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Abstract 
 

This paper considered the challenges of population mean estimation in small area that is characterized by 
small or no sample size in the presence of unit nonresponse and presents a calibration estimator that produces 
reliable estimates under stratified random sampling from a class of synthetic estimators using calibration 
approach with alternative distance measure. Examining the proposed estimator relatively with existing ones 
under three distributional assumptions: normal, gamma, and exponential distributions with percent average 
absolute relative bias, percent average coefficient of variation, and average mean squared error as evaluation 
criteria using simulation analysis technique, the new estimator exhibited a more reliable estimate of the mean 
with less bias and greater gain in efficiency. Further evaluation using coefficient of variation under varying 
nonresponse rates to validate the results of variations suggests that the estimator is a suitable alternative for 
small area estimation. This finding has therefore contributed to the development of an ultimate estimator for 
small area estimation in the presence of unit nonresponse. 
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1 Introduction 
 

The use of synthetic estimators in small area estimation (SAE) has become one popular technique in small area 
estimation. This is so because it could produce reliable estimates when there are small or no sample observation 
in areas of interest. This was first examined by [1] in the public health service of the United States of America. 
The essential property of the synthetic estimators made it so attractive in SAE, unlike the direct estimators that 
are based on the sample information obtained from the area of interest, which is not reliable due to lack of 
effective sample size in areas of interest. This indirect method of estimation was also applied in the estimation 
of a mean income of a family, the average production of crops in blocks, and the number of unemployed persons 
in councils, among others. 
 
Though synthetic estimation technique has been adopted by different authors to compensate for the challenges 
of small sample sizes in SAE [2-5], with other contributors using calibration weights as a means of improving 
the precision, ([6-19]), small or no sample size problem in the presence of unit nonresponse remains a gap in the 
literature. 
 
Earlier introduction of a calibration estimation approach by [20] included a distance function to account for 
auxiliary information in the estimation, a method often refers to as "creating estimators by benchmarking the 
auxiliary information to external controls". Thereafter, [7] and [8] posited that the proposed distance measure 
was not effective in addressing the dual problem of small sample size and nonresponse in a domain of interest. 
A call for an estimator that could address this dual problem by [21] led to a study by [22] that showed that 
calibration estimators performed poorly when sample sizes become very small but more efficient as sample size 
increased, whereas, synthetic estimator becomes more effective at domains with small sample sizes. Having in 
mind the report from this study and in consideration of the proposition by [23] on the choice of alternative 
distance measure for calibration weight to bridge the gap between the original design weight and the calibration 
weight under nonresponse. The objective of this paper, therefore, is to formulate an alternative calibration 
estimator for small area in the presence of unit nonresponse. 
 
Thus, the paper proposes an alternative synthetic estimator that addresses the limitations in the previous studies 
using the calibration approach by adopting the procedures of [7,8,23]. 
 

1.1 Theoretical underpinning 
 
Consider a finite population consisting of  � units which are divided into � non-overlapping domains ��, � =
1,2, . . . , � with �� units such that ∑ ��

�
� = �. Let the population be further partitioned into � non-overlapping 

groups (considered to be strata) which are considered to be larger than the domains �.�, � = 1,2, . . . , � with �.� 

(the population size of the group), such that ∑ �.�
�
� = �, so that the � groups cuts across the � domains to form 

a grid of ��  cells denoted by ��� with ���  units, then � = ⋃���
� �� = ⋃���

� �.� = ⋃���
� ⋃���

� ���  and � =

∑ ��
�
� = ∑ �.�

�
� = ∑ ∑ ���

�
�

�
� . The sample s is analogously partitioned into domain subsamples �� , group 

subsamples �.� and cells subsamples ��� with corresponding sample sizes �, ��, �.� and ��� as � = ⋃���
� �� =

⋃���
� �.� = ⋃���

� ⋃���
� ���  and  � = ∑ ��

�
� = ∑ �.�

�
� = ∑ ∑ ���

�
�

�
� . The cells subsamples ��� are assumed to be 

random. Ordinarily, �� and �.� are also random but �.�would be fixed if the ��� group is a stratum from which 

a fixed number of elements is drawn. Let � be the study variable which values ����  are known for just the 

element of a sample s, where � = 1,2, . . . , ��� (the number of population units in the (��)�� cell) and � be the 

auxiliary variable which values ����  may or may not be known apriori for all units in �. 

 
For different reasons, there are missing units in the sample, s and is considered as the only source of data 
contamination in this work. If we further denote the response set by r, and instead of the original sample size, �, 
we receive an incomplete response to �� , then, the response probability �(� ∈ �|� ∈ �), where � ⊂ � , is a 
responded sample, �� = � ⋂ ��,  �.� = � ⋂ �.� and  ��� = � ⋂ ��� with their respective sizes ���

, ��.�
, and ����

. 

Now, let us consider the following estimators for domain estimation in the presence of unit nonresponse: 
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a. domain estimator of a population mean in the presence of unit nonresponse (direct estimation): 
 
An estimator under nonresponse in estimating population total was suggested by [4]. In a follow-up, an 

estimator for estimating domain population mean ��� =
�

��
∑ ∑ ����

���

�∈���

�
���   , � = 1, … , � is obtained as: 

 

�̄��� =
�

��
∑ ∑

����

�����

���

�∈���

�
�∈�.�

           (1) 

 

where ��� is the estimate of the unknown response probability �� . Equation (1) is an extension of the basic 
Horvitz-Thompson estimator to a selection in two phases. 
 
b. calibration estimator of a population mean in the presence of unit nonresponse (calibration approach): 
 
Lundstrom and Sarndal [7,8] proposed a single step weighting scheme through calibration approach as an 
improvement to Equation (1) for estimating the domain population mean in the presence of nonresponse as: 
 

�̄�� = ∑ ���
�
�.�

�̄��            (2) 

 

where �̄�� =
�

����

∑ ����
���

�∈���
  is the sample mean for the response set in the (��)��  cell and ��� is the 

calibration weights formed to be as ‘close as possible’ to the basic stratum weights ��� in stratified random 

sampling at the two levels of information which satisfy the calibration equations. 
 
When information is available at the population level of the auxiliary variable, the calibration weight becomes 
��� = ������  and the calibration estimator in equation (2) becomes 

 
�̄��� = ∑ ������

�
�.�

�̄��                           (3) 

 

where ��� = 1 + ��� �∑ �̄��
�
�.�

− ∑ ����̄��
�
�.�

� �∑ �������̄��
��

�.�
�

��

�̄��  and �̄��  is the auxiliary variable 

analogously defined as �̄��.  Equation (1) was compared to Equation (3) by assuming that ��� =
�

���
, where ��� is 

the estimate of the unknown ��. It should be noted that the idea of calibration weights as applied by [7,8] in Eq. 
3, has lessened the burden of finding the unknown response probabilities �� in the two-phase estimator of Eq. 1, 
by [4]. 
 
Again, when information on the population of the auxiliary variable is unknown, calibration is done on the 
sample estimates, and the weight becomes ��� = ������  and the calibration estimator in Eq. 2 is obtained as: 

 
�̄��� = ∑ �������.�

�̄��                         (4) 

 

Where ��� = 1 + ��� �∑ ����̄��
�
�.�

− ∑ ����̄��
�
�.�

� �∑ �������̄��
��

�.�
�

��

�̄��  and ���  is known as the tuning 

parameter and it is assumed to be '1' in this work. 
The estimators in equations (3) and (4) are very unstable with small sample size. More so when the domain of 
interest has no sample unit it becomes difficult (if not impossible) to be computed given that they are modified 
direct estimators. 
 

2 Methodology 
 
This study is designed to proffer solution to inherent challenges in small area estimation, which involved a 
combination of small/no sample size, and nonresponse adjustment. As suggested by [21], one should not be 
tackled in isolation of the other. 
 

In what followed, bivariate observations, ����, ����, were first generated, which comprised a finite population of 

size 4950 units. The population � considered was created by generating data for three separate subsets of the 
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populations termed groups (strata) with different intercepts and slopes. Each group was split into ten domains 
that are mutually exclusive and exhaustive as follows: Group 1; ���, ���, . . . , ����, Group 2; ���, ���, . . . , ����, 
and Group 3; ���, ���. . . , ����. The number of units in each cell ��� were sequentially allocated in a monotonic 

manner: cell ��� with 20 units; cell ��� with 30 units; and cell ���� with 310 units. The values of � in each 
group were generated from three different distributions, Gamma (� = 10, � = 1), Norm (5,1), and Exp (0.5) 
distributions. The simulation for the variable of interest � was obtained using the model:  
 ��� = ��� + ������ + �� + ��� , where � = 1,2, . . . ,30;  � = 1,2, . . . , �  and � = 1,2,3 ; ���~�(0, ���

� ��
�),

��~ �(0, ��
�). It is assumed that ��

� = ��
� = 20� = 400  for the gamma distribution, ��

� = ��
� = 1� = 1  for 

normal and exponential distributions. ��� = ��� is set to reflect the heterogeneity of the model errors for the 
synthetic and calibration estimators. 
 
Secondly, the sample size settings generated from the above model were pegged at 5%, 10%, 20%, and 25% to 
reflect the case of small area and then, the use of exponential response probability; �� = 1 − ����� , � ∈ �, 
where �  is chosen according to the desired average response probability. This study adopts values varying 
between 0.60, 0.70, and 0.86 (the latter value being the chosen response probability in [9]) 
 

2.1 Summary Statistics 
 
Summary statistics of the simulated data can be obtained using Average Percent Absolute Relative Bias, 
Average Mean Square Error and Average Percent Coefficient of Variation %���������, ��������� and %������ respectively 
and are obtained as: 
 

%���(�̄���) = �
�

�
∑ ���(�̄���)�

��� � × 100, where ���(�̄���) = �
�

�
∑ �

�̄���
(�)

�� �
− 1��

��� �  

  

 ���(�̄���) =
�

�
∑ ���(�̄���)�

���  and  ���(�̄���) =
�

�
∑ ��̄���

(�)
− �����

���

�
, ���  

 

%��(�̄���) = �
�

�
∑ ��(�̄���)�

��� � × 100, where ��(�̄���) =
������̄����

�� �
 , 

 

where �̄���
(�)

 and �̄���
(�)

 denote say, the proposed and existing estimators, respectively, produced for the ��� sample, 
� = 1,2, . . . , � ,  and for each small area � = 1,2, . . . , � .  For each selected sample in each simulation run, 

 � = 1,2, . . . , � (� = 100,000), we shall compute estimates of dY  for the estimators.  

 

Remark: In small area estimation, Molina and Rao (2010) suggested a benchmark value for %��(�̄���) at 20-

25% as being reliable. As a result, high value of %��(�̄���) above 25% is considered as unreliable estimates 

while estimators with values of %��(�̄���) below 25% is considered reliable and suitable for SAE. 
 

2.2 Calibration estimator for small area in the presence of unit nonresponse 
 
Let us start by considering a synthetic estimator using the [7,8] approach. 
 
Lemma: Supposed that preference is given to the groups as a powerful factor in explaining the individual 
variation of elements within groups g’s (g = 1,2, . . . , G)  considered being homogeneous for small area d’s 
(d = 1,2, . . . , D)  under stratified sampling. Let the groups assumed as response homogeneity groups 
(RHG’s), g’s (g = 1,2, . . . , G) be similar for small area d’s (d = 1,2, . . . , D), under stratified sampling. Then, (5) 
could be a modified calibration ( synthetic) estimator for population mean in small area in the presence of unit 
nonresponse using the [7,8] procedure as follows: 

i. �̄�����
∗ = ∑ �������̄.�

�
�.�

  (When information from the auxiliary variable is available at the population 

level), where   ��� = 1 + ��� �∑ �̄.�
�
�.�

− ∑ ����̄.�
�
�.�

� �∑ �������̄.�
��

�.�
�

��

�̄.�, for � ∈ �.� 

 
and, 
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ii.  �̄�����

∗ = ∑ �������̄.�
�
�.�

 (When information from the auxiliary variable is only available at the sample 

level), where ��� = 1 + ��� �∑ ����̄.�
�
�.�

− ∑ ����̄.�
�
�.�

� �∑ �������̄.�
��

�.�
�

��

�̄.� 

 
Proof:  Let the calibration synthetic estimator �̄���

∗  be given as 
 

�̄���
∗ = ∑ ���

∗ �̄.�
�
�.�

                         (5) 

 

where �̄.� = ∑ ∑
����

�.�

���

�∈���

�
��

  ,  �.� = ∑ ���
�
�.�

 and ���
∗   the chosen calibration weights such that the chi-square 

type distance measure: 
 

� = ∑
����

∗ �����
�

������

�
�.�

            (6) 

 
is minimized, while satisfying the calibration constraints: 
 

∑ ���
∗ �̄.�

�
�.�

= ∑ �̄.�
�
�.�

            (7) 

and 
 

∑ ���
∗ �̄.�

�
�.�

= ∑ ����̄.�
�
�.�

            (8) 

 
Case 1: Availability of information for auxiliary variable at the population level 
 
Assume that information by the auxiliary variable is available at the population level, Info-U: then minimizing 
the distance function in (6) subject to the calibration constraint in (7) will give the optimization function; 

�(�, �∗) = �
����

∗ − ����
�

������

�

�.�

− 2� �� ���
∗ �̄.�

�

�.�

− � �̄.�

�

�.�

� 

 
After solving for the Lagrange multiplier �, the calibration weight becomes; 
���

∗ = ������           (9) 

substituting (9) in (5) will give 
�̄�����

∗ = ∑ �������̄.�
�
�.�

          (10) 

where ��� is as earlier defined ��� = 1 + ��� �∑ �̄.�
�
�.�

− ∑ ����̄.�
�
�.�

� �∑ �������̄.�
��

�.�
�

��

�̄.� 

 
Case 2:  Non-availability of information for the auxiliary at the population level of the domain 
 
Suppose that there is no information on the population mean of the auxiliary variable in the domain, calibration 
can be done on the unbiased estimate ∑ ����̄.��.�

. Here, minimizing the distance measure in (6) subject to the 

calibration constraint in (8) will result in the optimization problem 
 

�(�, �∗) = �
����

∗ − ����
�

������

�

�.�

− 2� �� ���
∗ �̄.�

�

�.�

− � ����̄.�

�

�.�

� 

 
which is solved, and the calibration weight obtained as 
 

���
∗ = ������          (11) 

 
Substituting (11) in (5) will result in a new estimator under Info-S as follows: 
 

�̄�����
∗ = ∑ �������̄.�

�
�.�

         (12) 
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where ��� is as earlier defined as ��� = 1 + ��� �∑ ����̄.�
�
�.�

− ∑ ����̄.�
�
�.�

� �∑ �������̄.�
��

�.�
�

��

�̄.� 

 
Note:  Although the estimators in equations (10) and (12) are useful in areas where there are small/no sample 
sizes, they are biased when an area of interest is characterized by small sample size and nonresponse. 
 

2.3 New calibration estimator with alternative weights for small area in the presence of 
nonresponse 

 
Here, we proposed a new estimator with an alternative distance measure and a new design weight ��

∗  (which is 

the product of the original design weight 
�

��
 and the inverse of the response probability �� ) for the estimation of 

population mean ��� to resolve the challenges of biasness and higher mean square error due to small sample size 
and nonresponse in small area estimation. 
 
Proposition: Let the estimator of a population mean for small area in the presence of nonresponse be ȳ��� =
�

��
∑ ∑

����

�����

���

�∈���

�
�∈�.�

, then, an alternative estimator ȳ���
� = ���B����  that can produce a more reliable estimate 

under stratified random sampling can be obtained by defining a new design weight and calibrating on an 

alternative distance measure, ∑
����

� �����
�

����������

�
�.�

. 

 
Proof: Recall the response probability �� in equation (1), and let the inverse of its estimate be given as �� =
�

���
=

���

����

, then one can obtain a new design weight under nonresponse for the distance minimization as: 

 

��
∗ =

��

��
=

���

����

          (13) 

 
and under stratified sampling, equation (1) can be written as: 
 

�̄���
∗ =

1

��

� � ��
∗ ����

���

�∈���

�

�∈�.�

 

 
�̄���

∗ = ∑ ����̄.�
�
�∈�.�

                          (14)    

 
Thus, the estimator for the population mean using calibration approach is given as: 
 

�̄���
� = ∑ ���

� �̄.�
�
�∈�.�

         (15) 

 
where ���

� is the chosen calibration weight such that the distance function as in [23] under stratified sampling  

 

� = ∑
����

� �����
�

����������

�
�.�

         (16) 

 
is minimized subject to the calibration constraint: 
 

∑ ���
� �̄.�

�
�∈�.�

= ∑ ����̄.�
�
�∈�.�

        (17) 

 
and the optimization problem 

�(�, ��) = �
����

� − ����
�

������� − 1�

�

�.�

− 2� � � ���
� �̄.�

�

�∈�.�

− � ����̄.�

�

�∈�.�

� 
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is solved for �, and the calibration weights obtained as: 
 

���
� = ����̄.�

� �∑ ����̄.�
��

�∈�.�
�

��

���       (18) 

 
given that ∑ ����̄.�

�
�∈�.�

= ���. 

 
Substituting (18) in (15) gives a new calibration estimator for small area in the presence of nonresponse as 
 

�̄���
� = ��������          (19) 

 
Equation (19) takes the form of the global regression-synthetic estimator of the population mean for small area, 
(see, for example, [6], where 
 

����� =
∑ ����̄.��̄.�

�
�∈�.�

∑ ����̄.�
��

�∈�.�

          (20) 

 

3 Results and Discussion 
 
In this section, empirical investigation is carried out using simulation analysis in R. The procedure of population 
generation and sample selection for different sample settings in the simulation analysis is adopted from [22] and 
the response probability model is adopted from [23] as discussed in section 2.0. However, three different 
probability distributions are considered, namely; gamma, normal, and exponential distributions to depict 
different real-life scenarios. 
 

3.1. Findings  
 
The summary of the representation of units in each group across the domains and the results of the evaluation 
under nonresponse are obtained using simulated data as earlier discussed in section 2.0. Here, the theoretical 
formulations are validated and an indisputable pathway to the progress of small area estimation established. The 
results of the validation are as presented and discussed in Tables 1-3. 
 

3.2. Discussion 
 
Table 1 shows how the population was split into three groups with the respective values of intercepts and slopes 
for gamma, normal and exponential distributions. Table 2 presents the population of a broad domain under study 
divided into sub-domains and further partitioned into groups that are larger than the domains but cut across the 
domains to form grids that are mutually exclusive and exhaustive. Each simulation run in Table 2 involves the 
selection of � = 100,000,  using R software for independent samples and the computation of various estimates 
for sample of sizes � = 248(5%) , � = 495(10%) , � = 990(20%) , and � = 1239(25%)  drawn using 
SRSWOR from �. 

 
Table 1. Population groups with slopes and intercepts for different distributions 
 

Distributions          Gamma Normal and Exponential 
GROUP (�) Cells in groups ��� ��� ��� ��� 

1 ��� for � = 1,2, . . . ,10     200     30      5          1.5 
2 ��� for � = 11,12, . . . ,20     300     20      10          2.5 
3 ��� for � = 21,22, . . . ,30     400     10      15          3.5 
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Table 2. Summary representation of units in each group and domains 
 
Domains (d) Groups (g) Domains 

(��)                1               2                3 
1 ��� ��� ��� �� 
2 ��� ��� ��� �� 
3 ��� ��� ��� �� 
4 ��� ��� ��� �� 
5 ��� ��� ��� �� 
6 ��� ��� ��� �� 
7 ��� ��� ��� �� 
8 ��� ��� ��� �� 
9 ��� ��� ��� �� 
10 ���� ���� ���� ��� 
Groups (�.�) �.� �.� �.� � 

 
Table 3. ����������, %������������ and %��������� for Gamma (10,1), Norm (5,1) and Exp (0.5) with average response 

probabilities 
 
SAM    
In % 

DIS ���  
in 
% 

%��� ��� %�� 

�̄��� �̄�����
∗  �̄���

�  �̄��� �̄�����
∗  �̄���

�  �̄��� �̄�����
∗  �̄���

�  

 
 
 
 
5 

Gam 86 1148.8 58.7 0.2 3.3 × 10�� 8.6 × 10� 1.1 × 10� 1149.5 58.7 2.8 
70 1149.3 58.7 0.2 3.3 × 10�� 8.6 × 10� 1.5 × 10� 1149.9 58.7 2.9 
60 1148.7 58.7 0.2 3.3 × 10�� 8.6 × 10� 1.0 × 10� 1149.3 58.7 2.8 

Norm 86 1147.8 65.0 13.9 9.3 × 10� 3.0 × 10� 1.4 × 10� 1148.3 65.0 14.0 
70 1149.5 65.1 13.9 9.3 × 10� 3.0 × 10� 1.4 × 10� 1149.9 65.1 14.0 
60 1146.1 65.1 14.0 9.2 × 10� 3.0 × 10� 1.4 × 10� 1146.6 65.1 14.2 

Exp 86 1145.5 65.7 16.5 4.2 × 10� 1.4 × 10� 8.7 × 10� 1151.8 65.7 18.7 
70 1136.2 65.9 17.3 4.2 × 10� 1.4 × 10� 9.7 × 10� 1142.5 65.9 19.5 
60 1137.1 65.8 16.9 4.2 × 10� 1.4 × 10� 9.2 × 10� 1143.4 65.9 19.1 

 
 
 
 
 
10 

Gam 86 1148.6 58.7 0.2 3.3 × 10�� 8.6 × 10� 1.3 × 10� 1148.9 58.7 2.0 
70 1149.0 58.7 0.3 3.3 × 10�� 8.6 × 10� 1.7 × 10� 1149.3 58.7 2.0 
60 1148.7 58.7 0.2 3.3 × 10�� 8.6 × 10� 1.5 × 10� 1149.0 58.7 2.0 

Norm 86 1147.8 65.1 13.8 9.3 × 10� 3.0 × 10� 1.3 × 10� 1148.0 65.1 13.9 
70 1149.5 65.1 13.9 9.3 × 10� 3.0 × 10� 1.4 × 10� 1149.7 65.1 13.9 
60 1146.1 65.1 14.0 9.2 × 10� 3.0 × 10� 1.4 × 10� 1146.3 65.1 14.0 

Exp 86 1142.5 65.7 16.4 4.2 × 10� 1.4 × 10� 8.7 × 10� 1145.5 65.7 17.5 
70 1133.3 65.9 17.2 4.1 × 10� 1.4 × 10� 9.5 × 10� 1136.3 66.0 18.3 
60 1133.6 65.9 16.8 4.1 × 10� 1.4 × 10� 9.1 × 10� 1136.6 65.9 18.0 

 
 
 
 
20 

Gam 86 1148.5 58.7 0.2 3.3 × 10�� 8.6 × 10� 1.5 × 10� 1148.7 58.7 1.3 
70 1148.9 58.7 0.3 3.3 × 10�� 8.6 × 10� 1.9 × 10� 1149.0 58.7 1.4 
60 1148.6 58.7 0.3 3.3 × 10�� 8.6 × 10� 1.8 × 10� 1148.7 58.7 1.3 

Norm 86 1147.6 65.1 13.8 9.3 × 10� 3.0 × 10� 1.3 × 10� 1147.7 65.1 13.9 
70 1149.4 65.1 13.9 9.3 × 10� 3.0 × 10� 1.4 × 10� 1149.4 65.1 13.9 
60 1146.0 65.1 14.0 9.2 × 10� 3.0 × 10� 1.4 × 10� 1146.1 65.1 14.0 

Exp 86 1141.1 65.7 16.3 4.2 × 10� 1.4 × 10� 8.6 × 10� 1142.5 65.7 16.8 
70 1131.9 66.0 17.2 4.1 × 10� 1.4 × 10� 9.5 × 10� 1133.2 66.0 17.7 
60 1132.3 65.9 16.8 4.1 × 10� 1.4 × 10� 9.1 × 10� 1133.7 65.9 17.3 

 
 
 
 
25 

Gam 86 1148.5 58.7 0.3 3.3 × 10�� 8.6 × 10� 1.7 × 10� 1148.6 58.7 1.2 
70 1148.8 58.7 0.3 3.3 × 10�� 8.6 × 10� 2.1 × 10� 1148.9 58.7 1.2 
60 1148.4 58.7 0.3 3.3 × 10�� 8.6 × 10� 1.7 × 10� 1148.5 58.7 1.2 

Norm 86 1147.6 65.1 13.8 9.3 × 10� 3.0 × 10� 1.3 × 10� 1147.7 65.1 13.9 
70 1149.4 65.1 13.9 9.3 × 10� 3.0 × 10� 1.4 × 10� 1149.4 65.1 13.9 
60 1146.0 65.1 14.0 9.2 × 10� 3.0 × 10� 1.4 × 10� 1146.1 65.1 14.0 
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SAM    
In % 

DIS ���  
in 
% 

%��� ��� %�� 

�̄��� �̄�����
∗  �̄���

�  �̄��� �̄�����
∗  �̄���

�  �̄��� �̄�����
∗  �̄���

�  

Exp 86 1140.7 65.7 16.3 4.2 × 10� 1.4 × 10� 8.6 × 10� 1141.7 65.7 16.7 
70 1131.6 65.9 17.2 4.1 × 10� 1.4 × 10� 9.5 × 10� 1133.0 66.0 17.5 
60 1132.0 65.9 16.8 4.1 × 10� 1.4 × 10� 9.1 × 10� 1133.0 65.9 17.2 

 
Table 3 presents the results of the evaluation under nonresponse. As shown in column 6, the percent average 

absolute relative bias, %��� of the alternative calibration estimator �̄���
� , was negligible and almost unbiased 

with gamma distribution and considerably small in all sample settings for normal and exponential distributions, 
making it a more reliable calibration estimator for small area. These values are better than that produced by the 
calibration synthetic estimator �̄�����

∗ , and negligible compared to that of the existing estimator �̄��� . The 
performance of the new calibration estimator is seen as an improvement of the [23] alternative distance measure 
in stratified sampling over that of [7] and [8]. As expected, this result agrees with the argument of [23] on the 
choice of weights in the presence of nonresponse. In addition, the effective reduction in the bias of �̄���

�  further 
justifies the suggestion by [21] on addressing both small area problems and nonresponse adjustment. 
 
Again, in column 9 of Table 3, the result clearly shows that the new estimator, �̄���

�  was consistently more 
efficient under the three probability distributions and sample settings considered than �̄�����

∗  and �̄���.  Other than 
weight adjustments, this result is in tandem with the suggestions of [4] that partitioning the elements perceived 
to belong to the response homogeneous groups (RHGs) helps in reducing the variance of the interest variable. 
 

Furthermore, the result of column 12 of Table 3 shows that  �̄���
�  has %�� between 1.2% to 2.9% for gamma 

distribution (which is less than 10% and makes the bias almost negligible), 13.9% to 19.1% for normal and 
exponential distributions for different sample settings, better than that of �̄�����

∗  and �̄���.  These values fall within 
the benchmark of 25% proposed by [24] for small area estimators and has given preference to �̄���

�  as being very 
suitable for small area estimation in the presence of nonresponse. 
 
It is worthy of note that the result indicates a very strong correlation between units in the domains within 
groups. However, the result was different in-between the groups (strata), as the correlation was very weak with 
the elements of the population as informed by the simulation study. In fact, in the entire population, there was 
no significant correlation recorded for the three probability distributions, which supports the reason for 
stratification. Hence, the homogeneity created within the groups has paid off for both small sample size and 
nonresponse. 
 

4 Conclusion 
 
In conclusion, the concept of calibration on new design weights and alternative distance measure is a 
contribution towards the development of an ultimate estimator for small area estimation in the presence of unit 
nonresponse. This concept has yielded a fruitful result compared to the [7] and [8] approach.  Consequently, this 
result will further enhance the disaggregation of national data and effective estimation in small areas with 
negligible biases in areas where there are small/no sample observations for proper policy implementations. More 
so, the New Calibration Estimator will be a useful tool in the hands of researchers and users of statistics by 
bridging the gap created because of small/no sample size and nonresponse in estimation of population 
parameters (mean or total) in small areas. Unlike the Statistical software, ETOS, (that takes care of  adjusting 
the initial stratified simple random sample weight with the response set and then calibrate), Software developers 
should think towards developing a statistical software that will handle both the cross-sectional borrowing of 
strength using the stratified sampling design with the response set, and then calibrate with the alternative 
distance measure. As this will encourage wide application and usage. 
 

5 Implication to Research 
 
This paper considered the use of a calibration weighting scheme in small area estimation under stratified 
sampling design to produce reliable synthetic estimators of population mean in the presence of nonresponse. 
The paper also presented a calibration estimator with an alternative weighting scheme that exhibits smaller 
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relative biases, gain in efficiencies, and highly preferred coefficient of variations suitable for small area 
estimation. This supports the idea of calibration technique and weights adjustments using the assumed constraint 
on synthetic estimators under stratified sampling design for greatly improving the precision of estimators even 
in areas where there are smaller/no sample observations. The result of the coefficient of variation also suggests 
that when nonresponse occurs, it corresponds to an additional phase of sampling determined by the original 
sample design in line with [21] and the adoption of the alternative distance measure by [23] under stratified 
sampling has paid off. In terms of the probability distributions, the proposed estimator is more consistent in 
performance with gamma distribution preferably because of the choice of parameters, which may require further 
investigations in future work.  
 
Emphatically, the use of this technique will drastically not only reduce sampling errors but will also minimize 
non-sampling errors, which in most cases seriously distort results of the survey as seen in most small area 
estimations. It therefore suffices to say that the proposed estimator has an endearing advantage over existing 
estimators of its class in SAE in the disaggregation of macro data with minimized error for planning and policy 
implementation in local areas.  
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