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In this article, a special expansion method is implemented in solving nonlinear integro-partial differential equations of (2 + 1)
-dimensional using a special expansion method of (G'/G, 1/G). We obtained the solutions for (2 + 1)-dimensional nonlinear
integro-differential equations in real physical phenomena. The method is applied on (2 + 1)-dimensional space time and solved
in three different cases: hyperbolic, trigonometric, and rational functions. The obtained solutions for each result were
illustrated by graphical plots using Wolfram Mathematica 9.0 software packages. Furthermore, the obtained results are exactly
fit with exact solutions which solves the complicity of finding the solution for nonlinear integro-partial differential equations.
Finally, the method is powerful and effective to solve partial differential equations of nonlinear integro form.

1. Introduction

Nonlinear differential equations (NLDEs) are differential
equations (DEs) that are not a linear equation in the
unknown functions and their derivatives. Many models in
mathematics and physics are described by nonlinear partial
differential equations (NLPDEs). And they are widely used
to describe complex phenomena in various fields of applied
sciences, especially in physics and engineering. The investi-
gation of searching solutions for nonlinear integro differen-
tial equations plays an important role in nonlinear physical
science, because the solutions can describe various natural
phenomena of the problems such as wave traveling, vibra-
tions, solitons, and propagation with a finite speed. Different
researchers studied the practical and theoretical investiga-
tions of applications of partial differential equations [1-5].
Integro-differential equations (IDEs) are differential
functional equations involving unknown function f(x)
together with both differential and integral operations on f
. The integro-partial differential equation (IPDE) is an IDE
such that the unknown function depends on more than
one independent variables. The IPDE is divided into linear

and nonlinear. We model real-life problems usually result
in mathematical form as follows: functional equations, ordi-
nary differential equations (ODEs) or partial differential
equations (PDEs), integral or IDEs, and stochastic equa-
tions. Most mathematical modeling of physical phenomena
contains IDEs [6-11]. The theory and application of
integro-differential equations play an important role in
many fields like engineering sciences, fluid dynamics, and
nonlinear optics [12-14].

Ito equation (IE) is one form of NLPDE which describes
many branches of physics such as condensed matter physics,
fluid dynamics, and optics. The KdV equation was investi-
gated experimentally and theoretically to find its solution
[15]. [16] discovered numerically that its solutions seemed to
decompose at large times into a collection of solitons: well-
separated solitary waves [17]. Ito [18, 19] obtained the well-
known generalized (1 + 1)-dimensional and generalized (2 +
1)-dimensional Ito equations by generalization of the bilinear
KdV equation. There are two essential types of solutions for
NLPDEs, which are analytical (exact solution) and numerical
solutions. The methods of solving exact solution of nonlinear
integro-partial differential equations (NLIPDEs) are used in
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differential transform method [20], reliable method [21],
Kudryashov method [22], generalized Kudryashov method
[23], auxiliary equation method [24, 25], extended auxiliary
equation method [26], G'/G—expansion method [27], inverse
scattering method [28], modified simple equation method
[29-31], (G/G,1/G)-expansion method [32, 33], and
extended simple equation method [34]. NLIPDEs can be
observed in various scientific fields, such as plasma physics,
optical fibers, fluid dynamics, and chemical physics [35]. The
last decades have been witnessed for the discovery of a number
of new techniques to solve the nonlinear differential system
[36, 37]. Exact solutions for the nonlinear integro-partial dif-
ferential equations have fundamental importance, since most
of the complex phenomena are modeled mathematically by
nonlinear integro-partial differential equations.

The nonlinear evolution equations (NLEEs) play a key role
in describing a scientific phenomena. Among these, the
Korteweg-de Vries (KdV) equation models the shallow water
wave dynamics near ocean shore and beaches, the nonlinear
Schrodinger’s equation describes the dynamics of propagation
of solitons through optical fibers, and the Schrodinger-Hirota
equation describes the dispersive soliton propagation through
optical fibers [35, 38-40]. The investigation of finding exact
solution of many kinds of Ito equation has been conducted
via different peoples and in different times [41-45].

In some fields such as nuclear reactor dynamics and
thermoelasticity, we need to reflect the effect memory of
the systems in model. If such systems are modeled using par-
tial differential equations, which involves functions at a
given space and time, the effect of past history is ignored.
Therefore, in order to incorporate the memory effect in such
systems, an integral term in the basic partial differential
equation is introduced and this leads to an integro-partial
differential equation.

The interaction process of two internal long waves is also
described by Ito equation [19] which has the single-soliton
solution and periodic solution of Equation (1) by using the
Hirota bilinear method. Different scholars have been
obtained different solutions. New exact solutions to the (2
+1)-dimensional Ito equation, extended homoclinic test
technique, has been studied [46]. Moreover, [47] con-
structed the generalized solitary wave solutions by using
the Exp-function method. Extended three-wave method for
the (1 +2)-dimensional Ito equation has been studied by
[48]. [46] investigated multiperiodic wave solutions of Equa-
tion (1) by using Riemann theta function, and [49] discussed
the solutions having the nature of breathers, rogue waves,
and solitary waves by applying the homoclinic breather limit
method. Also, [50] has studied multiple kink solutions and
multiple singular kink solutions for (2 + 1)-dimensional
nonlinear models generated by the Jaulent-Miodek hierar-
chy. Very recently, it has also been shown that there are
diverse interaction solutions to Equation (1). Finding the
exact solution of NLPDEs has advantages better than
numerical solutions, since they can reduce the error term.

The Ito equation is the Korteweg-de Vries (KdV) equation
type equation and its bilinear transformation. The rolling
behavior of ships in the regular sea and interaction process
of two internal long waves are often predicted by Ito equation
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and gave the single-soliton solution and periodic solution of
Equation (1) [19]. Generally, in this article, we consider
NLPDE of (2 + 1)-dimensional of the following form:

W,+W

XXX

L A3RW W, + WW,,)
* (1)
+ 3WXXJ Wdx +aW ,, +wW,, =0,

(o9

where W(x, y, t) is an analytic function, dx™' = [dx, and
and w are two auxiliary constants.

If « =0 and w =0, then Equation (1) can be reduced to
(1+ 1)-dimensional Ito equation which was first proposed
by [36].

This article focuses on (2 + 1)-dimensional NLIPD equa-
tions when « and w are different from zero.

Then, by setting W =u, from Equation (1), we get the
following:

uxtt + uxxxxt + 3(2uxxuxt + uxuxxt)
* (2)
+ 33Uy | Udx + athy + 0, = 0.
oo

Large varieties of physical, chemical, and biological phe-
nomena are governed by NLPDEs. One of the most exciting
advances of nonlinear science and theoretical physics has
been the development of methods to look for the solutions
of NLPDEs. Finding the solutions to NLPDEs plays an
important role in nonlinear science like nonlinear wave phe-
nomena of dispersion, dissipation, diffusion, reaction, con-
vection, and generally in nonlinear physical science, since
they provide much physical information and more insight
into the physical aspects of the problem and thus lead to fur-
ther applications. Some NLPDE are Ito equation, Sawada-
Kotera equation, Burgers-Fisher equation, KP-hierarchy
equation, Jaulent-Miodek equation, etc. In this paper, we
aim to solve NLPDE using the special expansion method
and to illustrate the nature of the obtained solutions in geo-
metrical models.

2. Mathematical Formulation and Results

2.1. Special Expansion Method. In this section, we explain

the steps to be followed for the methods of (G'/G, 1/G)
which is to determine the solutions of travelling waves of
nonlinear physical phenomena. To apply the method of (G
'/G, 1/G), we describe the main steps based on [32] as
follows:

Remark 1. Let the second-order linear ordinary differential
equations (ODEs) of the form

G"(§) +AG(§) =1. (3)
Set ¢ = G'/G and B = 1/G, and then, we get

¢'=—¢> +np-1 B =—¢p. (4)
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Remark 2. If A < 0, then the general solution of Equation (3)
has the following form:

G(&)=A, sin h(é;'\/j) + A, cos h(Eﬂ) + %, (5)

where A, and A, are arbitrary constants.

Consequently, we have

A 2mpA- N
Mo +n?

p’ , (6)

where o = A2 - A2.

Remark 3. If A > 0, then the general solution of Equation (3)
has the following form:

G(§)=A, sin (E\/X) + A, cos (E\/X) + g (7)

Remark 4. If A = 0, then the general solution of Equation (3)
has the following form: G'’ + AG = which becomes G'' = 1.
Then, integrating both sides with respect to &, it becomes the
following: G' =& + A,, where A, is constant of integration.

Again integrating with respect to &, we get the following:

GE)= T8 + AL+ Ay, (®)

where A, and A, are constants.

And subsequently, it establishes the relation between ¢
and B.

2.1.1. The Main Steps of Special Expansion Method. In this
section, we describe the main steps of the special expansion
methods by using two variables (G'/G,1/G) expansion
method.

Step 1. First, we change the given nonlinear integro-partial
differential equation (NLIPDE) to nonlinear partial differen-
tial equations (NLPDEs).

Suppose we have the following NLPDEs in the form

) =0, (9)

G (thy Uy 1y 1

> User Uy Uiy U

ol e
where G is a polynomial of unknown function u and its total
derivatives with respect to £. And its various partial deriva-
tives in which the highest order derivatives and nonlinear

terms are involved.

Step 2. We use wave transformation to convert NLPDEs to
ODEs:

u(xy,1) = UE),E=x +y - kt, (10)

where w is arbitrary constant.

Apply the traveling wave transformation Equation (10)
and integrate the resulting equation with respect to & as
many as possible. And hence, Equation (9) is reduced to
the following ODEs:

P(U, v uu'tut ) =0. (11)

Step 3. Assume that the solution of Equation (11) can be
expressed by a polynomial in the two variables ¢ and f as
follows:

M=
M=

UE) =) (c¢')+ ) (b4 B), (12)

i
(=]
ii
o

where ¢;(i=0,1,2,3,---N) and b;(i=1,2,3, -+, N) are arbi-
trary constants. And ¢ and S satisfy the following condition.

o= G mdpO - 5O ()

Step 4. Determine the positive integer N in Equation (12) by
using the homogeneous balance equation between the high-
est order derivatives and the nonlinear term appearing in
Equation (11). More precisely, if the degree of U(£) is deg
[U(§)] =N, then the degree of other term will be expressed
as follows [51]:

deg [ 7] =+ qana deg [ (v (L)

=Np+s(N+7),
(14)

where N is the degree of the highest order of the function, g is
the order of the highest order, p is the degree of coefhicient of
nonlinear term, s is the degree of nonlinear term, and r is the
order of nonlinear term which can be expressed as follows:

N+qg=Np+s(N+r). (15)

Step 5. From the above steps, we get the value of N and apply-
ing Equation (12), we obtain the form of the solution of Equa-
tion (11). Then, substitute Equation (12) into Equation (11)
along with Equation (4); the left-hand side Equation (11)
can be converted into a polynomial in ¢ and f§ in which the
degree of f3 is not longer than 1. Equating each coeflicients
of this polynomial to zero yields a system of algebraic equation
which can be solved by using the Wolfram Mathematica 9.0
software package to get the values c;, b;, k, and #. Proceeding
to these steps, we will concentrate on the following
applications.

2.2. Application of Special Expansion Method on (2+ 1)-
Dimensional Ito Equation. From the traveling wave transfor-
mation of Equation (10), we have the following:

u(xy,t)=U(&),E=x+y—kt. (16)



Inserting Equation (10) into Equation (2), we get the fol-
lowing ODE form:

(k—a—w)U’—U<3>—3(U’)2+d=o, (17)

where d is constant of integration.
Let setting U’ = V; then, Equation (17) becomes

(k—a-w)V-V"-3V2+d=0. (18)

Balancing the highest order derivative V'’ with the non-
linear term V? of Equation (18) by Equation (14), we get the
following:

N+2=Nx0+2x(N+0), (19)

and we get N =2.
Consequently, the solution of Equation (18) has the fol-
lowing form:

M
MN

V(&)= (bi(bi_lﬁ) =c,tcp+bf+ ¢+ b, B,

(20)

> (e#) +

1

Il
o
Il
—_

where ¢, ¢;, ¢,, by, b, are constants.

To solve for Equation (18), first we have to find V, v/,
V', and V? from Equation (20). We have V(§) =c, + ¢,¢
+ b, B+ c,¢* + by¢B. Now, by using Equation (4), we obtain

V= _Cl¢2 +onf-cA-b¢p- 2C2¢3 +26,¢np

(21)
- 26,6\ - b, ¢’ + bz”lﬁ2 — b, AB+ b,¢* .

Differentiating Equation (21), we get the following:

V"= =2¢,¢(=¢* + 1B = A) +c;n(~¢B)
—b,B(~=¢* +nB—A) —byp(~p)
— 60,07 (—¢* +nf—A) +26,nB(=¢” + B - A)
+20,m$(~¢B) — 26,1 (=¢* + 1B - 1) (22)
= 2b,B (=4 + 1B = 1) = by¢* (—¢P)
+2b,nB(-¢B) — bA(—¢)
+2b, B¢ (=9 + 1B = X) + byd* (—¢P).

Hence, we get

V= 251‘/’3 =3cinPe +2cA¢ + 2b1ﬁ¢2 - blﬁz"l
+b, A+ 6c2¢4 - 1062</>211[$ + 862¢2)L
+ 2c2[32172 —4c,nPA+ 2c2)t2 - 2b2¢11ﬁ2 + b, PA.
(23)
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From Equation (20),

VZ= biﬁz + 2‘/’171192/32 + (szgﬁz +2Bb;cy +2f¢b,c,
+ cé +2B¢bc, + Zﬁgbzbzcl + 2¢cyc; + ¢2cf
+2B¢%bc, + 2B byc, + 2¢7coc, + 2¢7¢ic, + ¢hcs.
(24)

2.2.1. Case I. If A<0 (Hyperbolic Function Solutions).
Substituting Equation (6) into Equation (23), we get the fol-
lowing:

V' =2¢,¢° = 3¢,nP + 2c, A + 2b, B*
42 ) 12
_ bm(w) by B+ 6o’

Ao+ 1P
2 ) _ 32
0esB + BesA s 20 <M>

Mo+
—26,1BA+ 26,07 — 2b2¢11<

+ b, oA =2¢,¢° — 3¢, + 2¢c, A + 2b, B¢
L bng’A 2biPBA bk
No+r Mo+t Mo+
+ b, B+ 6¢,¢* — 10¢,¢° 13 + 8¢, ¢p* A
~ 20,7 ¢*A . 4o, A 26,12\
Ao+ 1P

—¢?A +2npA - }L2>

Mo +n?

Mo+t Mo+
2b,n¢° A

—26,PA + 26,07 + e

_ 4b,¢n* B +
Vo + 1P

o+

2b2¢>17)t2
Yorrp + b, A

(25)

Again, putting Equation (6) into Equation (24), we
obtain the following:

Ve bi$*A  2binBA bIAY 2b,b,¢°A
No+nr Mo+t Mo+ Mo+
L A49bibynpA  2b, bypA*  ¢'b3)
MVo+npr Mo+ Mo+
20°b3npA _ $Pb3N
+ Vo = - Yot 7 +2Bb,¢c, + 2Bdbyc,

+ cg +2B¢byc; + Zﬁq’)zbzcl +2¢cyc; + ¢2cf
+2B¢%b,c, + 2B by, + 2¢7¢coc, +2¢7¢ic, + Phe.
(26)

By using Equations (20), (25), and (26), we obtain Equa-
tion (18) equals to
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co(k—a—w)+cplk—a—w)+b pk-a-w)+e,¢*(k-a-w)
+by¢B(k — a— w) = 2¢,¢° +3¢,1B¢ — 2¢,A¢ — 2b, B¢
_ bing’A +2b1’72ﬁA_ binh?

- b, BA-6c,¢"
Mo+t Mo+ Mo+ i# 29
2,7¢°A  doyPBA 20,20
+ 106,61 - 8c, 62 - 62211¢ B ;mﬁ . Zcm
Mo+npr ANo+wy Mo+n?
2b,n¢°A  4bnP A 2b,¢mA°
+2C2’1ﬁ/\_2C2/\2_ 22”/‘!5 " 22¢’7ﬁ _ 22¢’7
Mo+ Mo+ Ao+
2 42 2 242
b oA 32b1¢>)l B 62b1;1ﬁ/\ N 3!71/\
Mo+n? ANo+wpr Mo+
. 6b,b,¢° A 12¢b,b,1BA . 6b,b,pA?
Mo+ 1P No+1p Mo+ 1P
3¢'B30  6¢PbonPA  3¢Tb3N°
+ 2(/5 2 _ ¢2 27]ﬁ + ;p 2 _6ﬁb160
Mo+ Mo+ Ao+

= 6B¢b,co - 3‘:(2) —6Bgb,c; = 6B’byc, — 6¢coc, —3¢°cy
—6B¢%byc, — 6B byc, — 647 coc, — 6¢°cic, — 3¢*c3 +d = 0.

(27)

Setting the coeflicients of polynomial ¢ and f zero from
Equation (27), we obtain the following sets of algebraic equations:

3b54
t—6c, -32+ —2 =0,
¢ 27 VYo
¢’B: —6b,c, =0,
2b,mA 6b,b,A
¢ 1 —2c, — 66,0 — — 2t S+ 12 ~ =0,
AMo+n: AMo+n
6b3nA
8B+ —2b, +10c,1 - 6b,c, — 6,b, — 21— =,
AMo+n?
26,1°A
¢* oy (k—a—w)—8c,A -3¢} - 6cyc, — zczr] 5
AMo+n
367 . 3050 byyh _
MVo+npr NVo+nt No+n?

B : by(k—a—w) + 3¢, —byA - 6b,c,
4by’A - 12bbind 0

- 6¢,by + ,
YU Vo Mo+
2b,yA 6bybyA
¢:c(k—a—w)—2cA—6cyc, - 22;1 + 212 ,
Mo+ Mo+
B:b(k—a-w)—bA-6bc,+2c,mA
. b’ Aoh 6nAb?
Mo+ Mo+ Mo+n?
bn)\?
¢ i co(k— a— w) +2c,A* =3¢ - AZ;H+ 5
n
2e,°A°  3biA
+ 262'7 5 +d=0.
AMo+n? AMo+y
(28)

Now, by solving the above algebraic equation using Wolfram
Mathematica 9.0 software packages, we get the following sets of
results.

Result 1

1
q=¢ <—13A +/97)2 - 12d), ¢ =0,¢,=-2,

b, = +ivV/10\/oA =21, b, =0,

k=a+ V970> - 12d + w,n = ii\/g\/a. (29)

Now by using the above values of variables and putting
into Equation (20), we get the following:

1
Vii=¢ (—13/1 + /9712 - 12d) +oB-2¢%  (30)

Then, by using Equation (13), the solution of Equation
(2) is as follows:

Vii=

2
1 5 1 G'
. (—13Ai Vo7A? - 12d) +2'7<5> _2<E> .

(31)

But, when we put the value of G from Equation (5), we
get the following:

Vv, = é (—13/\ + /9712 - 12d>

24
+ (Al sinh (Em) + A, cosh (E\/:X) +11/A)
., (A1 sin h(E\/j) + A, cos h({\/j) + 11/){)’ 2.
A, sin h(Eﬂ) +A, cos h(E\/q) +n7/A
(32)

Then, the exact solution of (2 + 1)-dimensional Ito equa-
tion of the form (2) is as follows:

V= é(—l?)ki Vo7A? - 12d)

2n
+A1 sinh (E\/j) + A, cosh (Eﬂ) +7/A
N ZA(Al cos h({\/j) + A, sin h(fﬂ)) y
(A1 sin h(E\/—_/X_> + A, cos h(Eﬂ) + 17//\)
(33)

By letting A, =0, =0, and A, > 0 in Equation (33), the
particular solution of Equation (2) is as follows:



Vi = é (—13A +1/97)2 - 12d) +2A tan 12 (Ex/—_)l)

(34)

Then, by letting A=-0.3, d=0.4, t=0, and y =3, the
graph of Equation (34) has the following forms.

From Figure 1, we see the solution of (2 + 1)-dimen-
sional Ito equation with respect to the result 1 and A=—
03,d=04,1t=0,y=3,A,=0,#=0, and A, >0, and we
obtain y <0, when —10 <x < 10.

Again letting A, =0, #=0, and A, >0 in Equation (34),
we get another particular solution of Equation (2) as follows:

Vi =

(—13/\ +\/97)2 - 12d) +2) cot K2 (5\/3)

(35)

| =

Then, by letting A=-0.3, d=0.4, t =0, and y =3, the
graph of solution of Equation (35) has the following forms.
Figure 2 of the solution (35) concludes the solution of (2
+ 1)-dimensional Ito equation of result 1 when A=-0.3, d
=04,t=0,y=3,A,=0,1=0, A; >0, and for -10 <x < 10,
it has no solution in real number on the domain y > 3, and
the solution is always y < 3 in the range of =10 <x < 10.
Result 2

1
=3 (—4Ai V28)2 - 3d>,
¢ =0,6,=-2,b;=0,b,=0,

k=a+2v28)%-3d,n=0. (36)

Now by using the above values of variables and putting
into Equation (20), we get the following:

Vi@ = 3 (he VR 3d) 2 ()

Then, by using Equation (13), the solution of Equation
(2) has the form 1/3(—4A £ V28X — 3d) - 2(G'/G)’. Now,

when we put the value of G from Equation (5), we get the
following:

Vi = % (—4A +1/2802 - 3d)
, AV=A cos h(Eﬂ) +A,V/~ A sin h(f\/:X) ’
_ ( A, sin h(&ﬂ) + A, cos h(g\/j) ) :

(38)

Then, the exact solution of (2 + 1)-dimensional Ito equa-
tion of (2), if A <0 with respect to result 2 based Equation
(36), is as follows:
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é (-4r+ V2812 - 3d)
) 2<A1\/3 cos h({\/j) +A,v/=\sin h(fﬂ))z
(Al sin h(fﬂ) + A, cos h(fﬂ))z '

(39)

By letting A, =0 and A, > 0 in Equation (39), the partic-
ular solution of Equation (2) is as follows:

Z(AZM sin h(fﬂ))z
(Az cos h(fﬂ))z .
(40)

(—4A +/28)2 - 3d> -

|
W[~

Then, the general solution of (2 + 1)-dimensional Ito
equation for hyperbolic function with respect to result on
Equation (36), when A, =0 and A, > 0, has the form of

= % (_4)\ + m> +2A tan K’ (Eﬁ) (41)

The graph of the particular solution when A=-0.3, d
=0.4, t=0, and y =3 is as follows.

From Figure 3, the solution of (2 + 1)-dimensional Ito
equation with respect to result 2 and A=-0.3, d=04, t =
0, y=3, A, =0, n=0, and A, >0 implies that condensed
form around x = -3.

Again letting A, =0 and A, > 0 in Equation (39), we get
another particular solution of Equation (2) as follows:

2(A1\/3 cos h(fﬂz))z |
o)

(42)

Vi = % (—4A +/28)2 - Sd) -

Then, the general solution of (2 + 1)-dimensional Ito
equation for hyperbolic function with respect to result on
Equation (36) when A, =0 and A; > 0 has the form of

Vi =

(—4/\ +1/28)2 - 3d> +2A cot I (5\/3) (43)

W =

The graph of the particular solution when A=-0.3, d
=0.4, t=0, and y =0 as follows.

From Figure 4 above, we see the solution of Equation
(43) when A =-0.3,d=0.4,t=0,y=3,A,=0,and A, >0,
—10 < x <10 has the solution between —10 < x <10, and it
bends downward.
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FIGURE 2: Graphical solution of Equation (35) when k= a + v/97A% — 12d + w in 3D and 2D, respectively.

— X
10
Vllb
T T — X
- 5 10
=2.0 4
T — X
5 10

FIGURE 3: Graphical solution of Equation (41) when k= a +2v28)A* — 3d in 3D and 2D, respectively.
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]
&

FIGURE 4: Graphical solution of Equation (43) when k = a + 2v/28)A* — 3d in 3D and 2D, respectively.

2.2.2. Case II: If A>0 (Trigonometric Function Solutions).
Substituting (6) into (23), we get

V' =266 = 2¢,nB¢ + 20, A — ¢ np + 2b, B
_ by¢’A 2biPBA bph?
No-p No-n Mo-n?

26,7 ¢*A

+b, A+ 6c2¢>4 - 10c2(/5211/3> + 802</>2/1 + e

4c,1° A
 No- n? '

2b,n9°A
Ao - n?

o -1
20,1\
Vo — 1P
+ 4b,¢n* A _ 2bz¢’7/\2

No-n  No-1

— 4c,1BA + 26,07

+b,A¢p.

(44)
Using Equation (6), Equation (24) becomes

bf(/)z)t ~ ZquﬁA . bf)tz N 2b,b,\¢*
Mo - 7> Ao - n? Mo - 7 Mo - 7>
_ 4b,b,¢npA 29‘5171172)tz n ¢’4b§A " 2b§11ﬁ)\¢2
Ao - 17? Ao - 7? Ao - 17> Mo - 7?
¢2b2A2
+ 2—22 +2Bbcy +2Pdb,cy + co + 2Bdb, ¢,
AMo—-n
+2B¢%byc, + 2¢c,c; + PE +2B¢%b,c,
+ 2[3¢3b2c2 + 2</>2c0c2 + 2(/536162 + ¢>4c§.

V2=

(45)

Again from Equations (44), (45), and (20), Equation (18)
becomes

c,(k—a-w)+cdlk—a-w)+b Bk-a-w)
+6,¢° (k—a—w) + b,¢B(k - a— w) —2¢;¢°

bing*A _ 2by7 A

No-p No-1P

- 20, A+ 3c,m¢ - 2b1ﬁ¢2 +

bnA?
Mo -
2,12 deard 201202
_ 2ol A + ;217 pA - 262’7 A +4c,mBA
Mo-n* Mo-n?
2byg*A  4bygPiA  2bygn)’
No-p  Xo-  No-i
b p- 3bi¢°A  6biBA  3BiAP 6bbAg
2 AZG—V[Z )|,20_712 )LZG—}’]Z AZO'—rlz
L 12bibygnpA  6¢bib A% 3¢'bA 6bnpAY’
Mo - 1 Ao — 7 Vo — 7 o — P
3926507
- Ag)a _2 " — 63b;cy — 63¢b,cy — 3¢5 — 6B, ¢,
- 6ﬁ¢2b261 —6¢cyc; — 3¢2C% - 6ﬂ¢2b1c2 - 6ﬁ¢)3b262
- 6¢7cyc, — 6¢7cic, —3¢*c; +d =0.

-b, A - 6cz¢4 + 10c2¢211ﬁ - 6cz¢>2/\

Mo -1

—20,A¢% = 2¢,A* +

(46)

Equating the coefficients of the powers of 8 and ¢ to be
zero, we obtain the following system of algebraic equations:

3650
fi—6c, - 30— 52— =0,
¢ 2 2 AZO‘—I’]Z
¢’B : —6b,c, =0,
¢ —2¢, - 60,¢, + 2b,1A - 6b,6,4 =0
! o No—p No-p
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6binA

2B : =2b, + 10¢c,n — 6b,¢
B 1 2N 261 )\Za—rlz

—6c,b, - =0,

¢* i oy (k—a—w) —8c,A -3¢ — 6¢yc,
2677 3biA 3p302 .\ bnA

_ _o,
Mo — 7P 2o — n? Vo — 7 Vo =
¢ﬁ : bz(k—(x—w) +3Cl’1_ b /\—6b2C0 _6C1b1
L AbPA 12bybigd
/\20'—17 /\ o - 1,] >
2 2
¢:o(k—a—w)—=2cA-6¢c, + 2217211A _ 6¢;b1b2A ,
A 0'—1’]2 A 0_’12
B:by(k—a-w)—bA—6bcy+4dc,nA
_ 2byPA . o) enbt
/\20‘_;72 AZO__nz /120_'_’72 s
bnA*
¢ ok - -w) =26, =3¢ + Al(lr—ﬂz
2N 3

MVo-n2 No-n
(47)

Then, by solving the above algebraic equation using
Wolfram Mathematica 9.0 software packages, we get the fol-
lowing results.

Result 3

1
Q= (13A +vV-12d+ 47/\2), ¢ =0,6,=-2,
b, = +AV7/a = 21n,b, = 0,

1
k:ix/—12d+47A2+w,;1=15/\\ﬁ\/5. (48)

Setting the above values of variables into Equation (20),
we can get the following form of solution:

V(E) = é (1305 V/-12d + 4707) + 2B - 297, (49)

Then, by using Equation (13), the solution of Equation
(2) is a follows:

Then, the exact solution of (2 + 1)-dimensional Ito equa-
tion of the form Equation (2) is as follows:

Vy, = é (13A +v/-12d + 47/\2)
21
' A, sin (E\/X) + A, cos (f\/X) +1/2

2(A1\/Xcos (E\/X) A,/ sin (E\/_)>2
(A sin (E\/_) + A, cos (E\/_> +11/2)

(50)

By letting A, =0, =0, and A, > 0 in Equation (50), the
particular solution of Equation (2) is

V,,, = é (13Ai V-12d + 47/\2) +2A tan? («S\/X) (51)

Then, when A=0.7, d=0.4, and y=3, the graph of
Equation (51) has the following forms:

Figure 5 shows the exact solution of (2 + 1)-dimensional
Ito equation with respect to result 3 when A; =0, #=0, A,
>0, A=0.7, d=0.4, y=3, and -10<x<10. This figure
implies that the solutions are upward parabolic, and it
repeated above x-axis.

Again letting A, =0, =0, and A, > 0 in Equation (50),
we get another particular solution of Equation (6) as follows:

Vypp = % (13A +/~12d + 47AZ> +2A cot? (Ex/X) (52)

Then, the graph of Equation (52) has the following form:

From the above Figure 6, we see that it is the exact solu-
tion of (2+ 1)-dimensional Ito equation with respect to
result 3 of Equation (52), when A, >0, =0, A, =0, A=
0.7, d=0.4, y=3, and —10<x < 10. And the result of the
solution shows it has the form a parabolic upward and
crosses the x-axis.

Result 4

1
¢ = 5(—4/\i\/4A2—3»al),c1=0,c2=—2,
b;=0,b,=0,k=a+V4A\* -3d+w,n=0.  (53)

Then, setting the above values of variables into Equation
(20), we can get the following form of solution for Ito equa-
tion:

V(E) = % (—41 +/4)% - 3d) —2¢2. (54)

Then, by using Equation (13) for ¢, the solution of Equa-
tion (2) is a follows:

V(E) = % (—4/\ +/4)2 - 3d> -2 (Cé) . (59)

But, when we put the value of F of the form Equation
(7), we get the following:

V()= ; (~ar = var -3d)
(A1 sin (E\/X) + A, cos (E\/X))’
A, sin (E\/X) + A, cos (E\/X)

*(56)
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FiGURrE 5: Graphical solution of Equation (51) when +v/—12d + 47A% + @ in 3D and 2D, respectively.

FIGURE 6: Graphical solution of Equation (52) when +v/—12d + 47A* + w in 3D and 2D, respectively.

Then, finally we get the exact solution of (2+1)
-dimensional Ito equation with respect to the second case
result of the form (2) as follows:

V= ; (—M +/412 - 3d)
o VRe (60) o o))
(A1 sin (E\/X) + A, cos (E\/X))

(57)

By letting A, =0 and A, > 0 in Equation (57), the partic-
ular solution of Equation (2) is as follows:

Ve =

(—4A +/422 - 3d) —2) tan? (E\/X) (58)

Figure 7 shows the exact solution of (2 + 1)-dimensional
Ito equation with respect to result 4 when A; =0, A, >0, 1
=0,A=0.7,d=0.4, y=3, and at —10 < x < 10, and it makes
parabolic bend downward on y-axis.

Again letting A, =0 and A, > 0 in Equation (57), we get
another particular solution of Equation (2) as follows:

i (Alx/X cos (E\/X)z)z
oo o)

Vo = % (—4/\ + /412 - Sd) ~ 21 cot? (NX) .

V= % (—4/\ + /412 - 3d> -

>

(59)

Figure 8 shows the exact solution of (2 + 1)-dimension
Ito equation with respect to result 4 when A, =0, A, >0, 1
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FIGURE 8: Graphical solution of (44) when k = in 3D and 2D, respectively.

=0, A=0.7, d=04, y=3, and at —10<x <10, and it lies
always below x-axis in the form of parabolic.

2.2.3. Case III: When A =0 (Rational Function Solutions).
Substituting Equation (6) into Equation (23), we get

b, ¢*
V' '=2¢,¢ - 3¢,nBd + 2¢, A + 2b, f* — m
1 2
2b,nmP
m +b, A+ 6c2¢4 - 10c2¢271ﬁ + 862¢2A
26 ¢° - 4er’p — 4c,1PA + 26,17
2 2
A2 -2nA, Al-24A,
2b,n¢? 4b, ¢n?
_ . 2;1(/’ + 22¢’1 ﬁ +b21¢ﬁ
Al -2nA, A7 -2nA,

Again also substituting Equation (6) into Equation (24),
we get

2 2
vi= bf( o 2P ) +2¢b,b, (7“52 21P )
A7 —2nA, AT —2nA,

¢’ —2np

+ 22 (A% . 2:A2 +2PBbyc, +2Bpbyc, (61)

+ 5+ 2B¢byc; + 2P b,c, + 2, ¢y + ¢7E

+ 2ﬁ¢2b1c2 + 2,3¢3b2c2 + 2¢2cocz + Zgbsclc2 + ¢4c%
_ big? _ 2611 2b,b,¢° _ 4¢b,bynf

Al-2mA, Al-2nA, AZ-2yA, AI-21A,

4b2 2 2b2
A 2B 2 Bbicy + 2Bdbyc, (62)
AT -2nA, A7-24A,

+ 3+ 2Bbyc; +2BdPbyc, + 2¢cicy + ¢+ 2B¢7b ¢,
+ 2[3(/>3b2c2 + 2(/>Zcoc2 + 2gl>3¢:lc2 + ¢4c§.
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From Equation (20), (60), and (62), Equation (18)
becomes

V() =c,(k—a-w)+cpk—a-w)+b Bk—a-w)
+6,¢ (k- a—w) +bypf(k—a—w) —2¢,¢’

_ )L _ b 2 blfll(/52
+3,71¢ - 2¢,Ad - 2b, B +m
1 2
2b
- A?—IZfAz — b, BA - 66,6 + 10,¢%4B — 8¢, §*A
- 26 ¢° der’p +4c,mBA - 2c A2
2 2
A?-2nA,  Al-24A,
2b2’1¢3 _ 4b2¢;12ﬁ —b A ﬁ_ 3b%¢2
AZ-2nA, A2-2nA A9 A2 —2nA
1~ <hA, 1~ <NAy 1~ <hA,
61’%’7/3 _ 6b,b,¢’° 12¢b,b,np
Al-2nA, Al-2nA, Al-21A,
3¢*b2 6¢°b2
? 0 + ¥ b —6Bb,cy — 6f¢b,c,

) A% —2n4, A% —2n4,

- 3‘% —6B¢b,c; - 6[;‘/5217251 —6¢ci¢y— 3¢ZC%

—6B¢7b,c, = 6P’ byc, — 6¢7coc, — 6¢7¢ ¢, - 3¢'cs.
(63)

Then, by setting the coefficients of the polynomial to be
zero, we obtain the following sets of algebraic.

¢t =60, =3¢ — 52— 3, =0,
Al =214,
¢’B : —6b,c, =0,
¢ —2¢, — 6cyc; + 22b2’7 - 26b1b2 =0,
Af-2nA, No-n?
2 6byn
¢°B : —2b, +10c,n — 6b,c; — 6¢,b; + m =0,
¢ i ¢y (k— o — w) — 8c,A — 3¢} — 6¢,0,
267 3b? N by _
A2-2mA, A -2nA, A -2nA,
¢ : by(k—a—w) + 3¢y~ byA — 6b,cy — 6¢,b,
byt 12b,b,
Al-2nA, Al-24A,

¢:c(k—a—w)—2cA~6cyc, =0,
. 2by
B:b(k—a—-w)-bA-6bc,+4c,nA - m
ac, by
A2-2nA,  AP-2nA,°

¢ cy(k—a—w) -2\ =33 +d =0.

Advances in Mathematical Physics

Then, by solving previous algebraic equation using Wol-
fram Mathematica 9.0 software packages, we get the follow-
ing results.

Result 5

1
Q=73 (—4Ai \/4/\2—3d),c1 =0,¢,=-2,b,=0,
b,=0,k=a+2V4\* -3d +w,n=0. (65)

Then, setting Equation (65) values of variables into
Equation (20), we can get the following form of solution
for Ito equation:

(11/252 +AE+ Az) !
ni2E* + A& + A,

Vi =

—4)+V4A\? -3d) -2
(41 Vax? -3d)

W | =

(66)

When the value of # =0, then the solution of Equation
(66) is as follows:

Vi = % (—4A +V4A? - 3d) - 2( Ay )2. (67)

Al +A,

Finally, we get the exact solution of (2 + 1)-dimensional
space time equation with respect to the first result of case 3
in Equation (65) as follows:

2
Vs = % (—4/\ + /412 - 3d> L (68)

(A& + Az)z -
When A =0, we have

2
242

-3d- ————.
(Ag+A,)

Vi =+ (69)

Using the parameters d=-0.5, A; =1, A, =2,and t =0,
the graph of Equation (69) is as follows:

Figure 9 represents the exact solution of (2 + 1)-dimen-
sional space time with respect to the parameters d = —0.5,
A =1, A,=2,t=0, and y=3 which has maximum limit
on the y-axis.

Result 6
1
CO = 8 <_11Ai m), Cl :0) CZ :_2)
b, = 2</\A2 +1/A(AA3 —A%)) =27, (70)
aA + V730 - 12dA? + wA?
b2 :O,k: A% 5>
n=AA, +\/A(AA] - AD). (71)
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FiGURE 10: Graphical solution of (77) when k = aA? + V730> - 12dA? + wA?}/A? in 3D and 2D, respectively.

Then, setting the Equation (70) values of variables into
Equation (20), we can get the following form of solution
for Ito equation:

1
Voo (e VP 0d) a2, (2

Then by using Equation (13) for ¢ and f, the simplifica-
tion of Equation (72) leads to

v 1
2T ¢

N 2
(—uu V7302 - 12d) +211é - 2(%) . (73)

When we put the value of G from Equation (8) in Equa-
tion (73),

Vi, = é (—11A +/731% - 12d>

2 74
+ 2n _ né+ A, )
17/2£2 +AE+A, 11/2£2 +AE+A,

Hence, we get the exact solution of (2 + 1)-dimensional
space time with respect to result of (70) as follows:

Vs, = é (—11A +/73)2 - 12d)
N 2 O 2nE+ A ' (75)
n/2E” + A&+ A, (;1/252 +AE +A2>2
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By letting #=0, A, >0, and A, > 0 in Equation (75), the
particular solution of Equation (2) with respect to (70) is as
follows:

2
Vi = é(—ll/\i \/M) - 27‘41 (76)

(A& + A2)2 .

When A =0, we get

Vs, = i\/—lZd) - ﬁ. (77)

Then, by setting d =-0.5, A; =1, A, =2, and t =0, the
graph of (77) is a follows:

Figure 10 reveals the exact solution of (2 + 1)-dimen-
sional space time with respect to result 6 when the parame-
ters d=-0.5,A, =1, A, =2, and t =0 and in similar way as
figure 9 fixes its maximum from below on y-axis.

3. Conclusion

In this article, the solution of NLPDE of (2 + 1)-dimensional
space time is analytically solved by special expansion
method. The special expansion method is one of the direct
method to solve the nonlinear partial differential equations.
To apply the method, we used the combined form (G'/G, 1
/G) expansion method. The method has a great advantage
to solve the NLPDE which leads us to get exact solutions
for three different cases of A. The special expansion method
was applied on the proposed equations and leads to find for
hyperbolic functions, trigonometric functions, and rational
functions. Furthermore, the obtained results are exactly fit
exact solutions which solve the complicity of finding the
solutions for NLPDE. The obtained solution for each results
was illustrated by graphical plots using the Wolfram Mathe-
matica 9.0 software, and also, the surface plane models are
constructed side by side to show the physical and geometri-
cal interpretations on the ground. Finally, the method is
powerful and effective to solve NLPDE.
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