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Abstract

presented.

In this paper, the Kalmi filter for a variance term of state space modelseisvdd. First, it is assume
that the innovation term of state space model have a GARCidture and the Kalman filter is derived.
Then, it is assumed that the error term of observatioiatean is GARCH and the Kalman filtering Is
surveyed. Finally, considering an inverse gamma prior bigtan for variance of observation equatipn
again the Kalman filter is proposed. A numerical exampkde given. Finally a conclusion section|is

Keywords: Bayesian method; posterior distribution; recur&aéman filter.

1 Introduction

The Kalman filter, used for adaptive control of a dynasyistem, is very important in financial applications.
It may also be applied for filtering, prediction and srhawg of a financial time series. Indeed, it is a set of
recursive relations for conditional expectationtafh state given observatiofs,};-, in a linear state
space model. For non-linear models with non-normal erodhers filters such as particle filter are advised.
For a comprehensive review about the Kalman filter andktensions, see [1]. [2] proposed a probabilistic
approach for derivation of the Kalman filter by Bayesiagthod. To describe more, following [2], let
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Ye=bZi +{t =1

denote the observation equation at whighis a sequence of independent innovations with normal
distributionN (0, w?). It is also independent & for eacht > 1. It is assumed thdf, is nonzero sequence
of real numbers. Here, we suppose that the state spae#ion is given by

Zy = Qe 1Zi 1 T U

wherea,,_, is transition constants necessary for passing fraptst 1 tot. An important example of
above model is the Capital Asset Pricing Model (CAPMjere

=1 =BR—1)+{t =21

at whichy, = " —r¢ is the excess return of risk asdgft; — 7y is the excess return of market,is the
riskless return and, = B, the market systematic measure. [2] considered a normtlbdiion foru;.
However, one of important time series which is used frequémtfinancial engineering is the GARCH
model. It is a non-linear model and in the presence of a GARcess, the the Kalman filter may not
work. In this case, the particle filter is often advisedwever, in this paper, using Kyriazis's method, the
Kalman type recursive formulae for a state space maithl GARCH (p,q) series as error process is
proposed.

The Kalman filter is a mathematical power tool tlepiaying an increasingly important role in finance. It
gives optimal recursive estimator of unknown paramegiree it is in recursive form, new measurements
can be processed once newcomer observations arrivegardblem of the Kalman filter is still valid and
very import in many fields of science for example in ficial applications. This fact is demonstrated by a
series papers cited by this manuscript. Indeed, the Kalfiler is increasingly used in financial
applications. A comprehensive review about the applicatidtheoKalman filtering in financial models may
be found in [3]. [4] studied the estimation of ARCH tinmexies using adaptive filtering. [5] studied the
Kalman filter for efficient uncertainty propagation. Amprehensive reference in the Kalman filtering is [6].
[7] studied high-dimensional prior and posterior in ik@man filter variants. [8] studied the application of
The The Kalman filter in hedge fund problems. [9] considéhe Kalman filter for large-scale systems. [10]
derived the fast the Kalman filtering on quasi-lineaes. [11] proposed R codes of the Kalman filters. [12]
extracted the Kalman filtering and backward smoothing via @netive approach. Some extensions about
the Kalman filter is found in [13]. [14] applied the Kalmaltefi to a fuzzy GARCH model. [15] applied the
Kalman filter to stochastic volatility model. [16] inttuced the concept of the stable robust Kalman filter.
[17] derived the Kalman filtering with random coefficientelaontractions.

This paper is organized as follows. In Section 2, the Kalfitter are derived under first GARCH modeling
for error of state space and second GARCH modeling for efr@bservations. Finally, the Kyriazis's
method is applied for variance term by considering an ievgasnma prior distribution. Again, the Kalman
filters are derived. A numerical example is also gi\Enally a conclusion section is presented.

2 The Kalman Filter Derivation

Here, extensions of the Kalman filter are derived.
2.1 GARCH in state equation

Assume thawu, = o.&; is a GARCH (p,q) time series wheggs areiid standard normally distributed
random variables and

P q
of =cy+ Z ciol; + z dirl;
= =
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wherea,, ¢; andd; are positive constants such tRft, ¢ +Z;?=1d]- < 1. Leto;, &, {; andZ,_, are
mutually independent. Denotgis the sigma-field generated by, 1 < s <t, thatis f;, = o{o;; 1 < s <

t).

Following [2], suppose that conditional posterior dlsttion (at timet — 1) of Z,_, giveng,_, is normal
with meanZ,_, and varianc&Z ;. This technique is learnt from [2] to obtain the Kalnfidters using the
Bayesian method. However, his method adapted for conditioasés, in this note. Therefore, the
conditional prior (at time) of Z, giveng, is normal with mead,” and variance;2, where

. .
Zy = Qg 12
v = a?,l—lﬁ?—l +of

One can note thdf, = b7y, + b7,. Then, theZ, givenr, has normal distributiow (b7 1y, by ?w?).
Therefore, the likelihood function is

e [ (2-2) )
V2nw, 2w\"" b f

. biv;?
DeflneT[t == 3
bfve“+wyg

normal with meairZ, and variancé&?, where

Using the Bayes theorem, it is seen that the conditipasierior ofZ, giveng; is

Zt =my, +(1-n)Z,’

9t = by 'win,.
The above equations provides the conditional Kalman filter etténgivenr,. To calculate them, it is
enough to generate some realizationsofpd < s < t. Given parameters of GARCH process are known,
this is an easy task. However, the marginal Kalman fiterderived by averaging of the conditional Kalman
filters with respect tg,. By the conditional posterior distribution, we mean thegyast distribution given
f:, that is the information up to timte The conditional prior is also the prior distribution giyen

Remark 1. The classical Kalman filter involves the estimatiorX pfvith respect to the observed algebra
o(ys, S<t). Here, First, the Kalman filters are derived wiélspect to observations and thalgebra ofr,

and then the marginal Kalman filter (the regular Kalmaerslt are derived by averaging of the conditional
Kalman filter with respect tg,.

2.2 GARCH in observation equation
Here, we suppose that there exists a GARCH procesiervation errors. That is,
Ve =bZi + {;
Zy = Qpp1Zpq T U
where {, = g,&, and e, are iid random variables come fromi(0,1) distribution ands? constitutes a
GARCH(p,q) time series ang hasN (0, v?) distribution. Hereg,, &, andu, are mutually independent. Let

Z._, has a conditional posterior normal distribution with mgan and variance?2 ;. It is not difficult to
see thaZ, has also conditional posterior normal distribution with fililowing parameters
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wheref? = a?,_,y2, +v?* Letk, = 57,7,7 e the Kalman gain, then
t™t t

Ut = Qrp_qfhe1 + ke (Ve — QpeaMe—1)
yé = 02bZ(1 — k).

The above filters are derived by conditioning gnAgain, the marginal Kalman filter are derived by
averaging of the conditional Kalman filters with resgeg;.

2.3 TheKalman filter for variance

Let y, = o.&; be the observation equation whegehas standard normal distribution. One of important
example is the first order autoregressive GARCH modetHerreturn of risky asset, where this model is
frequently used in financial risk management, that is

Ve =71 — Alt—1 = Oté&

Let y, =ﬁ and suppose that,_, has gamma distribution with parameters, and g;,_,. Let g, =
t
b :—10,_4, be the state equation wherg._; is a sequence of positive real numbers. Again, it is terihe
updated prior of, is gamma distribution with parameters ; andbﬁ;—‘l. Using the likelihood function
tt—1

given byL

(% =0a1t 0.5

2
exp (ﬁ) . The update posterior gf is gamma distribution with parameters

e
—=—"—+yi
B~ B

Thereforeq; = ay + 0.5t anda; — » ast - « .The mean and variance fjfare

1 2 1 2
E([)T) =bi1E( ) + of
t t-1

! ) + 304
0,
Be-1 ‘

L 4
var(5) = bg_qvar(
t

B

Givenpf;_q, variable;— has location-scale distribution of chi-square distrifrutivith one degree of freedom
t

2

at which the location and scale parameters%éié ando?, respectively. As follows, the mean and variance
t—1

of o are studied. It is easy to see that
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1
é(gt =E(?) =EW") =B -1)

| 'UZ 1
U T B2 - D - 2)

Then,v? = (a, — 2)62. Therefore,

1 bZ,_ e —1
o, = _ (t,tl_l_ytZ)(tl_ ).
(ae-1 = D\ B (a¢-1 —0.5)
For larget, 2=2"2_ = 0(1) then
" (@g-1-0.5)
bii 4 vt yE
6, = . + =b2,_,0, 4+
T Bala = 1) a1 P T -1
That is
2
Vt
0, = btz,t—lgt—l + m

It is also easy to see that

vt
(g — D(ae-q —2)

2 _ 12 2
Vi = bip Vit

The following proposition summarizes the above discussion.

Proposition 1. Suppose that? = 0(t°) where0 < ¢ < 1, then

Jet = btz,t—19t—1

tvtz = btz,t—lvtz—l
The Kalman filtering uses the normality assumptiongforHowever, it is not a realistic assumption, in
practice. Historical data analysis shows that fat taftitligtions are usually suitable fey. Thus, in the case

of heavy tail distribution, The Kalman filter fails and soextensions like the particle filters or generally the
Bayes filter are needed. Using the Chapman-Kolmogoroviequ#he Bayes prediction step is given by

f(Btl}’t—p ---:Y1) = ff(}’tlﬁt_l) f(ﬁt_1|}’t—1: ---:Y1)dBt_11

and the Bayes update equation is

f(B,|yer 1) o f(ye|B)E(B[Veors 0 y1)-

In order to initialize the recurrence algorithm, it iswsed that the initial retum, has known probability
distributionf(y,). Using the Bayes filter, the probability distributit(,|y., ..., y:) andf(B, |yc_1, ..., y1) are
not computed. Only, the expectatid(®, |yt ..., y1) andE(B,|y-1, .., y1) are calculated.
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2.4 A numerical example
Here, a numerical example is given. First, a specid tastudied as a remark.
2
Remark 2. As special case, léi; =0, =Band a,,, =A. Then,k, = % and y2 = B%k,. Also,
t
07 = A%y, +v?. Thenu, = Ape_y + ke(ye — Apte_q).

Then, for example lets B = 0.1,v = 0.2 . Here, it is assumed thgt comes from a standard normal
distribution and the above formula is applied to this case. il $eries plot of Kalman estimates are
plotted in the following figure which are oscillated arountbze
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1
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-0.10

T T T T T T
0 20 40 60 80 100

Fig. 1. The Kalman estimates of mu
3 Conclusions

In a state space model, the Kalman filter for a vemais derived. The first assumption was that the
innovation term of state space model had a GARCH structimen, it was assumed that the error term of
observation equation is GARCH. In both cases, the Kalfitening is surveyed. Finally, considering an
inverse gamma prior distribution for variance of observatiguation again the Kalman filter is proposed.
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