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Abstract

Let R be a ring with involution ′∗′. An additive map x 7→ x∗ of R into itself is called an
involution if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x holds for all x, y ∈ R. An additive mapping
δ : R → R is called a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. The purpose of this
paper is to examine the commutativity of prime rings with involution satisfying certain identities
involving derivations.

Keywords: Prime ring; normal ring; commutativity; involution; derivation.

2010 Mathematics Subject Classification: 16N60, 16W10, 16W25.

*Corresponding author: E-mail: shakir50@rediffmail.com, shakir.ali.mm@amu.ac.in;

http://www.sciencedomain.org/review-history/21211


Ali and Alhazmi; JAMCS, 24(5): 1-6, 2017; Article no.JAMCS.36717

1 Introduction and Notations

Throughout this paper, R always denotes an associative ring with centre Z(R). As usual the
symbols s◦ t and [s, t] will denote the anti-commutator st+ ts and commutator st− ts, respectively.
Given an integer n ≥ 2, a ring R is said to be n-torsion free if nx = 0 (where x ∈ R) implies that
x = 0. A ring R is called prime if aRb = (0) (where a, b ∈ R) implies a = 0 or b = 0, and is
called semiprime ring if aRa = (0) (where a ∈ R) implies a = 0. An additive map x 7→ x∗ of R
into itself is called an involution if (i) and (ii) (x∗)∗ = x hold for all x, y ∈ R. A ring equipped
with an involution is called ring with involution or ∗-ring. An element x in a ring with involution
is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x. The sets of all hermitian and
skew-hermitian elements of R will be denoted by H(R) and S(R), respectively. The involution is
called the first kind if Z(R) ⊆ H(R), otherwise it is said to be of the second kind. In the later
case S(R) ∩ Z(R) ̸= (0). Notice that in case x is normal i.e., xx∗ = x∗x, if and only if h and k
commute. If all elements in R are normal, then R is called a normal ring(see [1] for more details).
An additive mapping δ : R → R is said to be a derivation of R if δ(st) = δ(s)t + sδ(t) for all
s, t ∈ R. A derivation δ is said to be inner if there exists a ∈ R such that δ(s) = as − sa for all
s ∈ R. Over the last some decades, several authors have investigated the relationship between the
commutativity of the ring R and certain special types of maps like derivations and automorphisms
of R. The criteria to discuss the commutativity of certain classes of rings via derivations had been
given first time by Posner [2]. In fact, proved that the existence of a nonzero centralizing derivation
(i.e., δ(x)x− xδ(x) ∈ Z(R) for all x ∈ R) on a prime ring forces the ring to be commutative. Since
then many algebraists established the commutativity of prime and semiprime rings via derivations
or automorphisms that satisfying certain identities (viz.; [3], [4], [5], [6], [7] [8], [9], [10], [11], [12]
and references therein). In [13], Bell and Daif showed that if R is a prime ring admitting a nonzero
derivation δ such that δ(st) = δ(ts) for all s, t ∈ R, then R is commutative. This result was extended
for semiprime rings by Daif [14]. In 2016, S. Ali et. al [15], studied these results in the setting of
rings with involution involving derivations (see also [16]). In this paper, our intent is to continue
this line of investigation and to discuss the commutativity of prime rings with involution involving
derivations in more general situation.

2 The Results

We start our investigation with some well known facts and results in rings which will be used
frequently throughout the text.

Fact 2.1 ([18, Lemma 2.1 ]). Let R be a prime ring with involution ′∗′ of the second kind such that
char(R) ̸= 2. If R is normal i.e., [x, x∗] = 0 for all x ∈ R, then R is commutative.

Fact 2.2. The center of a prime ring is free from zero divisors.

Fact 2.3. Let R be a 2-torsion free ring with involution ′∗′. Then every x ∈ R can be uniquely
represented as 2x = h+ k, where h ∈ H(R) and k ∈ S(R).

In [17], the authors did not stated Lemma 2.1 correctly. The correct statement is the following.

Fact 2.4. Let R be a prime ring with involution ′∗′ of the second kind such that char(R) ̸= 2. If
[x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Fact 2.5. Let R be a prime ring with involution ′∗′ of the second kind such that char(R) ̸= 2. Let
δ be a derivation of R such that δ(h) = 0 for all h ∈ H(R) ∩ Z(R). Then δ(x) = 0 for all x ∈ R.
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Proof. By the assumption, we have δ(h) = 0 for all h ∈ H(R) ∩ Z(R). Substituting k2(where k ∈
S(R)∩Z(R)) for h and using the fact that δ(k) ∈ Z(R), we obtain 2δ(k)k = 0 for all k ∈ S(R)∩Z(R).
This implies that δ(k)k = 0 for all k ∈ S(R) ∩ Z(R).ApplicationofFact2.2yieldsδ(k) = 0 for all
k ∈ S(R)∩Z(R). In view of Fact 2.3, we conclude that 2δ(x) = δ(2x) = δ(h+ k) = δ(h) + δ(k) = 0
and hence δ(x) = 0 for all x ∈ R.

In [18], first author together with N. A. Dar proved the following theorem.

Theorem 2.1. Let R be a prime ring with involution ′∗′ such that char(R) ̸= 2. Let δ be a
nonzero derivation of R such that δ([x, x∗]) = 0 for all x ∈ R and S(R) ∩ Z(R) ̸= (0). Then R is
commutative.

In the following theorem, we prove the same result in a more general setting.

Theorem 2.2. Let R be a prime ring with involution′∗′ of the second kind such that char(R) ̸= 2.
Let δ be a nonzero derivation of R such that δ([x, x∗]) ∈ Z(R) for all x ∈ R. Then R is commutative.

Proof. By the hypothesis, we have

δ([x, x∗]) ∈ Z(R) (2.1)

for all x ∈ R. Substituting x by x+ y in (2.1), we obtain

δ([x, y∗]) + δ([y, x∗])+ ∈ Z(R) (2.2)

for all x, y ∈ R. Replacing y by yh (where h ∈ Z(R) ∩H(R) in (2.2), we get

δ(h)[x, y∗] + hδ([x, y∗]) + δ([y, x∗])h+ [y, x∗]δ(h) ∈ Z(R) (2.3)

for all x, y ∈ R. Since h ∈ Z(R) ∩ H(R) and δ is nonzero derivation of R, last expression can be
written as

([x, y∗] + [y, x∗])δ(h) + h(δ([x, y∗]) + δ([y, x∗])) ∈ Z(R) (2.4)

for all x, y ∈ R. Applications of (2.2) yields that

([x, y∗] + [y, x∗])δ(h) ∈ Z(R) (2.5)

for all x, y ∈ R. Taking x = y in (2.5), we arrive at

2[x, x∗]δ(h) ∈ Z(R) (2.6)

for all x ∈ R. Since char(R) ̸= 2, so the last relation gives [x, x∗]δ(h) ∈ Z(R) for all x ∈ R.
It is well known that if R is prime and 0 ̸= t ∈ Z(R) such that xt ∈ Z(R), then x ∈ Z(R).
Thus, we conclude that either [x, x∗] ∈ Z(R) for all x ∈ R or δ(h) = 0 for all h ∈ Z(R) ∩ H(R).
If δ(h) = 0 for all h ∈ Z(R)

∩
H(R). Replacing h by k2 (where k ∈ S(R) ∩ Z(R) in the last

expression, we get 2δ(k)k = 0 for all k ∈ S(R) ∩ Z(R). Since char(R) ̸= 2, we arrive at δ(k)k = 0
for all k ∈ S(R) ∩ Z(R). Since k ∈ S(R) ∩ Z(R) and R is prime, so by Fact 2.2 we conclude that
δ(k) = 0 for all k ∈ S(R) ∩ Z(R). In view Fact 2.3, for every x ∈ R, we write 2x = h + k, where
h ∈ H(R), k ∈ S(R) and hence we conclude by Fact 2.5 that δ(x) = 0 for all x ∈ R, a contradiction.
Consequently, we have [x, x∗] ∈ Z(R) for all x ∈ R. Therefore, application of Fact 2.4 yields the
required conclusion. Hence, R is commutative. This completes the proof of the theorem.

We now prove the anti-commutator version of Theorem 2.2.
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Theorem 2.3. Let R be a prime ring with involution ′∗′ of the second kind such that char(R) ̸= 2.
Let δ be a nonzero derivation of R such that δ(x◦x∗) ∈ Z(R) for all x ∈ R. Then R is commutative.

Proof. A careful scrutiny shows that the proof runs on parallel lines as in Theorem 2.2 and hence
we skip the details of proof just to avoid repetition.

As consequences of Theorem 2.2 and Theorem 2.3, we obtain the two main results of [15].

Corollary 2.1 ([15, Theorem 2.2]). Let R be a prime ring with involution ′∗′ of the second kind
such that char(R) ̸= 2. Let δ be a nonzero derivation of R such that δ([x, x∗]) = (0) for all x ∈ R.
Then R is commutative.

Corollary 2.2 ([15, Theorem 2.3]). Let R be a prime ring with involution ′∗′ of the second kind
such that char(R) ̸= 2. Let δ be a nonzero derivation of R such that δ(x ◦ x∗) = (0) for all x ∈ R.
Then R is commutative.

Corollary 2.3. Let R be a prime ring with involution ′∗′ of the second kind such that char(R) ̸= 2.
Let δ be a nonzero derivation of R such that δ(x∗) ∈ Z(R) for all x ∈ R. Then R is commutative.

Proof. We are given that δ a nonzero derivation of R such that δ(x∗) ∈ Z(R) for all x ∈ R.
For any x ∈ R, x∗ also is an element of R. Substitution [x, x∗] for x in the given assertion, we
obtain δ([x, x∗]) ∈ Z(R) for all x ∈ R. Hence R is commutative by Theorem 2.2. This proves the
corollary.

Theorem 2.4. Let R be a prime ring with involution ′∗′ of the second kind such that char(R) ̸= 2.
Let δ be a nonzero derivation of R. Then the following conditions are mutually equivalent:

(i) δ([x, x∗]) ∈ Z(R) for all x ∈ R;

(ii) δ(x ◦ x∗) ∈ Z(R) for all x ∈ R;

(iii) δ(x∗) ∈ Z(R) for all x ∈ R;

(iv) R is commutative.

Proof. We assume that (iv) holds (i.e., Z(R) = R). Then for x ∈ R, δ(x) is also in Z(R).
Henceforth, we conclude that δ([x, x∗]) ∈ Z(R) for all x ∈ R, δ(x ◦ x∗) ∈ Z(R) for all x ∈ R and
δ(x∗) ∈ Z(R) for all x ∈ R. Thus (iv) ⇒ (i), (iv) ⇒ (ii) and (iv) ⇒ (iii) . We need to prove
that (i) ⇒ (iv), ⇒ (iv) and (iii) ⇒ (iv) Now we suppose that any one (i) or (ii) or (iii) holds
that is, δ([x, x∗]) ∈ Z(R) for all x ∈ R, or δ(x ◦ x∗) ∈ Z(R) for all x ∈ R or δ(x∗) ∈ Z(R) for all
x ∈ R. Hence, result is follows by Theorems 2.2, 2.3 & Corollary 2.3. This finishes the proof of the
theorem.

Corollary 2.4. Let R be a prime ring with involution ′∗′ of the second kind such that char(R) ̸= 2.
Let δ be a nonzero derivation of R. Then the following conditions are mutually equivalent:

(i) δ([x, y]) ∈ Z(R) for all x, y ∈ R;

(ii) δ(x ◦ y) ∈ Z(R) for all x, y ∈ R;

(iii) δ(x) ∈ Z(R) for all x ∈ R;

(iv) R is commutative.

Concluding Remark
We conclude the our paper with the following open questions.

Open Question 1. Let R be a semiprime ring with involution ′∗′ of the second kind and with
suitable torsion restrictions on R. Let δ be a nonzero derivation of R such that δ([x, x∗]) = 0 (or ∈
Z(R)) for all x ∈ R. Is R commutative ?

Open Question 2. Let R be a semiprime ring with involution ′∗′ of the second kind and with
suitable torsion restrictions on R. Let δ be a nonzero derivation of R such that δ(x ◦ x∗) = 0 (or ∈
Z(R)) for all x ∈ R. Is R commutative ?
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3 Conclusion

In the present paper we study some criteria to establish the commutativity of prime rings with
involution via derivations. In particular, we solve some ∗-differential identities involving derivations,
and we describe the structure of prime rings with involution. In addition, we present some open
problems for future research.
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