + α∥f̃∥2

α

∫ T̂

0

e−2bz(ϑs−tω)+2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)ds.

(4.47)
It easy to see that there exists T̃1 = T̃1(B, ζ, ω) > T̂ , such that for all t > T̃1, then

e2b
∫ t
T̂

z(ϑτ−tω)dτ−α(t−T̂ )

∫
Rn

σκ|v(T̂ , ϑ−tω, v0(ϑ−tω))|2dx ≤ ζ. (4.48)

For the second term on the right-hand side of (4.46), Since f, f̃ ∈ L2(Rn), there are T̃2 = T̃2(ζ, ω) >
T̂ and K̃1 = K̃1(ζ, ω) > 0, such that for all t > T̃2 and κ > K̃1, then

1

α

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
Rn

σκ(|f |2 + α|f̃ |2)dxds

≤ 1

α

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
|x|≥κ

|f |2dxds

+

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)−2bz(ϑs−tω)

∫
|x|≥κ

|f̃ |2dxds

≤ ζ. (4.49)

For the third term on the right-hand side of (4.46). By replacing t by s and ω by ϑ−tω in (4.8),we
get

C3

κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)∥v(s, ϑ−tω, v0(ϑ−tω))∥2ds

≤ C3

κ
(t− T̂ )e2b

∫ t
0 z(ϑτ−tω)dτ−αt∥v0(ϑ−tω)∥2

+
C3(∥f∥2 + α∥f̃∥2)

κα

∫ t

T̂

∫ s

0

e2b
∫ t
s̃ z(ϑτ−tω)dτ−α(t−s̃)−2bz(ϑs̃−tω)ds̃ds. (4.50)

Then, by f, f̃ ∈ L2(Rn), there exist T̃3 = T̃3(B, ζ, ω) > T̂ and K̃2 = K̃2(ζ, ω) > 0, such that for all
t > T̃3 and κ > K̃2, we find that

C3

κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)∥v(s, ϑ−tω, v0(ϑ−tω))∥2ds ≤ ζ. (4.51)

Next, we estimate the fourth term on the right-hand side of (4.46). Since f, f̃ ∈ L2(Rn), by
using(4.19), there exist T̃4 = T̃4(B, ζ, ω) > T̂ and K̃3 = K̃3(ζ.ω) > 0, such that for all t > T̃4 and
κ > K̃3, we get that

C4

κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)∥∇v(s, ϑ−tω, v0(ϑ−tω))∥2ds ≤ ζ. (4.52)

11



Mosa et al.; ARJOM, 12(1): 1-15, 2019; Article no.ARJOM.46304

Finally, we estimate the last term on the right-hand side of (4.46). Since f̃ ∈ L2(Rn), there exist
T̃5 = T̃5(ζ, ω) > T̂ and K̃4 = K̃4(ζ.ω) > 0, such that for all t > T̃5 and κ > K̃4, we have that

C2

κ

∫ t

T̂

e2b
∫ t
s z(ϑτ−tω)dτ−α(t−s)∥f̃∥2ds ≤ ζ. (4.53)

By letting

T̃ = max{T̃1, T̃2, T̃3, T̃4, T̃5}, and K̃ = max{K̃1, K̃2, K̃3, K̃4}.

Then, inserting (4.48) − (4.49), (4.51) − (4.53) into (4.46), for all t > T̃ and κ > K̃, we obtain
that ∫

Rn

σκ|v(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ 5ζ, (4.54)

which shows that∫
|x|≥K̃

|ϕ(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ 5ζ. (4.55)

This proof is completed. 2

5 Random Attractors

In this section, we prove the existence of a global random attractor for the random dynamical
system ϕ associated with the stochastic reaction-diffusion equation (1.1)-(1.2) on Rn. The main
result of this section can now be stated as follows.

Lemma 5.1. Assume that f j , f ∈ L2(Rn), and (3.1)-(3.4) hold. Then the random dynamical
system ϕ generated by (3.8) is asymptotically compact in L2(Rn), that is, for P-a.e. ω ∈ Ω, the
sequence {ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))} has a convergent subsequence in L2(Rn) provided tn → +∞,
{B(ω)} ∈ D and v0,n(ϑ−tnω) ∈ B(ϑ−tnω).

Proof. We use the method of [12] to prove our main results. Let tn → +∞, {B(ω)} ∈ D
and v0,n(ϑ−tnω) ∈ B(ϑ−tnω). Then by Lemma 4.1, for P-a.e. ω ∈ Ω, we have that

{ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))}∞n=1 is bounded in L2(Rn).

Hence, there exist ξ ∈ L2(Rn) such that, up to a subsequence,

ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω)) → ξ weakly in L2(Rn). (5.1)

Next, we prove the weak convergence of (5.1) is actually strong convergence. Given ζ > 0, by
Lemma 4.4, there exist T̂1 = T̂1(B, ζ, ω) > 0, κ̂1 = κ̂1(ζ, ω) > 0 and N̂1 = N̂1(B, ζ, ω) > 0, such
that tn ≥ T̂1 for every n ≥ N̂1∫

|x|≥κ̂1

|ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))|
2dx ≤ ζ. (5.2)

On the other hand, by Lemma 4.1 and 4.3, there exist T̂2 = T̂2(B,ω) > 0, such that for all t ≥ T̂2,

∥ϕ(t, ϑ−tω, v0(ϑ−tω))− ξ∥2H1(Rn) ≤ R1(ω). (5.3)

Let N̂2 = N̂2(B,ω) be large enough such that tn ≥ T̂2 for n ≥ N̂2. Then by (5.3) we find that, for
all n ≥ N̂2,

∥ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ∥2H1(Rn) ≤ R1(ω). (5.4)

12
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Denote Qκ̂1 = {x ∈ Rn : |x| ≤ κ̂1} be a ball. By the asymptotic a priori estimates of the random
dynamical system ϕ with respect to L2-norm, which plays a crucial role in the proof of the L2(Rn)-
asymptotic compactness H1(Qκ̂1) ↩→ L2(Qκ̂1). It follows from (5.4) that, up to a subsequence
depending on κ̂1

ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω)) → ξ strongly in L2(Qκ̂1), (5.5)

which shows that for the given ζ > 0, there exist N̂3 = N̂3(B,ω)(B, ζ, ω) > 0, such that for all
n ≥ N̂3,

∥ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ∥2L2(Qκ̂1
) ≤ ζ. (5.6)

Note that ξ ∈ L2(Rn). Therefore, there exist κ̂2 = κ̂2(ζ) > 0, such that∫
|x|≥κ̂2

|ξ(x)|2dx ≤ ζ. (5.7)

By letting N̂ = max{N̂1, N̂2, N̂3}, and κ̂ = max{κ̂1, κ̂2}.

Then, by (5.2),(5.6) and (5.7), we find that for all n ≥ N̂ ,

∥ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ∥2L2(Rn) ≤
∫
|x|≤κ̂

|ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ|2dx

+

∫
|x|≥κ̂

|ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω))− ξ|2dx

≤ 6ζ. (5.8)

which shows that

ϕ(tn, ϑ−tnω, v0,n(ϑ−tnω)) → ξ strongly in L2(Rn). (5.9)

This as desired. 2

We are now in a position to present our main result, the existence of a global random attractor for
ϕ in L2(Rn).

Lemma 5.2. Assume that f j , f ∈ L2(Rn), and (3.1)-(3.4) hold. Then the random dynamical
system ϕ generated by (3.8) has a unique global random attractor in L2(Rn).

Proof. Notice that the random dynamical system ϕ has a random absorbing set {K(ω)} in D by
Lemma 4.1. On the other hand, by Lemma 5.1, the random dynamical system ϕ is asymptotically
compact in L2(Rn). Then by Theorem 2.6, the random dynamical system ϕ generated by (1.1) has
a unique global random attractor in L2(Rn). 2

6 Conclusion

Our main results, existence of random attractors for a stochastic reaction-diffusion equation with
distribution derivatives and multiplicative noise defined on unbounded domains, has been satisfied
in section 5.
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