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Abstract 
 

The ability of the immune system to detect and eliminate most pathogens is essential for the survival of 
lower respiratory tract infection in 2016 by Olubadeji [1]. Lower respiratory tract infection (LRTI) 
constituted the second leading cause of death in all age bracket in Nigeria, Loddenkemper [2] said that 
Chronic lower respiratory diseases rank as the third leading cause of death in the United States. Intense 
research has been on how to reduce the spread of infection, which involves the mathematical modelling 
of the spread of infection based on mathematical epidemiological approach, This is necessary because a 
threshold cannot be discerned from the data generated from the Hospitals, rather it requires a 
mathematical model to analyze and simulate the LRTI dynamics on the enviroment. It also enables the 
calculation of the basic reproductive number (R0) which is an important threshold for determining 
whether the environments are at risk or not.  In this paper, we adopt the susceptible- Exposed-infected-
recovered-susceptible (SEIRS) model to depict the spread of infections in our environment. We 
qualitatively   analyze the model and establish that the virus-free state is locally asymptotically stable 
provided the basic reproduction number is less than unity. We solved the model numerically and simulate 
the solution for different scenarios on the network. The findings from our simulations are discussed. 
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1 Introduction 
 
Child mortality and morbidity is a factor that can be associated with the well-being of a population. It is also 
taken as one of the development indicators of health and socioeconomic status in any country Alderman and 
Behrman [3]. In order to reduce child mortality and morbidity which is one of the important Millennium 
goals, there is need to develop an effective and efficient model both (mathematics and computer science) that 
can be used to assess the attributes that are responsible for the prevalence of the diseases in pediatrics 
patients that are having LRTIs. This research is focused on children because a child’s death is emotionally 
and physically damaging for the mourning parents. Lower respiratory tract infection continues to be the 
second leading killer of children under five years of age worldwide. It is the leading cause of morbidity and 
mortality in both developing and developed countries Rudan et al, [4]. WHO [5] recognized respiratory 
diseases as the second important cause of death for children under five years in 2010. WHO [6] states that 
respiratory infections like pneumonia is one of the main three causes for newborn infant deaths. 
 

 Mathematical models have been used in the control of infectious diseases like that in Muhammed and 
Orukpe, [7] where it was applied to malaria control. In this paper, a modified mathematical version of 
Andreas et al. [8] for epidemics caused by respiratory syncytial virus is formulated. It is assumed herein that 
birth rate and death rate are unequal and that there exist latent individuals who have been infected but not yet 
infectious. All parameters are defined in Table 1. 
 

Under the above assumptions, the governing equations for epidemics caused by respiratory syncytial virus is 
given as: 
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where β(t) = b0 (1 + b1 cos(2πt + φ)) is the transmission parameter. For mathematical sensibility, it is 
assumed that bj > 0 for j = 0, 1 and δ, µ, σ, ϑ ,γ > 0. These equations are equipped with the following initial 
conditions: S (0) = S0, E(0) = E0, I(0) = I0 and E(0) = E0 . The population size is assumed to vary with birth 
and death rates unequal so that  
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Table 1. The description of parameters and values used in the model 
 

� 0.051 birth rate 
� 0.041 death  rate 
� 66 rate of loss of infectiousness 
� 91 contact rate  
� 60 rate of loss of immunity 
� 0.61 phase angle 
b0 0.15 average transmission parameter 
b1 1.8 amplitude parameter 



2 Disease-free Equilibrium
 
The population is free from infection if 
(4) are set at zero and the solution is given by
 

ψ0 = (S, E, I, R) = (δ/µ , 0, 0) 
 

which corresponds to the result derived by Gumel [9
Jacobian of Eqns. (1)-(4) at ψ0. The eigenvalues derived based on signs predict the local stability of 
Jacobian is given by: 
 

 

where λ1 = −µ, λ2 = −(µ + γ) and the roots of the quadratic
 

 

Now, λ1 < 0 and λ2 < 0 since all parameters have been assumed to be positive. In th
Gumel [10], defining 
 

, 
 

shows that <0 < 1, thus f(λ) has a negative real 
 

 
Lemma 1. The disease-free equilibrium ψ
ℝ� > 1. 
 

3 Endemic Equilibrium 
 
When infection is present (i.e. I 6≠
(�∗, �∗, �∗, �∗) individually expressed as
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Equilibrium 

The population is free from infection if I = E = 0 and there is an infection-free equilibrium if the models (1)
(4) are set at zero and the solution is given by 

0)  

o the result derived by Gumel [9]. The equilibrium stability is established by finding the 
. The eigenvalues derived based on signs predict the local stability of 

, 

) and the roots of the quadratic 

 

0 since all parameters have been assumed to be positive. In the light of Moghadas and 

) has a negative real part. In fact, 

. 

free equilibrium ψ0 is locally asymptotically stable if  ℝ� < 1  and unstable if   

≠ 0 and E 6≠ 0) the Eqns. (1)-(4) have a unique equilibrium 
individually expressed as 
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free equilibrium if the models (1)-

]. The equilibrium stability is established by finding the 
. The eigenvalues derived based on signs predict the local stability of ψ0. The 
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e light of Moghadas and 

and unstable if   

(4) have a unique equilibrium ψ∗ = 
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It is clearly seen from Eqns. (7)-(10) that if 
This simply means that I∗ and E∗ have a negative value which is not realistic in the real world. Thus, for 
reality, it is demanded that ℝ� > 1 since this yields 
 

The local stability of ψ∗, it is recalled from the total population that
 

��

��
=  � − ��, �(0) =  ��, 

 

which implies that 
 

 

Therefore, 
 

. 
 

It can definitely be assumed that when the population size has its final value, (
+R(t)),  R(t) = δ/µ−S(t)−E(t)−I(t).  
 

Lemma 2.  If ℝ� > 1 then the unique endemic equilibrium 
 

4 Graphical Illustrations 
 
From Fig. 1a and 1b, it can be clearly seen that the birth rate enhances the number of 
latent and infected. This is true in the real life since an addition in population brings about an increment in 
the infected individuals and those infected but are not yet infectious. Depicted on Fig. 2a and 2b is the effect 
of death rate on the population of paediatrics. It can be seen that the death rate decreases the latent 
individuals as well as the infected population. This is also true in the real world since death rate reduces the 
whole population in the long run. Fig. 3a and 3b 
and infected individuals. It can be evidently seen that the rate of loss of immunity increases the latent and 
infectious profiles. As depicted in Fig. 4a and 4b, an increase in the rate of lo
increase in the latent profiles but a decrease in the infected profiles. As described in Fig. 5a and 5b an 
enhancement in the average transmission parameter and amplitude parameter lead to a decrease in latent 
individuals’ profiles and an increase in the infectious population.
 

 
Fig. 1a. Effect of δ on E
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(10) that if ℝ� < 1, then the model possesses negative endemic equilibrium. 
have a negative value which is not realistic in the real world. Thus, for 
since this yields (�∗, �∗, �∗, �∗) > 0. 

it is recalled from the total population that 

 

. 

It can definitely be assumed that when the population size has its final value, (i.e., N = δ/µ = S(

then the unique endemic equilibrium �∗ is locally asymptotically stable. 

 

From Fig. 1a and 1b, it can be clearly seen that the birth rate enhances the number of paediatrics that are 
latent and infected. This is true in the real life since an addition in population brings about an increment in 
the infected individuals and those infected but are not yet infectious. Depicted on Fig. 2a and 2b is the effect 

ate on the population of paediatrics. It can be seen that the death rate decreases the latent 
individuals as well as the infected population. This is also true in the real world since death rate reduces the 
whole population in the long run. Fig. 3a and 3b illustrate the effects of rate of loss of immunity on the latent 
and infected individuals. It can be evidently seen that the rate of loss of immunity increases the latent and 
infectious profiles. As depicted in Fig. 4a and 4b, an increase in the rate of loss of infectiousness causes an 
increase in the latent profiles but a decrease in the infected profiles. As described in Fig. 5a and 5b an 
enhancement in the average transmission parameter and amplitude parameter lead to a decrease in latent 

ofiles and an increase in the infectious population. 

E(t). 
 

Fig. 1b. Effect of δ on I(t
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, then the model possesses negative endemic equilibrium. 
have a negative value which is not realistic in the real world. Thus, for 

(t) + E(t) + I(t) 

 

paediatrics that are 
latent and infected. This is true in the real life since an addition in population brings about an increment in 
the infected individuals and those infected but are not yet infectious. Depicted on Fig. 2a and 2b is the effect 

ate on the population of paediatrics. It can be seen that the death rate decreases the latent 
individuals as well as the infected population. This is also true in the real world since death rate reduces the 

illustrate the effects of rate of loss of immunity on the latent 
and infected individuals. It can be evidently seen that the rate of loss of immunity increases the latent and 

ss of infectiousness causes an 
increase in the latent profiles but a decrease in the infected profiles. As described in Fig. 5a and 5b an 
enhancement in the average transmission parameter and amplitude parameter lead to a decrease in latent 

 

t). 
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Fig. 2a. Effect of µ on E(t). 
 

Fig. 2b. Effect of µ on I(t). 
 

 
 

Fig. 3a. Effect of γ on E(t). 
 

Fig. 3b. Effect of γ on I(t). 
 

 
Fig. 4a. Effect of ϑ on E(t). Fig. 4b. Effect of ϑ on I(t). 
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Fig. 5a. Effect of b0 and b1 on E(t). 
 

Fig. 5b. Effect of b0 and b1 on I(t). 
 

5 Conclusions 
 
In this work, mathematical model has been applied to lower respiratory tract infection. Based on the research 
conducted on the paediatrics with lower tract infection, the following conclusions were drawn: 
 

1.  An enhancement in the birth rate increases both latent and infected population. 
2.  A hike in the death rate decreases both latent and infected population. 
3.  Increasing the rate of loss of immunity increases the latent and infectious profiles. 
4.  An increase in the rate of loss of infectiousness causes an increases the latent population but 

diminishes  the infected profiles. 
5.  An enhancement in the average transmission parameter and amplitude parameter lead to a decrease 

in  latent individuals profiles and an increase in the infectious. 
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