

British Journal of Mathematics & Computer Science

16(5): 1-12, 2016, Article no.BJMCS.25851

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: falblooshi@uob.edu.bh;

The Metrics of Multiple Inheritance and the Reusability of
Code – Java and C++

Fawzi Albalooshi1*

1Department of Computer Science, College of IT, University of Bahrain, Kingdom of Bahrain.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/25851

Editor(s):
(1) Qiang Duan, Information Sciences & Technology Department, The Pennsylvania State University, USA.

Reviewers:
(1) V. Krishna Priya, Bharathiar University, India.

(2) M. Bhanu Sridhar, GVP College of Engineering for Women, Vizag, India.
Complete Peer review History: http://sciencedomain.org/review-history/14573

Received: 23rd March 2016
Accepted: 4th May 2016

Published: 11th May 2016

Abstract

One of the fundamental notions in object-oriented systems is multiple inheritance which enables
developers to combine concepts and increase the reusability of resulting software. Two of the widely used
object-oriented languages are Java and C++ that each has its own mechanism to implement multiple
inheritance. The paper investigates the difference between the two languages’ implementation of this
important notion. CK software metrics have been widely used to measure object-oriented software
designs and implementations and are well-known in the software engineering community. In this paper
they are used to assess the two implementations of an object-oriented system having multiple inheritance
relationships and in particularly the reusability factor. Reusability is evaluated using a combination of the
CK metrics that have been designed specifically for the purpose. The results clearly show that the Java
implementation compared to C++ has increased coupling and software complexity and lacks cohesion
resulting to reduced software reusability.

Keywords: Multiple inheritance; software metrics; reusability; java; C++; CK metrics.

1 Introduction

Inheritance is a fundamental mechanism that distinguishes object-oriented (OO) method of software
development from more traditional ones. According to Booch [1] “inheritance is a relationship among

Original Research Article

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

2

classes wherein one class shares the structure and/or behavior defined in one (single inheritance) or more
(multiple inheritance) other classes”. The benefits of inheritance include information sharing between a
subclass and its super class(es) and software reuse that ultimately results to reduced development time and
effort.

Inheritance is of two types single and multiple. Single inheritance is the ability of a class to inherit the
features of a single super class with more than a single inheritance level i.e. the super class could also be a
subclass inheriting from a third class and so on. Multiple inheritance is the ability of a class to inherit from
more than a single class. For example, a graphical image could inherit the properties of a geometrical shape
and a picture as shown in Fig. 1. Stroustrup [2,3] states that multiple inheritance allows a user to combine
independent concepts represented as classes into a composite concept represented as a derived class. For
example, a user might specify a new kind of window by selecting a style of window interaction from a set of
available interaction classes and a style of appearance from a set of display defining classes.

Fig. 1. Multiple inheritance

There is wide debate on the usefulness of multiple inheritance and whether the complexities associated with
it justify its implementation. Though some researchers such as Stroustrup [2,3] are convinced that it can
easily be implemented. He states that multiple inheritance avoids replication of information that would be
experienced with single inheritance when attempting to represent combined concepts from more than one
class. Booch [1] finds inheritance to be like a parachute in that it is good to have it on hand when you need
it. According to Booch there are two problems associated with multiple inheritance and they are; how to deal
with name collisions from super classes? And how to handle repeated inheritance? He presents solutions to
these two problems. Other researchers [4] suggest that there is a real need for multiple inheritance for
efficient object implementation. They justify their claim referring to the lack of multiple subtyping in the
ADA 95 revision which was considered as a deficiency that was rectified in the newer version [5].

It is clear that multiple inheritance is a fundamental concept in many systems and the ability to incorporate it
in system design and implementation will better structure the description of objects modeling their natural
status and enabling further code reuse to that benefited from single inheritance.

2 Multiple Inheritance and C++

C++ is a widely used programming language and is considered as the most comprehensive due to its support
to a variety of programming styles such as, procedural, modular, data abstraction, object-oriented, and
generic programming [2,3]. It supports single and multiple inheritance a child class can inherit the properties
(attributes and methods) of a single parent class and multiple parents. In cases where the parent classes
define the same property the child class uses scope resolution to resolve the issue. Multiple inheritance is
repeated single inheritance and in some cases the parent classes share a common ancestor property resulting
the child class to have multiple copies of the same ancestor property. The compiler will be ambiguous on
which version to use. This situation is referred to as the ‘diamond problem’. C++ overcomes the problem
with the use of virtual inheritance.

GeometricalShape

GraphicalImage

Picture

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

3

3 Multiple Inheritance and Java

Java has secured its position as the most widely used OO programming language due to many reasons
including its network-centric independent platform and powerful collection of libraries of classes known as
Java APIs (Application Programming Interface) [6]. Nevertheless, it has a limitation when it comes to
implementing multiple inheritance which motivated researchers to think of ways to overcome.

In Java, a class inherits from its superclass and direct super-interfaces all methods that are public and
protected. Classes can only support single inheritance from another class in which the child class can inherit
the implementations of a super class. Java does not support multiple inheritance, however the language
supports multiple inheritance of interfaces [7]. A strong reason that prevents Java from extending more than
one class is to avoid issues related to multiple inheritance of attributes from more than one level which is
referred at as the ‘diamond problem’ [8]. In which a sub-class inherits from two or more super classes that
share the same ancestor resulting to more than one instance of the same ancestor state (attribute) present in
the child class at the lower level of the inheritance hierarchy thus raising the issue of which instance of the
ancestor state is valid and should be accessed? On the other hand, interfaces do not have state, thus do not
pose such a threat, and the more recent Java 8 compiler resolves the issue of which default method a
particular class uses. To overcome this shortcoming in Java, researchers investigated compromised solutions.
Two of the reported work in the literature have a similar approach with minor differences are discussed in
the following two paragraphs.

Thirunarayan et al. [9] investigated approximating multiple inheritance in Java by enabling a subclass C to
inherit from a single superclass A and to implement an interface IB that is implemented by a class B in an
effort to simulate multiple inheritance in Java. The example in Fig. 2 outlines the authors’ solution to
approximating multiple inheritance in Java. The class B is then incorporated as an inner class (with
composition relationship) in the class C. The authors initially present three main difficulties with their
solution. The first is that code reuse would be limited, but it is possible. The second is polymorphism and the
third is overriding. Polymorphism could not be fully supported due to the fact that class C may not support
all methods in B. Amendments to class B will require changes to the interface IB and to the class C. The
third is in that overriding is a fundamental concept of inheritance but cannot easily be implemented with
inner classes such as B and may require the modification of the parent class. The authors conclude that
multiple inheritance can be simulated by the use of forwarding to achieve code reuse, interfaces to achieve
polymorphism, and back-referencing to approximate overriding.

Tempro and Biddle [10] highlight the two main benefits of inheritance as code reuse and protocol
conformance. Code defined in the parent class is reused by the child class and the child class responds to the
message similarly to the parent class and can substitute it, thus achieving protocol conformance. The authors
suggest that delegation can be used to simulate multiple inheritance in Java, but there are two main setbacks.
The first is that in some cases the amount of code needed to achieve reuse is almost as much as the code
being reused. The second is the difficulty in accessing objects imposed by the solution which renders classes
to be highly coupled and less cohesive. Their solution is similar to that presented by Thirunarayan et al [9] as
shown in Fig. 2 in which the class B is incorporated as an inner class within C and declaring an object b to
implement it. In their paper they demonstrate that protocol conformance can be achieved by single
inheritance and the use of Java’s capability which allows the multiple implementation of Java interface
classes. The technique they use is called ‘interface-delegation’ which require a child class to inherit from a
single parent class and implements and delegates to as many interface classes resulting to the child class
reusing all the parent classes. In addition to the two main drawbacks highlighted above the solution suffers
from the following: first, protected fields and methods of the delegation object are only accessible to
extending classes; second, the programmer does not have control over class libraries such as Java Core API
thus creating interfaces for such classes is not possible; and third, delegation can be problematic in the
presence of self-calls. The authors recommend that every class intended for reuse by inheritance (such as
Java Core API library of classes) should also have a matching interface to enable such an approach in
simulating multiple inheritance to be applicable.

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

4

The above two approaches in simulating multiple inheritance in Java proposed by the researchers is adopted
and recommended by many Java developers as it is evident in online Java forums and posts. An approach
recommended by Venners [11] uses composition (also referred at as inner class/object) instead of inheritance
especially if code reuse is the goal. On the other hand, Lagorio et al. [12] completely replace inheritance
with composition as presented in their framework titled FeatherJigsaw.

class A { // The primary class to be inherited
 public string a() { return a1();}
 protected string a1() {return “A”;}}
interface IB { // Second class to be inherited declared as an interface
 public string b(IB self);
 public string b1();}
class B implements IB { // Implementation class for the interface IB
 public string b(IB self) {return self.b1(); }
 protected string b1() {return “B”;}}
class C extends A implements IB { // Subclass inheriting from A and
 // implementing IB’s interface
B b; // Innerclass as composition relationship
 public string b(IB self) {return b.b(this); }
 protected string b1() {return “C”;}
 protected string a1() {return “C”;}}

Fig. 2. Approximating multiple inheritance in java

4 Software Metrics

Metrics for Object-Oriented software has been a major research topic for more than two decades. A survey
carried by Genero et al. [13] presented nine different initiatives to establish metrics for OO software such as
CK [14], Li and Henry [15], MOOD [16], Lorenz and Kidd [17], Briand et al. [18], Marchesi [19], Harrison
et al. [20], Bansiya et al. [21], and Genero et al. [22]. The CK [14] set of metrics has gained wide
acceptance due to the fact that it was empirically tested by many researchers such as that reported in
[23,24,25,26]. The originators of the CK [14] metrics realized the need for software measures or metrics to
manage the software development process. They proposed a suite of six metrics for OO design and
demonstrated their feasibility for process improvement. These are Weighted Methods Per Class (WMC),
Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling between Object Classes (CBO),
Response For a Class (RFC), and Lack of Cohesion in Methods (LCOM). In their work presented in [27]
they demonstrate the use of CK metrics for managers responsible of software development efforts. Their
advantage in predicting parts of the system that may be problematic as early as in the design or during
implementation stages is presented. The empirical results across three financial services applications showed
that metrics data can be collected on systems that were written in a variety of programming languages and
on systems that were not yet coded. Another set of popular metrics was the MOOD [16] which was later
extended to MOOD2 [28]. The set consists of six metrics for OO software. For the measurement of
encapsulation Method Hiding Factor (MHF) and Attribute Hiding Factor (AHF) are proposed. To measure
inheritance Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF) metrics are proposed.
The Coupling Factor (CF) measures coupling and the Polymorphism Factor (PF) measures polymorphism.
The authors demonstrate how they can be used to measure systems. They assert that their set of metrics
operate at the system level and are complementary to the CK metrics that operate at the class level.

5 Metrical Measurement and Comparison of Multiple Inheritance

5.1 The experiment sample programme

To determine the metrical difference of multiple inheritance in Java and C++ we devised a simple system as
shown in Fig. 3. There are eight classes all together starting with Person, Student, and Parent classes at the

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

5

first level with each having one attribute and its associated get and set functions. At the second level three
more classes are defined they are, FullTimeEmployee, FullTimeStudent, and FullTimeParent.
FullTimeEmployee having an attribute and its associated get and set functions. FulTimeStudent and
FullTimeParent are inheriting from two first level classes (multiple inheritance) each. Unlike the
FullTimeEmployee class which declares the employee related attribute and inherits from Person the
FullTimeStudent and FullTimeParent in addition to inheriting from Person each inherit from another class
Student and Parent respectively. This is because the Student and Parent classes are further reused by the
StudentEmployee and ParentStudentEmplyee classes, and to avoid the “diamond problem” the Student and
Parent classes are independently declared (not inheriting from Person) which will otherwise occur if one or
more child classes inherit from one of them and at the same time inherit from Person (or another class that
already inherits from it) such as StudentEmployee and ParentStudentEmployee as shown in Fig. 3.
StudentEmpolyee class sets at the third level and ParentStudentEmployee at the fourth with an attribute each
and set and get functions for each of the attributes.

Fig. 3. C++ class diagram

Person

name

setName()
getName()

FullTimeStudent FullTimeParent

StudentEmployee

studyleaveHours

setSLeaveHours()
getSLeaveHours()

FullTimeEmployee

workHours

setHours()
getHours()

Student

studyHours

setHours()
getHours()

Parent

childCareHours

setHours()
getHours()

ParentStudentEmployee

freeHours

setfreeHours()
getfreeHours()

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

6

Fig. 4. Java class diagram

Fig. 4 shows the Java implementation for the same set of classes and similarly to the C++ implementation
the “diamond problem” between the classes is avoided. All Java classes have the same set of attributes and
set and get functions for the same classes in the C++ implementation. But to achieve multiple inheritance in
the FullTimeStudent, FullTimeParent, StudentEmployee, and ParentStudentEmployee classes the inner-
object approach was used. Each of these classes would inherit from one and contain an object of type the
other class as shown in Fig. 4. For each inner-object an additional data member and a set and a get function
had to be declared to access its attribute, thus each of the four classes had an additional attribute (inner-
object) and two additional functions (for the single attribute in the inner-object) each. Using the approach
recommended by Thirunarayan et al. [9] and Tempro and Biddle [10] will require the declaration of
additional interface classes which for the purpose of our study will increase the number of declared classes.
We therefore chose to minimize classes so that the comparison is more precise. The example system used to
measure the difference in implementing multiple inheritance is simple and can easily be implemented in both

Person

name

setName()
getName()

Student

studyHours

setHours()
getHours()

Parent

childCareHours

setHours()
getHours()

FullTimeEmployee

workHours

setHours()
getHours()

StudentEmployee

studyleaveHours
study

setSLeaveHours()
getSLeaveHours()

setSHours()
getSHours()

FullTimeStudent

study

setHours()
getHours()

FullTimeParent

parenthood

setHours()
getHours()

ParentStudentEmployee

freeHours
parenthood

setfreeHours()
getfreeHours()
setPHours()
getPHours()

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

7

languages at the same time has four instances of multiple inheritance to enable us to precisely calculate their
metrics in the two languages.

5.2 Applying the metrics

To compare the two implementations we used the six CK metrics [14], and these are, WMC, DIT, NOC,
CBO, RFC, and LCOM. WMC is the number of methods defined in a class including functions, constructor
and destructor. The larger the number of methods in a class the greater the impact on children this is due to
the fact that the methods will be inherited by the children. Classes with large number of methods are
application specific which limits their reuse. DIT is the depth of the inheritance tree calculated as the max
path from root to node. Deeper trees present greater design complexities as more classes are inherited. The
potential reuse of inherited methods is increased but there is a risk in predicting their behavior. NOC is the
number of children (immediate subclasses) to a class. The more children a class has the more important it is
and therefore must carefully be designed and tested due its high impact on others. CBO is coupling between
classes’ objects and is calculated as the number of classes to which each class is coupled. The more coupling
the less a class becomes reusable due to its dependability on other classes. RFC is response for a class and is
calculated as the number of methods in the class in addition to the number of methods called by methods in
the same class. The larger the number of methods invoked as a response to a message the more complex
becomes a class in addition to increasing the complexity of testing and debugging. LCOM is lack of
cohesion in methods and is calculated as the count of the number of methods pairs whose similarity is 0
minus the count of methods pairs whose similarity is not 0, or more precisely (number of pair of methods
that have no common attribute)-(number of pair of methods that have common attribute). Cohesiveness of a
method is desirable since it promotes encapsulation. Tables 1 and 2 show the calculation of the CK set of
metrics for the Java and C++ implementations respectively. The classes that inherit from more than one class
are underlined. Details on how the tabulation values are calculated are presented in the following two
paragraphs.

Table 1 shows the metrics calculations for the Java implementation. As explained above WMC is simply the
number of methods defined in a class. It set to 2 for the classes Person, Student, Parent, FullTimeEmployee,
FullTimeStudent and FullTimeParent. StudentEmployee and ParentStudentEmployee has 4 methods each.
DIT for a class is calculated as the longest path from root to the class and its 0 for Person, Student and Parent
classes. It is 1 for FullTimeEmployee, FullTimeStudent and FullTimeParent. It is 2 for StudentEmployee
and 3 for ParentStudentEmployee. The number of children or NOC is 3 for Person, 0 for Student, Parent,
FullTimeStudent, FullTimeParent and ParentStudentEmployee. Its 1 for FullTimeEmployee and
StudentEmployee. CBO is coupling between classes and its 0 for Person, Student, Parent, and
FullTimeEmployee. It is 1 for FullTimeStudent, FullTimeParent, StudentEmployee and
ParentStudentEmployee. This is because FullTimeStudent and StudentEmployee have an inner object of
type Student each. So does FullTimeParent and ParentStudentEmployee they have an inner object of type
Parent each. RFC and LCOM measure for the classes is the same as WMC due the simplicity of our sample
programme as it is primarily designed to investigate the difference in implementing multiple inheritance
between Java and C++.

Table 2 shows the metrics calculations for the C++ implementation. WMC is set to 2 for Person, Student,
Parent, FullTimeEmployee, StudentEmployee and ParentStudentEmployee. In addition to inheriting from
Person, FullTimeStudent and FullTimeParent inherit methods from Student and Parent classes respectively
therefore have no methods of their own and WMC for them is 0. Similarly, StudentEmployee and
ParentStudentEmployee inherit from more than one class and require to declare less methods than in the
Java implementation. DIT measure remained the same as the Java implementation. Its 0 for Person, Student
and Parent classes; 1 for FullTimeEmployee, FullTimeStudent and FullTimeParent; 2 for StudentEmployee;
and 3 for ParentStudentEmployee. The number of children or NOC for Student and Parent classes differ than
the Java implementation the rest of the classes have the same measure. It is 3 for Person; 2 for Student and
Parent; 1 for FullTimeEmployee and StudentEmployee; and 0 for FullTimeStudent, FullTimeParent and
ParentStudentEmployee. The C++ implementation has 0 coupling resulting to a 0 CBO measure for all
classes. Similarly to the Java classes RFC and LCOM measure for the C++ classes is the same as WMC, but

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

8

the classes FullTimeStudent, FullTimeParent, StudentEmployee and ParentStudentEmployee measured less
than the Java implementation due to their ability to inherit from more than one class without the need for
extra methods.

Table 1. CK metrics for java classes

Class WMC DIT NOC CBO RFC LCOM
Person 2 0 3 0 2 2
Student 2 0 0 0 2 2
Parent 2 0 0 0 2 2
FullTimeEmployee 2 1 1 0 2 2
FullTimeStudent 2 1 0 1 2 2
FullTimeParent 2 1 0 1 2 2
StudentEmployee 4 2 1 1 4 4
ParentStudentEmolyee 4 3 0 1 4 4
Total: 20 8 5 4 20 20

Table 2. CK metrics for C++ classes

Class WMC DIT NOC CBO RFC LCOM
Person 2 0 3 0 2 2
Student 2 0 2 0 2 2
Parent 2 0 2 0 2 2
FullTimeEmployee 2 1 1 0 2 2
FullTimeStudent 0 1 0 0 0 0
FullTimeParent 0 1 0 0 0 0
StudentEmployee 2 2 1 0 2 2
ParentStudentEmolyee 2 3 0 0 2 2
Total: 12 8 9 0 12 12

Reusability is the most fundamental benefit achieved with the use of inheritance and according to Booch [1]
any artefact of software development can be reused, including code, design, scenarios, and documentation,
but classes serve as the primary linguistic vehicle for reuse. Classes when properly designed and
implemented can be used again (reused) in new development projects reaching up to 70% in some projects.
Thus the more classes are efficiently developed to be reusable the more time and effort can be saved in new
projects. Goel and Bhatia [29] investigated the measurement of the reusability of a class and in particular the
use of the CK metrics for this purpose. They combined the six metrics with each other and came up with
three new metrics to measure the reusability of a class. The first combined metric was the DIT and NOC.
They believe that the deeper the depth of a class the more potential for reuse, thus DIT has a positive effect
on reusability. Also a particular value of NOC has a positive impact on reuse. Therefore the increase in DIT
in combination with NOC has a positive effect on reusability. The second combined metric is CBO and
LCOM. Coupling has negative impact on reusability so does the lack of cohesion which increases
complexity and has negative effect on reusability. Therefore, these two metrics have an inverse effect on
reusability, the higher CBO+LCOM the less reusable is the class. The third was the combination of WMC
and RFC metrics. The higher the number of methods (WMC) the more impact on children. Such classes tend
to be application specific thus limiting their reuse. The higher RFC the more complex a class is thus having
negative effect on its reusability. The higher WMC+RFC the less reusable a class is. Their observations on
the indications of the CK metrics of a software system were formerly highlighted by the metrics originators
[14]. These set of metrics’ values for our system are presented in Tables 3 and 4. The classes that inherit
from more than one class (thus implementing multiple inheritance) are underlined.

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

9

Table 3. CK reusability metrics for java classes

Class DIT + NOC CBO + LCOM WMC + RFC
Person 3 2 4
Student 0 2 4
Parent 0 2 4
FullTimeEmployee 2 2 4
FullTimeStudent 1 3 4
FullTimeParent 1 3 4
StudentEmployee 3 5 8
ParentStudentEmolyee 3 5 8
Total: 13 24 40

Table 4. CK reusability metrics for C++ classes

Class DIT + NOC CBO + LCOM WMC + RFC
Person 3 2 4
Student 2 2 4
Parent 2 2 4
FullTimeEmployee 2 2 4
FullTimeStudent 1 0 0
FullTimeParent 1 0 0
StudentEmployee 3 2 4
ParentStudentEmolyee 3 2 4
Total: 17 12 24

6 Results and Discussion

The metrics’ values presented in Tables 1 and 2 show that the Java implementation has higher values for
WMC, CBO, RFC, and LCOM for all four classes inheriting from two parents. The higher the value of each
of these metrics the less desirable is the code as discussed in the previous section resulting to the C++
implementation to be more desirable than the Java. DIT remained unchanged in both implementations, but
NOC in the C++ implementation is higher which is a desirable characteristic due to the fact that classes
could have more than one child.

Analysis of the results based on the combined metrics approach proposed by Goel and Bhatia [29] clarifies
the differences between the two implementations further. Tables 3 and 4 show that the C++ implementation
has major advantages. The DIT metric’s values for both implementations are identical, but the NOC’s are
different. The C++ implementation has higher NOC value by 4 counts this is because the Student and Parent
classes have two children each as a result of inheritance by the FullTimeStudent, FullTimeParent,
StudentEmployee and ParentStudentEmployee classes as shown in Fig. 3. Where in the Java implementation
the same two classes are declared as inner-objects for the same four classes. Therefore, the C++
implementation has a positive measure over Java for this combined metric. For the second metric CBO,
Table 1 shows 1 for each of the four classes inheriting from two. Due to the fact that each inherits from one
and incorporates the other as an inner-object. LCOM in the Java implementation as shown in Table 1 is also
higher by 8 due to the need for methods to access the data members of the inner objects in the multiple
inheriting four classes, two for each. Therefore, CBO+LCOM values for the Java implementation double the
C++ with 12 counts extra as shown in Tables 3 and 4. As a result the Java implementation is less reusable as
discussed in the previous section. The third metric is the combination of WMC and RFC. They both have
higher values in the Java implementation by 8 counts each for the same reason LCOM increased. Resulting
to the two metrics having 16 counts extra in the Java implementation than in C++ as shown in Tables 3 and
4. All four multiple inheriting classes increased by 4 each in the Java implementation thus resulting for them
to be considered less reusable as discussed in the previous section.

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

10

7 Conclusions

The paper measures using CK metrics the effect of implementing multiple inheritance in two widely used
programming languages namely Java and C++. The case study used is especially designed to have a number
of multiple inheritance relationships between its classes and at different levels. At the same time the
‘diamond problem’ present in multilevel multiple inheritance cases is avoided to ensure a fair comparison.
There are four multiple inheritance relationships at three different levels. The CK set of metrics has gained
wide acceptance by the software engineering community and was empirically tested by many researchers as
discussed in section 4. As discussed in the introduction section one of the fundamental benefits of multiple
inheritance is to better structure the description of objects modeling their natural status and enabling further
code reuse to that benefited from single inheritance. This led as to use a combination of the CK metrics as
set by Goel and Bhatia [29] to measure the reusability of the two implementations. Analysis of the results
based on the combined metrics approach as discussed in section 5.3 clearly affirms that the Java
implementation is less reusable. The C++ implementation has a higher NOC indicating the ability of a C++
class to become a better parent for multiple classes which is considered as positive measure of reusability.
CBO and LCOM have an inverse effect on reusability the more the less reusable a class is and the java
implementation doubled the C++ in this combined metric clearly suggesting that the C++ implementation is
more reusable. The higher count of WMC in combination with RFC for the Java implementation further
asserts that the C++ implementation is more reusable. The outcome of the experiment presented in this paper
confirms the concerns raised by a number of researchers about the Java implementation (or simulation) of
multiple inheritance as highlighted in section 3. Thirunarayan et al. [9] cautioned that code reuse would be
limited, polymorphism could not be fully supported, and overriding cannot easily be implemented with inner
classes. Tempro and Biddle [10] raised two main drawbacks. The first, is that in some cases the amount of
code needed to achieve reuse is almost as much as the code being reused. The second, is the difficulty in
accessing objects imposed by the solution which renders classes to be highly coupled with low cohesion.
This paper provides clear evidence using software metrics that implementing (or simulating) multiple
inheritance in Java will result to undesirable effects on the produced software such as, increased coupling,
lack of cohesion and increased software complexity leading to major negative effects on the reusability of
the produced software. Due to the fact that Java is a popular programming language in wide use, it is
important that developers realize its limitations in implementing a very useful object oriented mechanism
such as multiple inheritance. Developers may be encouraged to use some of the published and practiced
approaches to simulate multiple inheritance, but they must be aware of the impact of such implementations
on the developed software and especially on the reusability of its classes. The impact of which is
compounded with the increase in the number of multiple inheritance opportunities present in the developed
software.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Booch G. Object-oriented analysis and design with applications. 2nd Edition (Addison-Wesley in

December); 1998.

[2] Stroustrup B. Multiple inheritance for C++. The C/C++ Users Journal; 1999.

[3] Stroustrup B. The C++ Programming Language, Fourth Edition. Addison-Wesley; 2013.

[4] Ducournau R, Morandat F, Privat J. Emprical assessment of object-oriented implementations with
multiple inheritance and static Typing, in OOPSLA 2009, October 25-29, 2009, Orlando, Florida,
USA. ACM; 2009.

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

11

[5] Taft ST, Duff RA, Brukardt RL, Ploedereder E, Leroy P, editors. Ada 2005 reference manual:
Language and standard libraries. LNCS 4348 (Springer); 2006.

[6] Flanagan D. Java in a NUTSHELL. 3rd Edition (O’Reilly & Associates, Inc.; November); 1999.

[7] Gosling J, Joy B, Steele G, Bracha G, Buckley A. The Java language specification – Java SE, 7th
Edition, (Oracle America, Inc.); 2013.

[8] Oracle. Multiple Inheritance of State, Implementation, and Type; 2014.
(Accessed 15th December 2014)
Available: http://docs.oracle.com/javase/tutorial/java/landl/multipleinheritance.html

[9] Thirunarayan K, Kniesel G, Hampapuram H. Simulating multiple inheritance and generics in Java.
Computer Languages, (Elsevier Science Ltd). 1999;25(4):189-210.

[10] Tempro E, Biddle R. Simulating multiple inheritance in Java. The Journal of Systems and Software,
(Elsevier Science Inc.). 2000;55:87-100.

[11] Venners B. Inheritance versus composition: Which one should you choose? Java World, Inc; 2014.
(Accessed 23rd July 2014)
Available:http://www.javaworld.com/article/2076814/core-java/inheritance-versus-composition--
which-one-should-you-choose-.html

[12] Lagorio G, Servetto M, Zucca E. Featherweight Jigsaw – Replacing inheritance by composition in
Java-like languages. Information and Computation, (Elsevier Inc.). 2012;214:86-111.

[13] Marcela G, Marion P, Coral C. A survey of metrics for UML class diagrams. Journal of Object
Technology. 2005;4(9):59-92.
Available: http://www.jot.fm/issues/issue_2005_11/article1 (ETH Zurich)

[14] Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering. 1994;20:6.

[15] Li W, Henry S. Object-oriented metrics that predict maintainability. Journal of Systems and Software.
1993;23(2):111-122.

[16] Harrison R, Counsell SJ, Nithi RV. An evaluation of the MOOD set of object-oriented software
metrics. IEEE Transactions on Software Engineering. 1998;24:6.

[17] Lorenz M, Kidd J. Object-oriented software metrics: A practical guide. (Prentice Hall, Englewood
Cliffs, New Jersey); 1994.

[18] Briand L, Devanbu W, Melo W. An investigation into coupling measures for C++. 19th International
Conference on Software Engineering (ICSE 97), Boston, USA. 1997;412-421.

[19] Marchesi M. OOA metrics for the united modeling language. 2nd Euromicro Conference on Software
Maintenance and Reengineering. 1998;67-73.

[20] Harrison R, Counsell S, Nithi R. Coupling metrics for object-oriented design, 5th International
Software Metrics Symposium Metrics. 1998;150-156.

[21] Bansiya J, Davis C. A hierarchical model for object-oriented design quality assessment. IEEE
Transactions on Software Engineering. 2002;28(1):4-17.

Albalooshi; BJMCS, 16(5): 1-12, 2016; Article no.BJMCS.25851

12

[22] Genero M, Piattini M, Calero C. Early measures for UML class diagrams. L’Object, (Hermes Science
Publications). 2001;6(4):489-515.

[23] Basili VR, Briad LC, Melo WL. A validation of object-oriented design metrics as quality indicators.
IEEE Transactions Software Engineering. 1996;22:751-761.

[24] Cartwright M, Shepperd M. An empirical investigation of object-oriented software in industry.
Technical Report TR 96/01, Department of Computing, Talbot Campus, Bournemouth University;
1996.

[25] Nielsen S. Personal communication, June 18; 1996.

[26] Pant Y, Henderson-Sellers B, Verner JM. Generalization of object-oriented components for reuse:
Measurement of effort and size change. J. Object-Oriented Programming. 1996;9:19-41.

[27] Chidamber SR, Darcy DP, Kemerer CF. Managerial use of metrics for object-oriented software: An
exploratory analysis. IEEE Transactions on Software Engineering. 1998;24:8.

[28] Abreu FB, Cuche JS. Collecting and analyzing the MOOD2 metrics. Workshop on Object-Oriented
Product Metrics for Software Quality Assessment (ECOOP'98), Brussels, Belgium. 1998;258-260.

[29] Goel BM, Bhatia PK. Analysis of reusability of object-oriented system using CK metrics.
International Journal of Computer Applications. 2012;60(10):32-36.

© 2016 Albalooshi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/14573

