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Abstract
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1 Introduction

In this paper we consider the following nonlocal initial boundary value problem

ut = ∆u+ c(x, t)up

∫
Ω

uq(y, t)dy, x ∈ Ω, 0 < t < T, (1.1)

∂u

∂ν
=

∫
Ω

k(x, y, t)ul(y, t)dy, x ∈ ∂Ω, 0 < t < T, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where p, q, l > 0, Ω is a bounded domain in Rn(n ≥ 1) with smooth boundary ∂Ω, ν is unit
outward normal on ∂Ω. Here c(x, t) is a positive continuous bounded function defined for x ∈ Ω̄,
t ∈ [0, T ] and k(x, y, t) is a positive continuous bounded function defined for x ∈ ∂Ω, y ∈ Ω,
t > 0. Furthermore, we assume that k(x, ·, t) ̸≡ 0 for any x ∈ ∂Ω and t > 0. The initial datum
u0(x) ∈ C2+α(Ω) ∩ C(Ω̄) with 0 < α < 1, and further, we assume that u0(x) ≥ 0, ̸≡ 0 and satisfies
the compatibility conditions.

In the past several decades, many physical phenomena were formulated into nonlocal mathematical
models(see[1]-[6] and the references therein). There has been a considerable amount of literature
dealing with the properties of solutions to local semilinear parabolic equation or systems of heat
equations with homogeneous Diriclet boundary conditions or with nonlinear boundary conditions
(see [7]-[13] and references therein). However, there are some important phenomena formulated as
parabolic equations which are coupled with nonlocal boundary conditions in mathematical modeling
such as thermoelasticity theory (see [14]-[19]).

The problem of nonlocal boundary value for linear parabolic equations of the type

ut −Au = c(x)u, x ∈ Ω, t > 0, (1.4)

u(x, t) =

∫
Ω

φ(x, y)u(y, t)dy, x ∈ ∂Ω, t > 0, (1.5)

u(x, 0) = u0(x), x ∈ Ω (1.6)

with uniformly elliptic operator A =
∑n

i,j=1
aij(x)

∂2

∂xi∂xj
−

∑n

i=1
bi(x)

∂
∂xi

and c(x) ≤ 0 was

studied by Friedman[20]. The global existence and monotonic decay of the solution of problem (1.4)-
(1.6) were obtained under the condition

∫
Ω
|φ(x, y)|dy < 1 for all x ∈ ∂Ω. And later the problem

(1.4)-(1.6) with Au replaced by ∆u and the linear term c(x)u replaced by the nonlinear term g(x, u)
was discussed by Deng [21]. The comparison principle and the local existence were established. On
the basis of Deng’s work, Seo in [22] investigated the above problem with g(x, u) = g(u), by using the
upper and lower solution’s technique, he gained the blow-up condition of positive solution, and in
the special case g(u) = up or g(u) = eu he also derived the blow-up rate estimates. In[23], Pao gave
the numerical solutions for diffusion equations with nonlocal boundary conditions. Parabolic with
both nonlocal sources and nonlocal boundary conditions have been studied as well. For example,
the problem of the form

ut −∆u =

∫
Ω

g(u(y, t))dy,

Bu =

∫
Ω

K(x, y)u(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω

was studied by Lin and Liu [24]. They established local existence, global existence and nonexistence
of solutions and discussed the blow-up properties of solutions.
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In recent years, the mathematical investigation of blow-up phenomena of solutions to parabolic
equation and system subject to nonlinear nonlocal boundary conditions has received a great deal
of attention. The following heat equation with nonlinear nonlocal boundary condition

ut = ∆u+ c(x, t)up, x ∈ Ω, t > 0,

u(x, t) =

∫
Ω

k(x, y, t)ul(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

were studied by Gladkov and Kim in [25]. Comparison principle, the uniqueness of solution with any
initial data for min(p, l) ≥ 1 and with nontrivial initial data otherwise, nonuniqueness of solution
with trivial initial data for p < 1 or l < 1, local existence theorem had been proved. In [26] they
gave some criteria for the existence of global behavior of the coefficients c(x, t) and k(x, y, t) as t
tends to infinity. Cui and Yang in [7] investigated

ut = ∆u+ c(x, t)up

∫
Ω

uq(y, t)dy, x ∈ Ω, t > 0,

u(x, t) =

∫
Ω

k(x, y, t)ul(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

they obtained some criteria which determine whether the solutions blow up in finite time or exist
globally, moreover, the blow up rate estimates were also obtained.

In [27] and[28], Gladkov A. and Kavitova T. investigated the following problem

ut = ∆u+ c(x, t)up, x ∈ Ω, t > 0,

∂u

∂ν
=

∫
Ω

k(x, y, t)ul(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

In that two articles, they gave the existence theorem of a local solution and studied the problem
of uniqueness and nonuniqueness. Criteria on this problem which determine whether the solutions
blow up in finite time for large or for all nontrivial initial data were also given.

Motivated by the above cited works, we aim to establish the global existence and finite time blow
up of the solution for problem(1.1)-(1.3).

The plan of this paper is as follows: in the next section, we deals with maximum principle and
comparison principle, and give local existence in time for the solution. In Section 3 we establish
conditions for global existence and blow-up in finite time.

2 The Comparison Principle and Local Existence

In this section we start with the definition of supersolution and subsolution of problem (1.1)-(1.3).
Then we present some material needed in the proof of our main results. For convenience, We set
QT = Ω× (0, T ), ST = ∂Ω× (0, T ), and ΓT = ST ∪ Ω̄× {0}, T > 0.

Definition 2.1. We say that a nonnegative function ũ ∈ C2,1(QT ) ∩ C(QT ∪ ΓT ) is a subsolution
of (1.1)-(1.3) if
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ũt ≤ ∆ũ+ c(x, t)ũp

∫
Ω

ũqdx, (x, t) ∈ QT , (2.1)

∂ũ(x, t)

∂ν
≤

∫
Ω

k(x, y, t)ũl(y, t)dy, (x, t) ∈ ST , (2.2)

ũ(x, 0) ≤ u0(x), x ∈ Ω. (2.3)

A supersolution û ∈ C2,1(QT ) ∩ C(QT ∪ ΓT ) of problem (1.1)-(1.3) is defined analogously by the
above inequalities with each inequality reversed. We say that u(x, t) is a solution of the problem
(1.1)-(1.3) in QT if it is both a subsolution and supersolution of (1.1)-(1.3) in QT .

To prove the main results, we use the positiveness of solution.

Lemma 2.1. Suppose that u0 ̸≡ 0 in Ω and u(x, t) is a solution of (1.1)-(1.3) in QT . Then
u(x, t) > 0 in QT ∪ ΓT .

Proof. Since u0 ̸≡ 0 and ut − ∆u = c(x, t)up
∫
Ω
uq(y, t)dy ≥ 0 in QT , by the strong maximum

principle u(x, t) > 0 inQT . If u(x0, t0) = 0 in some point (x0, t0) ∈ ST , then it yields ∂u(x0, t0)/∂ν <
0, which contradicts (1.2).

Lemma 2.2. Let û(x, t) and ũ(x, t) be a supersolution and subsolution of problem (1.1)-(1.3) in
QT , respectively, with û(x, 0) ≥ ũ(x, 0) and û(x, 0) > 0 in Ω. If min(p, q, l) < 1, we further assume
that ũ(x, 0) > 0. Then û(x, t) ≥ ũ(x, t) in QT ∪ ΓT .

Proof. Let φ(x, t) ∈ C2,1(Q̄t) (0 < t < T ) be a nonnegative function which satisfies homogeneous
Neumann boundary condition. Multiplying (2.1) by φ and then integrating over Qt, we obtain∫

Ω

ũ(x, t)φ(x, t)dx ≤
∫
Ω

ũ(x, 0)φ(x, 0)dx

+

∫ t

0

∫
Ω

(ũ(x, τ)φτ (x, τ) + ũ(x, τ)∆φ(x, τ) + c(x, τ)φ(x, τ)ũp(x, τ)

∫
Ω

ũq(x, τ))dxdτ

+

∫ t

0

∫
∂Ω

φ(x, τ)

∫
Ω

k(x, y, τ)ũl(y, τ))dydSxdτ. (2.4)

On the other hand, the supersolution û(x, t) satisfies∫
Ω

û(x, t)φ(x, t)dx ≥
∫
Ω

û(x, 0)φ(x, 0)dx

+

∫ t

0

∫
Ω

(û(x, τ)φτ (x, τ) + û(x, τ)∆φ(x, τ) + c(x, τ)φ(x, τ)ûp(x, τ)

∫
Ω

ûq(y, τ)dy)dxdτ

+

∫ t

0

∫
∂Ω

φ(x, τ)

∫
Ω

k(x, y, τ)ûl(y, τ))dydSxdτ. (2.5)

Put w(x, t) = ũ− û, subtracting (2.5) from (2.4) and using mean value theorem, we get∫
Ω

w(x, t)φ(x, t)dx ≤
∫
Ω

w(x, 0)φ(x, 0)dx

+

∫ t

0

∫
Ω

w(x, τ)(φτ (x, τ) + ∆φ(x, τ) + pθp−1
1 c(x, τ)φ(x, τ)

∫
Ω

ûq(y, τ)dy)dxdτ

+

∫ t

0

∫
Ω

qũpc(x, τ)φ(x, τ)

∫
Ω

w(y, τ)θq−1
2 (y, τ)dydxdτ

+

∫ t

0

∫
∂Ω

lφ(x, τ)

∫
Ω

k(x, y, τ)θl−1
3 (y, τ)w(y, τ)dydSxdτ, (2.6)
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where θi(x, t), (i = 1, 2, 3) are some positive continuous functions in Q̄t if min(p, q, l) < 1 and some
nonnegative continuous functions in Qt otherwise.

The function φ(x, t) is defined as a solution of the following problem

φτ (x, τ) + ∆φ(x, τ) + pθp−1
1 c(x, τ)

∫
Ω

ûq(y, τ)dyφ(x, τ) = 0, (x, τ) ∈ Qt,

∂φ

∂ν
= 0, (x, τ) ∈ St,

φ(x, t) = ψ(x), x ∈ Ω,

where ψ(x) ∈ C∞
0 (Ω), 0 ≤ ψ(x) ≤ 1. By virtue of the comparison principle for linear parabolic

equations the solution φ(x, t) is nonnegative and bounded. By (2.6) and w(x, 0) ≤ 0 we have∫
Ω

w(x, t)φ(x, t)dx ≤M

∫ t

0

∫
Ω

w+(x, τ)dxdτ, (2.7)

here we denote w+ = max(0, w) and choose

M = q sup
Qt

ũp(x, τ)c(x, τ)φ(x, τ)θq−1
2 (x, τ) + l|∂Ω| sup

∂Ω×Qt

k(x, y, τ) sup
Qt

θl−1
3 (x, τ) sup

St

φ(x, τ).

Since the inequality (2.7) holds for every function ψ(x), we can choose a sequence ψn(x) ∈ C∞
0 (Ω)

converging in L1(Ω) to the function

γ(x) =

{
1, w(x, t) > 0,

0, w(x, t) ≤ 0.

Substituting ψn(x) instead of ψ(x) in (2.7) and letting n→ ∞, one have∫
Ω

w+(x, t)dx ≤M

∫ t

0

∫
Ω

w+(x, τ)dxdτ. (2.8)

By using of Gronwall inequality we obtain w+(x, t) ≤ 0 which implies û(x, t) ≥ ũ(x, t) in QT ∪
ΓT .

Local in time existence of positive classical solutions of problem (1.1)-(1.3) can be obtained by using
fixed point theorem, the representation formula and the contraction mapping argument as done in
[27], since the proof is more or less standard, we omit it here.

Theorem 2.3. For some values of T problem (1.1)-(1.3) has maximal solution in QT .

3 Global Existence and Blow-up in Finite Time

Theorem 3.1. Assume that p + q ≤ 1, l ≤ 1. Then the solutions of problem (1.1)-(1.3) exist
globally for any nonnegative initial data.

Proof. In order to prove this results, we construct a suitable explicit supersolution of (1.1)-(1.3)
in QT . Since c(x, t) and k(x, y, t) are continuous functions, there exists a constant M such that
c(x, t) ≤M and k(x, y, t) ≤M . Let λ1and φ be the first eigenvalue and the corresponding function
of the following problem:

∆ϕ+ λϕ = 0, x ∈ Ω, (3.1)

ϕ(x) = 0, x ∈ ∂Ω, (3.2)
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It is well known that ϕ(x) > 0 in Ω and max
∂Ω

∂ϕ(x)/∂ν < 0. Furthermore, we choose 0 < ε < 1 such

that ∫
Ω

1

(ϕ(x) + ε)q
dx ≤ 1,

∫
Ω

1

(ϕ(x) + ε)l
dx ≤ 1.

Let û(x, t) be defined as

û(x, t) =
d exp(bt)

ϕ(x) + ε
,

where constants d, b will be determined later to guarantee that û is a supersolution of problem
(1.1)-(1.3). After a direct computation, when (x, t) ∈ QT , we have

ût−∆û− c(x, t)ûp

∫
Ω

ûqdx

= bû−
(

λ1

ϕ(x) + ε
+

2|∇ϕ|2

(ϕ(x) + ε)2

)
û− c(x, t)ûp+q(ϕ(x) + ε)q

∫
Ω

1

(ϕ(x) + ε)q
dx

≥ bû−
(

λ1

ϕ(x) + ε
+

2|∇ϕ|2

(ϕ(x) + ε)2

)
û−M [sup

Ω

(ϕ(x) + ε)]qû ≥ 0 (3.3)

if
d ≥ sup

Ω̄

(ϕ(x) + ε)

and

b ≥ λ1

ε
+ sup

Ω

2|∇ϕ|2

(ϕ(x) + ε)2
+M [sup

Ω

(ϕ(x) + ε)]q.

When (x, t) ∈ ST , we have

∂û

∂ν
−

∫
Ω

k(x, y, t)ûl(y, t)dy

=
−d exp(bt)
(ϕ(x) + ε)2

∂ϕ

∂ν
−

∫
Ω

k(x, y, t)

(
d exp(bt)

ϕ(y) + ε

)l

dy

≥ d exp(bt)

(
−∂ϕ
∂ν

1

ε2
−M

)
≥ 0. (3.4)

if we choose ε is small enough. It is clear from (3.1)-(3.2) that û is a supersolution of problem
(1.1)-(1.3) in QT if d > sup

Ω

u0(x) + sup
Ω

(ϕ(x) + ε). Thus the solution of problem (1.1)-(1.3) exists

globally.

Theorem 3.2. Assume that p + q < 1, l > 1. Then the solutions of problem (1.1)-(1.3) exist
globally for small initial data.

Proof. Let ψ(x) be a positive solution of the following problem

−∆ψ(x) = 1, x ∈ Ω, (3.5)

∂ψ

∂ν
= δ, x ∈ ∂Ω. (3.6)

We define the function û(x, t) = aψ(x), after simple computation, we get

ût −∆û− c(x, t)ûp

∫
Ω

ûqdx

= −a∆ψ − c(x, t)ap+qψp

∫
Ω

ψq(y)dy

≥ a
(
1−Map+q−1 max

Ω
ψp+q|Ω|

)
≥ 0 (3.7)
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for large values of a, since p+ q < 1.

On the other hand, we have

∂û

∂ν
= δ ≥ aM(max

Ω
ψ)l|Ω| ≥

∫
Ω

k(x, y, t)ûl(y)dy

for small values of maxΩ ψ since l > 1. Hence û(x, t) is a supersolution of (1.1)-(1.3) provided that
u0(x) ≤Mψ(x). By the comparison principle, the problem of (1.1)-(1.3) has global solutions.

Theorem 3.3. Assume that p+ q > 1, l > 0. Then the solutions of problem (1.1)-(1.3) blow up in
finite time for any positive initial data.

Proof. Consider the ODE problem

ũ′(t) = m|Ω|ũp+q, ũ(0) = ũ0, (3.8)

where m is the lower bound of the functions c(x, t), k(x, y, t). As we all know, the solution to (3.8)
blows up in finite time under the assumption p + q > 1. It is easy to see the solution of (3.8) is a
subsolution of problem (1.1)-(1.3) if we choose ũ0 = minΩ u0(x). By the comparison theorem, the
solutions of problem (1.1)-(1.3) blow up in finite time.

Theorem 3.4. Assume that min(p, q) > 1, l > 0. Then the solutions of problem (1.1)-(1.3) blow
up in finite time for large initial data.

Proof. Let ϕ be the eigenfunction of problem (3.1)-(3.2) corresponding to the first eigenvalue λ1,
which is chosen to satisfy that

∫
Ω
ϕ(x)dx = 1. Now we denote ϕs = supΩ̄ ϕ(x), and introduce the

following auxiliary function

w(t) =

∫
Ω

u(x, t)ϕ(x)dx.

Multiplying both sides of the equation of (1.1) by ϕ(x) and integrating over Ω, we have

w′(t) =

∫
Ω

(
∆u+ c(x, t)up

∫
Ω

uqdx

)
ϕdx.

Then using (3.1),(3.2), Green’s identity and the equality
∫
∂Ω

∂ϕ
∂ν

= −λ1, we obtain

w′(t) =

∫
Ω

(
−λ1u+ c(x, t)up

∫
Ω

uq(y, t)dy

)
ϕ(x)dx−

∫
∂Ω

u
∂ϕ

∂ν
dS

≥
∫
Ω

(
−λ1u+ c(x, t)up

∫
Ω

uq(y, t)dy

)
ϕ(x)dx

≥ −
∫
Ω

λ1uϕ+
m

ϕs

∫
Ω

upϕdx

∫
Ω

uqϕdx, (3.9)

Further, since p, q > 1, Jensen’s inequality can be applied to (3.9) to get

w′(t) ≥ −λ1w(t) +
m

ϕs
wp+q(t)

with the initial data w(0) =
∫
Ω
u0(x)φ(x)dx. Then if w(0) > (λ1ϕs

m
)

1
p+q−1 , by the comparison

principle for ordinary equations, we draw the conclusion.
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