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Abstract 
 

In this paper, the Kalman filter for a variance term of state space models is derived. First, it is assumed 
that the innovation term of state space model have a GARCH structure and the Kalman filter is derived. 
Then, it is assumed that the error term of observation equation is GARCH and the Kalman filtering is 
surveyed. Finally, considering an inverse gamma prior distribution for variance of observation equation 
again the Kalman filter is proposed. A numerical example is also given. Finally a conclusion section is 
presented.  
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1 Introduction 
 
The Kalman filter, used for adaptive control of a dynamic system, is very important in financial applications. 
It may also be applied for filtering, prediction and smoothing of a financial time series. Indeed, it is a set of 
recursive relations for conditional expectation of �-�� state given observations ����� � 	,  in a linear state 
space model. For non-linear models with non-normal errors, others filters such as particle filter are advised. 
For a comprehensive review about the Kalman filter and its extensions, see [1]. [2] proposed a probabilistic 
approach for derivation of the Kalman filter by Bayesian method. To describe more, following [2], let 
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�� = ��
� + �� , � ≥ 1 
 
denote the observation equation at which ��  is a sequence of independent innovations with normal 
distribution �(0, ���). It is also independent of 
� for each � ≥ 1. It is assumed that �� is nonzero sequence 
of real numbers. Here, we suppose that the state space equation is given by 
 
� = ��,��	
��	 + �� 
 

where ��,��	 is transition constants necessary for passing from step � − 1 to �. An important example of 
above model is the Capital Asset Pricing Model (CAPM), where  
 ��∗ − �� = ��( �! − ��) + �� , � ≥ 1 
 

at which �� = �� ∗ − �� is the excess return of risk asset,  �! − ��  is the excess return of market, ��  is the 
riskless return and 
� = ��  the market systematic measure. [2] considered a normal distribution for �� . 
However, one of important time series which is used frequently in financial engineering is the GARCH 
model. It is a non-linear model and in the presence of a GARCH process, the the Kalman filter may not 
work. In this case, the particle filter is often advised. However, in this paper, using Kyriazis’s method, the 
Kalman type recursive formulae for a state space model with GARCH (p,q) series as error process is 
proposed. 
 
The Kalman filter is a mathematical power tool that is playing an increasingly important role in finance. It 
gives optimal recursive estimator of unknown parameters. Since it is in recursive form, new measurements 
can be processed once newcomer observations arrived. The problem of the Kalman filter  is still valid and 
very import in many fields of science for example in financial applications. This fact is demonstrated by a 
series papers cited by this manuscript. Indeed, the Kalman filter is increasingly used in financial 
applications. A comprehensive review about the application of the Kalman filtering in financial models may 
be found in [3]. [4] studied the estimation of ARCH time series using adaptive filtering. [5] studied the 
Kalman filter for efficient uncertainty propagation. A comprehensive reference in the Kalman filtering is [6]. 
[7] studied high-dimensional prior and posterior  in the Kalman filter variants. [8] studied the application of 
The The Kalman filter in hedge fund problems. [9] considered the Kalman filter for large-scale systems. [10] 
derived the fast the Kalman filtering on quasi-linear trees. [11] proposed R codes of the Kalman filters. [12] 
extracted the Kalman filtering and backward smoothing via a perturbative approach. Some extensions about 
the Kalman filter is found in [13]. [14] applied the Kalman filter to a fuzzy GARCH model. [15] applied the 
Kalman filter to stochastic volatility model. [16] introduced the concept of the stable robust  Kalman filter. 
[17] derived the Kalman filtering with random coefficients and contractions. 
 
This paper is organized as follows. In Section 2, the Kalman filter are derived under first GARCH modeling 
for error of state space and second GARCH modeling for error of observations. Finally, the Kyriazis's 
method is applied for variance term by considering an inverse gamma prior distribution. Again, the Kalman 
filters are derived. A numerical example is also given. Finally a conclusion section is presented.  
 

2 The Kalman Filter Derivation  
 
Here, extensions of the Kalman filter are derived.  
 
2.1 GARCH in state equation  
 
Assume that �� = #�$�  is a GARCH (p,q) time series where $�′%  are iid standard normally distributed 
random variables and 
 

#�� = &' + ( &)#��)�*
)+	 + ( ,-���-�.

-+	  
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where �' , &)  and ,-  are positive constants such that ∑ &)*)+	 + ∑ ,- < 1..-+	  Let #� , $� , ��  and 
��	  are 
mutually independent. Denote ϝ� is the sigma-field generated by #2; 1 ≤ % ≤ �, that is  ϝ� = #�#2; 1 ≤ % ≤��. 
 
Following [2], suppose that conditional posterior distribution (at time � − 1) of 
��	 given ϝ��	 is normal 
with mean 
5��	 and variance 67��	� . This technique is learnt from [2] to obtain the Kalman filters using the 
Bayesian method. However, his method adapted for conditional cases, in this note. Therefore, the 
conditional prior (at time �) of  
� given ϝ� is normal with mean 
�∗ and variance 6�∗�, where  
 

8 
�∗ = ��,��	
5��	
6�∗� = ��,	�	� 67��	� + #��

9 
 
One can note that 
� = ���	�� + ���	�� . Then, the 
�  given ��  has normal distribution �(���	�� , �������). 
Therefore, the likelihood function is  
 |��|√2=�� exp A−���2��� B
� − ����C�D. 
 

Define =� = EFGHF∗G
EFGHF∗GIJFG. Using the Bayes theorem, it is seen that the conditional posterior of 
� given ϝ�  is 

normal with mean 
5� and variance 67��, where  
 

8
5� = =��� + (1 − =�)
�∗
67�� = ���	���=� . 9 

 
The above equations provides the conditional Kalman filter estimates given ϝ� . To calculate them, it is 
enough to generate some realizations for #2; 1 ≤ % ≤ �. Given parameters of GARCH process are known, 
this is an easy task. However, the marginal Kalman filter are derived by averaging of the conditional Kalman 
filters with respect to ϝ� .  By the conditional posterior distribution, we mean the posterior distribution given ϝ�, that is the information up to time �. The conditional prior is also the prior distribution given ϝ� .  
 
Remark 1. The classical Kalman filter involves the estimation of 
� with respect to the observed σ- algebra 
σ(�2, s ≤ t). Here, First, the Kalman filters are derived with respect to observations and the σ-algebra of ϝ� 
and then the marginal Kalman filter (the regular Kalman filters) are derived by averaging of the conditional 
Kalman filter with respect to ϝ� . 
 
2.2 GARCH in observation equation  
 
Here, we suppose that there exists a GARCH process for observation errors. That is,  
 

8 �� = ��
� + ��

� = ��,��	
��	 + ��

9 
 
where �� = #�$�  and $�  are iid random variables come from �(0,1)  distribution and #��  constitutes a 
GARCH(p,q) time series and �� has �(0, 6�) distribution. Here, #� , $� and �� are mutually independent. Let 
��	 has a conditional posterior normal distribution with mean K��	 and variance L��	� . It is not difficult to 
see that 
� has also conditional posterior normal distribution with the following parameters  
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MNO
NPK� = ��,��	K��	#�� + Q�������Q����� + #��

L�� = #��Q�����Q����� + #��
9 

 

where Q�� = ��,	�	� L��	� + 6�. Let R� = SFGEFGSFGEFGITFG be the Kalman gain, then  

 

8K� = ��,��	K��	 + R�(�� − ��,��	K��	)
L�� = Q�����(1 − R�). 9 

 
The above filters are derived by conditioning on ϝ� . Again, the marginal Kalman filter are derived by 
averaging of the conditional Kalman filters with respect to ϝ� . 
 
2.3 The Kalman filter for variance  
 
Let �� = #�$�  be the observation equation where $�  has standard normal distribution. One of important 
example is the first order autoregressive GARCH model for the return of risky asset, where this model is 
frequently used in financial risk management, that is  
 �� = �� − ����	 = #�$� 
 

Let L� = 	TFG  and suppose that L��	  has gamma distribution with parameters U��	  and ���	 . Let #� =��,��	#��	, be the state equation where ��,��	 is a sequence of positive real numbers. Again, it is seen that the 

updated prior of L�  is gamma distribution with parameters U��	  and 
VFWXEF,FWXG . Using the likelihood function 

given by 
	

YTFG exp (�ZFG�TFG) . The update posterior of L� is gamma distribution with parameters  

 

MO
P U� = U��	 + 0.5

1�� = ��,��	����	 + ���.9  
Therefore, U� = U' + 0.5� and U� → ∞ as � → ∞ .The mean and variance of β] are   ^( 1��) = ��,��	� ^( 1���	) +  #�� 

 6��( 1��) = ��,��	_ 6��( 1���	) +  3#�_   
Given ���	, variable 

	VF has location-scale distribution of chi-square distribution with one degree of  freedom 

at which the location and scale parameters are 
EF,FWXG
VFWX  and #��, respectively. As follows, the mean and variance 

of #�� are studied. It is easy to see that  
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MNN
O
NNPQ� = ^(#��) = ^(L��	) = 1��(U� − 1)

6�� = 1���(U� − 1)(U� − 2)
9 

 
Then, 6�� = (U� − 2)Q��. Therefore,  
 

Q� = 1(U��	 − 1) a��,��	����	 + ���b (U��	 − 1)(U��	 − 0.5). 
 

For large �, (cFWX�	)(cFWX�'.d) = e(1) then  

 

Q� = ��,��	����	(U��	 − 1) + ���U��	 − 1 = ��,��	� Q��	 + ���U��	 − 1. 
 
That is  
 

Q� = ��,��	� Q��	 + ���U��	 − 1 

 
It is also easy to see that  
 

6�� = ��,��	� 6��	� + ���(U��	 − 1)(U��	 − 2). 
 
The following proposition summarizes the above discussion.  
 
Proposition 1. Suppose that #�� = e(�f) where 0 < & < 1, then  
 

MO
PQ� = ��,��	� Q��	

6�� = ��,��	� 6��	�
9 

 
The Kalman filtering uses the normality assumption for ε]. However, it is not a realistic assumption, in 
practice. Historical data analysis shows that fat tail distributions are usually suitable for ε]. Thus, in the case 
of heavy tail distribution, The Kalman filter fails and some extensions like the particle filters or generally the 
Bayes filter are needed. Using the Chapman-Kolmogorov equation, the Bayes prediction step is given by 
 fhβ]iy]�	, … , y	l = m fhy]iβ]�	l fhβ]�	iy]�	, … , y	ldβ]�	, 

 
and the Bayes update equation is 
 fhβ]iy], … , y	l ∝ fhy]iβ]lfhβ]iy]�	, … , y	l. 
 
In order to initialize the recurrence algorithm, it is assumed that the initial return R' has known probability 
distribution f(y'). Using the Bayes filter, the probability distribution fhβ]iy] , … , y	l and fhβ]iy]�	, … , y	l are 

not computed. Only, the expectations Ehβ]iy], … , y	l and Ehβ]iy]�	, … , y	l are calculated.  



 
 
 

Habibi; ARJOM, 2(1): 1-7, 2017; Article no.ARJOM.29172 
 
 
 

6 
 
 

2.4 A numerical example  
 
Here, a numerical example is given. First, a special case is studied as a remark.  
 

Remark 2. As special case, let �� = #� = r and  ��,��	 = u . Then, R� = SFG	ISFG  and L�� = r�R� .  Also, Q�� = u�L��	� + 6�. Then, K� = uK��	 + R�(�� − uK��	).   
 

Then, for example let, = r = 0.1, 6 = 0.2 . Here, it is assumed that ��  comes from a standard normal 
distribution and the above formula is applied to this case. The time series plot of Kalman estimates are 
plotted in the following figure which are oscillated around zero.  
 

 
 

Fig. 1. The Kalman estimates of mu 
 

3 Conclusions  
 
In a state space model, the Kalman filter for a variance is derived. The first assumption was that the 
innovation term of state space model had a GARCH structure. Then, it was assumed that the error term of 
observation equation is GARCH. In both cases, the Kalman filtering is surveyed. Finally, considering an 
inverse gamma prior distribution for variance of observation equation again the Kalman filter is proposed. 
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