British Journal of Mathematics & Computer Science

16(5): 1-12, 2016, Article no.BJMCS.25851
ISSN: 2231-0851

SCIENCEDOMAIN international

www.sciencedomain.org

SCIENCEDOMAIN

The Metrics of Multiple Inheritance and the Reusabiity of
Code — Java and C++

Fawzi Albalooshi’
'Department of Computer Science, College of IT, Univet$iBahrain, Kingdom of Bahrain.

Author’s contribution

The sole author designed, analyzed, interpreted and preplaeetianuscript.

Article Information

DOI: 10.9734/BJMCS/2016/25851
Editor(s):
(1) Qiang Duan, Information Sciences & TechnologpBrtment, The Pennsylvania State University, USA.
Reviewers:
(1) V. Krishna Priya, Bharathiar University, India.
(2) M. Bhanu Sridhar, GVP College of Engineering for Woiméizag, India.
Complete Peer review Historfttp://sciencedomain.org/review-history/14573

Received: 2 March 2016
Accepted: 4 May 2016
Published: 11" May 2016

| Original Research Article

Abstract

One of the fundamental notions in object-oriented systemsubiple inheritance which enables
developers to combine concepts and increase the reusabilgyulting software. Two of the widely used
object-oriented languages are Java and C++ that eachshawrit mechanism to implement multiple
inheritance. The paper investigates the difference betwee two languages’ implementation of this
important notion. CK software metrics have been widely usedneasure object-oriented software
designs and implementations and are well-known in the satesagineering community. In this paper
they are used to assess the two implementations of an-ohgmted system having multiple inheritance
relationships and in particularly the reusability fac®eusability is evaluated using a combination of|the
CK metrics that have been designed specifically for thrpqae. The results clearly show that the Java
implementation compared to C++ has increased coupling anslasefcomplexity and lacks cohesipn
resulting to reduced software reusability.

Keywords: Multiple inheritance; software metrics; reusdpijljava; C++; CK metrics.

1 Introduction

Inheritance is a fundamental mechanism that distinguishes t-abjented (OO) method of software
development from more traditional ones. According to Boddh“inheritance is a relationship among

*Corresponding author: E-mail: falblooshi@uob.edh;b

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

classes wherein one class shares the structure antfavidredefined in one (single inheritance) or more
(multiple inheritance) other classes”. The benefits of ritdngce include information sharing between a
subclass and its super class(es) and software reusdtimately results to reduced development time and
effort.

Inheritance is of two types single and multiple. Singleeritance is the ability of a class to inherit the
features of a single super class with more than a singkritance level i.e. the super class could also be a
subclass inheriting from a third class and so on. Multiphestiitance is the ability of a class to inherit from
more than a single class. For example, a graphical imagd inherit the properties of a geometrical shape
and a picture as shown in Fig. 1. Stroustrup [2,3] statésrthliple inheritance allows a user to combine
independent concepts represented as classes into a conyoosiept represented as a derived class. For
example, a user might specify a new kind of window bgat#lg a style of window interaction from a set of
available interaction classes and a style of appearamted set of display defining classes.

Geonet ri cal Shape | | Picture

G aphi cal | nage

Fig. 1. Multiple inheritance

There is wide debate on the usefulness of multiple itarere and whether the complexities associated with
it justify its implementation. Though some researchech aas Stroustrup [2,3] are convinced that it can
easily be implemented. He states that multiple inheritavoéds replication of information that would be
experienced with single inheritance when attempting to repteombined concepts from more than one
class. Booch [1] finds inheritance to be like a parachutbat it is good to have it on hand when you need
it. According to Booch there are two problems associatéd willtiple inheritance and they are; how to deal
with name collisions from super classes? And how to handlategpénheritance? He presents solutions to
these two problems. Other researchers [4] suggest tee th a real need for multiple inheritance for
efficient object implementation. They justify their ialareferring to the lack of multiple subtyping in the
ADA 95 revision which was considered as a deficiency tteet rectified in the newer version [5].

It is clear that multiple inheritance is a fundamentadaept in many systems and the ability to incorpotate i
in system design and implementation will better structueedgsscription of objects modeling their natural
status and enabling further code reuse to that benefitedsfrmie inheritance.

2 Multiple Inheritance and C++

C++ is a widely used programming language and is consideréte most comprehensive due to its support
to a variety of programming styles such as, procedural, modddaa abstraction, object-oriented, and
generic programming [2,3]. It supports single and multipleeiitance a child class can inherit the properties
(attributes and methods) of a single parent class antpfeuparents. In cases where the parent classes
define the same property the child class uses scopautiesolo resolve the issue. Multiple inheritance is
repeated single inheritance and in some cases the pEgsgTshare a common ancestor property resulting
the child class to have multiple copies of the same amcpsbperty. The compiler will be ambiguous on
which version to use. This situation is referred to as tkeridnd problem’. C++ overcomes the problem
with the use of virtual inheritance.

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

3 Multiple Inheritance and Java

Java has secured its position as the most widely used rod@apming language due to many reasons
including its network-centric independent platform and powerbllection of libraries of classes known as
Java APIs (Application Programming Interface) [6]. Newelghs, it has a limitation when it comes to
implementing multiple inheritance which motivated researsio think of ways to overcome.

In Java, a class inherits from its superclass and dirguranterfaces all methods that are public and
protected. Classes can only support single inheritancedrmther class in which the child class can inherit
the implementations of a super class. Java does not suppdiple inheritance, however the language
supports multiple inheritance of interfaces [7]. A strongoeahat prevents Java from extending more than
one class is to avoid issues related to multiple inhexétani attributes from more than one level which is
referred at as the ‘diamond problem’ [8]. In which a slas< inherits from two or more super classes that
share the same ancestor resulting to more than onedestd the same ancestor state (attribute) present in
the child class at the lower level of the inheritance hibrathus raising the issue of which instance of the
ancestor state is valid and should be accessed? On théhatttkrinterfaces do not have state, thus do not
pose such a threat, and the more recent Java 8 compileveesbke issue of which default method a
particular class uses. To overcome this shortcoming i, Jasearchers investigated compromised solutions.
Two of the reported work in the literature have a simélgproach with minor differences are discussed in
the following two paragraphs.

Thirunarayan et al. [9] investigated approximating migtinheritance in Java by enabling a subclass C to
inherit from a single superclagsand to implement an interfa¢B that is implemented by a class B in an
effort to simulate multiple inheritance in Java. Theraple in Fig. 2 outlines the authors’ solution to
approximating multiple inheritance in Java. The class B is tineorporated as an inner class (with
composition relationship) in the class C. The authorsalhitpresent three main difficulties with their
solution. The first is that code reuse would be limited, tistpossible. The second is polymorphism and the
third is overriding. Polymorphism could not be fully suppordee to the fact that class C may not support
all methods in B. Amendments to class B will require ckang the interface 1B and to the class C. The
third is in that overriding is a fundamental concept of inhecigabut cannot easily be implemented with
inner classes such as B and may require the modificatidgheoparent class. The authors conclude that
multiple inheritance can be simulated by the use of fatingrto achieve code reuse, interfaces to achieve
polymorphism, and back-referencing to approximate ovegidin

Tempro and Biddle [10] highlight the two main benefits of iithece as code reuse and protocol
conformance. Code defined in the parent class is reused bhittieclass and the child class responds to the
message similarly to the parent class and can substjttiies achieving protocol conformance. The authors
suggest that delegation can be used to simulate multiplétariear in Java, but there are two main setbacks.
The first is that in some cases the amount of code ndedachieve reuse is almost as much as the code
being reused. The second is the difficulty in accessing objaptssed by the solution which renders classes
to be highly coupled and less cohesive. Their solutisimdlar to that presented by Thirunarayan et al [9] as
shown in Fig. 2 in which the classi8incorporated as an inner class within C and declaringbgatt b to
implement it. In their paper they demonstrate that protocofocmance can be achieved by single
inheritance and the use of Java’s capability which alldves multiple implementation of Java interface
classes. The technique they use is called ‘interface-delagevhich require a child class to inherit from a
single parent class and implements and delegates ritaayg interface classes resulting to the child class
reusing all the parent classes. In addition to the twomdrawbacks highlighted above the solution suffers
from the following: first, protected fields and methodstioé delegation object are only accessible to
extending classes; second, the programmer does not havel cwer class libraries such as Java Core API
thus creating interfaces for such classes is not possible;third, delegation can be problematic in the
presence of self-calls. The authors recommend that elesy intended for reuse by inheritance (such as
Java Core API library of classes) should also have &himg interface to enable such an approach in
simulating multiple inheritance to be applicable.

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

The above two approaches in simulating multiple inheritamdava proposed by the researchers is adopted
and recommended by many Java developers as it is evidentine Java forums and posts. An approach
recommended by Venners [11] uses composition (also referesdirter class/object) instead of inheritance
especially if code reuse is the goal. On the other hargbriaet al. [12] completely replace inheritance
with composition as presented in their framework titled ferdigsaw.

class A {// The primary class to be inherited
public string a() { return al();}
protected string al() {return “A”;}}
interface IB { // Second class to be inherited declarezhdsterface
public string b(IB self);
public string b1();}
class B implements IB {// Implementation class forititerface IB
public string b(IB self) {return self.b1(); }
protected string b1() {return “B";}}
class C extends A implements IB {// Subclass inheritiogifA and
/I implementing IB’s interface
B b; // Innerclass as composition relationship
public string b(IB self) {return b.b(this); }
protected string b1() {return “C";}
protected string al() {return “C";}}

Fig. 2. Approximating multiple inheritance in java
4 Software Metrics

Metrics for Object-Oriented software has been a ma&search topic for more than two decades. A survey
carried by Genero et al. [13] presented nine diffengitiitives to establish metrics for OO software such as
CK [14], Li and Henry [15], MOOD [16], Lorenz and Kidd7Ji Briand et al. [18], Marchesi [19], Harrison
et al. [20], Bansiya et al. [21], and Genero et al. [22]he CK [14] set of metrics has gained wide
acceptance due to the fact that it was empirically debie many researchers such as that reported in
[23,24,25,26]. The originators of the CK [14] metrics raalithe need for software measures or metrics to
manage the software development process. They proposeideaokisix metrics for OO design and
demonstrated their feasibility for process improvemehes€é are Weighted Methods Per Class (WMC),
Depth of Inheritance Tree (DIT), Number of Children @) Coupling between Object Classes (CBO),
Response For a Class (RFC), and Lack of Cohesion in Meth@{3M). In their work presented in [27]
they demonstrate the use of CK metrics for managers rabfgon$ software development efforts. Their
advantage in predicting parts of the system that may beepnabic as early as in the design or during
implementation stages is presented. The empirical segaibss three financial services applications showed
that metrics data can be collected on systems tha wetten in a variety of programming languages and
on systems that were not yet coded. Another set of popdaiceiwas the MOOD [16] which was later
extended to MOOD2 [28]. The set consists of six metf@@sOO software. For the measurement of
encapsulation Method Hiding Factor (MHF) and Attribute Hidiagtor (AHF) are proposed. To measure
inheritance Method Inheritance Factor (MIF) and Attribuitieeritance Factor (AIF) metrics are proposed.
The Coupling Factor (CF) measures coupling and the Rwofymism Factor (PF) measures polymorphism.
The authors demonstrate how they can be used to mesmiesns. They assert that their set of metrics
operate at the system level and are complementary to theediics that operate at the class level.

5 Metrical Measurement and Comparison of Multiple inheritance
5.1 The experiment sample programme

To determine the metrical difference of multiple irtserce in Java and C++ we devised a simple system as
shown in Fig. 3. There are eight classes all togetheingtavith Person, Student, and Parent classes at the

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

first level with each having one attribute and its asged get and set functions. At the second level three
more classes are defined they are, FullTimeEmployeellTieStudent, and FullTimeParent.
FullTimeEmployee having an attribute and its associatedaget set functions. FulTimeStudent and
FullTimeParent are inheriting from two first level st&&s (multiple inheritance) each. Unlike the
FullTimeEmployee class which declares the employeetecklattribute and inherits from Person the
FullTimeStudent and FullTimeParent in addition to inheritirgn Person each inherit from another class
Student and Parent respectively. This is because the Studkmasent classes are further reused by the
StudentEmployee and ParentStudentEmplyee classes, anoidate “diamond problem” the Student and
Parent classes are independently declared (not inheritngPerson) which will otherwise occur if one or
more child classes inherit from one of them and at theedéme inherit from Person (or another class that
already inherits from it) such as StudentEmployee aaterRStudentEmployee as shown in Fig. 3.
StudentEmpolyee class sets at the third level and ParentStogdagee at the fourth with an attribute each
and set and get functions for each of the attributes.

Par ent Person St udent
namne
chi | dCar eHour s st udyHour s
set Nane()
set Hour s() get Nanme() set Hour s()
get Hour s() get Ho
Ful | Ti mePar ent Ful I Ti meEnpl oyee Ful | Ti meSt udent
wor kHour s
set Hours()
get Hour s()

JAN

St udent Enpl oyee

st udyl eaveHour s

set SLeaveHour s()
get SLeaveHour s()

L%

Par ent St udent Enpl oyee

freeHours

setfreeHours()
get f reeHours()

Fig. 3. C++ class diagram

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

Par ent Perso St udent
nane st udyHour s
chi | dCar eHour s
set Name() set Hours()
set Hour s() get Nane() get Hour s()
aet Hour s()

AN A

Ful | Ti meEnpl oyee

Ful | Ti mePar ent Ful | Ti meSt udent

wor kHour s st udy
par ent hood

set Hour s() set Hour s()
set Hour s() get Hour s() get Hour s()
get Hour s()

T

St udent Enpl oyee

st udyl eaveHour s
st udy

set SLeaveHour s()
get SLeaveHour s()
set SHour s()
get SHour s()

Par ent St udent Enpl oyee

freeHours
par ent hood

setfreeHours()

getfreeHours()
set PHour s()
get PHour s()

Fig. 4. Java class diagram

Fig. 4 shows the Java implementation for the same selas$es and similarly to the C++ implementation
the “diamond problem” between the classes is avoided. Al dlsses have the same set of attributes and
set and get functions for the same classes in the Cplelinentation. But to achieve multiple inheritance in
the FullTimeStudent, FullTimeParent, StudentEmployee, RacentStudentEmployee classes the inner-
object approach was used. Each of these classes woulit fnbie one and contain an object of type the
other class as shown in Fig. 4. For each inner-objeatiditional data member and a set and a get function
had to be declared to access its attribute, thus eadke dbur classes had an additional attribute (inner-
object) and two additional functions (for the single attribntéhe inner-object) each. Using the approach
recommended by Thirunarayan et al. [9] and Tempro and Biddlg will require the declaration of
additional interface classes which for the purpose of tuatyswill increase the number of declared classes.
We therefore chose to minimize classes so that thegp@son is more precise. The example system used to
measure the difference in implementing multiple inheciais simple and can easily be implemented in both

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

languages at the same time has four instances of miltimeitance to enable us to precisely calculate their
metrics in the two languages.

5.2 Applying the metrics

To compare the two implementations we used the six CKigadtt4], and these are, WMC, DIT, NOC,
CBO, RFC, and LCOM. WMC is the number of methods deffimea class including functions, constructor
and destructor. The larger the number of methods in a tiasgreater the impact on children this is due to
the fact that the methods will be inherited by the child@lasses with large number of methods are
application specific which limits their reuse. DIT is the tiept the inheritance tree calculated as the max
path from root to node. Deeper trees present greater desigiesdias as more classes are inherited. The
potential reuse of inherited methods is increased but thereisk in predicting their behavior. NOC is the
number of children (immediate subclasses) to a cldss.nTore children a class has the more important it is
and therefore must carefully be designed and testedsibh@gh impact on others. CBO is coupling between
classes’ objects and is calculated as the number aledds which each class is coupled. The more coupling
the less a class becomes reusable due to its dependabibither classes. RFC is response for a class and is
calculated as the number of methods in the class in additidre number of methods called by methods in
the same class. The larger the number of methods invokedespa@nse to a message the more complex
becomes a class in addition to increasing the complefittesting and debugging. LCOM is lack of
cohesion in methods and is calculated as the count of the nwhbsthods pairs whose similarity is 0
minus the count of methods pairs whose similarity is nor @nare precisely (number of pair of methods
that have no common attribute)-(number of pair of meghtbdt have common attribute). Cohesiveness of a
method is desirable since it promotes encapsulation. Tabdesl 2 show the calculation of the CK set of
metrics for the Java and C++ implementations respectiVély classes that inherit from more than one class
are underlined. Details on how the tabulation values a@ilated are presented in the following two
paragraphs.

Table 1 shows the metrics calculations for the Java imgnéation. As explained above WMC is simply the
number of methods defined in a class. It set to 2 for #esek Person, Student, Parent, FullTimeEmployee,
FullTimeStudent and FullTimeParent. StudentEmployee and PardatBEmployee has 4 methods each.
DIT for a class is calculated as the longest path from ootbtet class and its O for Person, Student and Parent
classes. It is 1 for FullTimeEmployee, FullTimeStudent BotiTimeParent. It is 2 for StudentEmployee
and 3 for ParentStudentEmployee. The number of childrédQC is 3 for Person, O for Student, Parent,
FullTimeStudent, FullTimeParent and ParentStudentEmployiée 1 for FullTimeEmployee and
StudentEmployee. CBO is coupling between classes and itsr OPdoson, Student, Parent, and
FullTimeEmployee. It is 1 for FullTimeStudent, FullTime®at, StudentEmployee and
ParentStudentEmployee. This is because FullTimeStudehSardentEmployee have an inner object of
type Student each. So does FullTimeParent and Pandet8Employee they have an inner object of type
Parent each. RFC and LCOM measure for the classke Eatme as WMC due the simplicity of our sample
programme as it is primarily designed to investigate thieréifice in implementing multiple inheritance
between Java and C++.

Table 2 shows the metrics calculations for the C++ implatation. WMC is set to 2 for Person, Student,
Parent, FullTimeEmployee, StudentEmployee and Parat@BtEmployee. In addition to inheriting from
Person, FullTimeStudent and FullTimeParent inherit methame Btudent and Parent classes respectively
therefore have no methods of their own and WMC for then®.i Similarly, StudentEmployee and
ParentStudentEmployee inherit from more than one @adsrequire to declare less methods than in the
Java implementation. DIT measure remained the same a@ata implementation. Its O for Person, Student
and Parent classes; 1 for FullTimeEmployee, FullTimeStuded FullTimeParent; 2 for StudentEmployee;
and 3 for ParentStudentEmployee. The number of children @ tdOStudent and Parent classes differ than
the Java implementation the rest of the classes havanhe measure. It is 3 for Person; 2 for Student and
Parent; 1 for FullTimeEmployee and StudentEmployee; @rdr FullTimeStudent, FullTimeParent and
ParentStudentEmployee. The C++ implementation has 0 coumsdting to a 0 CBO measure for all
classes. Similarly to the Java classes RFC and L@@isure for the C++ classes is the same as WMC, but

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

the classes FullTimeStudent, FullTimeParent, StudentErapland ParentStudentEmployee measured less
than the Java implementation due to their ability to inHesih more than one class without the need for
extra methods.

Table 1. CK metrics for java classes

Class WMC DIT NOC CBO RFC LCOM
Person 2 0 3 0 2 2
Student 2 0 0 0 2 2
Parent 2 0 0 0 2 2
FullTimeEmployee 2 1 1 0 2 2
FullTimeStudent 2 1 0 1 2 2
FullTimeParent 2 1 0 1 2 2
StudentEmployee 4 2 1 1 4 4
ParentStudentEmolyee 4 3 0 1 4 4
Total: 20 8 5 4 20 20
Table 2. CK metrics for C++ classes
Class WMC DIT NOC CBO RFC LCOM
Person 2 0 3 0 2 2
Student 2 0 2 0 2 2
Parent 2 0 2 0 2 2
FullTimeEmployee 2 1 1 0 2 2
FullTimeStudent 0 1 0 0 0 0
FullTimeParent 0 1 0 0 0 0
StudentEmployee 2 2 1 0 2 2
ParentStudentEmolyee 2 3 0 0 2 2
Total: 12 8 9 0 12 12

Reusability is the most fundamental benefit achieved Wighuse of inheritance and according to Booch [1]
any artefact of software development can be reused, ingutide, design, scenarios, and documentation,
but classes serve as the primary linguistic vehicle reurse. Classes when properly designed and
implemented can be used again (reused) in new developmentgrejaching up to 70% in some projects.
Thus the more classes are efficiently developed tebgable the more time and effort can be saved in new
projects. Goel and Bhatia [29] investigated the measureofiéiné reusability of a class and in particular the
use of the CK metrics for this purpose. They combinedsthenetrics with each other and came up with
three new metrics to measure the reusability of a.clE®s first combined metric was the DIT and NOC.
They believe that the deeper the depth of a class the potential for reuse, thus DIT has a positive effect
on reusability. Also a particular value of NOC has a pasiiinpact on reuse. Therefore the increase in DIT
in combination with NOC has a positive effect on reugigbilThe second combined metric is CBO and
LCOM. Coupling has negative impact on reusability so does I8tk of cohesion which increases
complexity and has negative effect on reusability. Tleegfthese two metrics have an inverse effect on
reusability, the higher CBO+LCOM the less reusablthésclass. The third was the combination of WMC
and RFC metrics. The higher the number of methods (WMC) thhe impact on children. Such classes tend
to be application specific thus limiting their reuse. The &igRFC the more complex a class is thus having
negative effect on its reusability. The higher WMC+RFCléss reusable a class is. Their observations on
the indications of the CK metrics of a software systeene formerly highlighted by the metrics originators
[14]. These set of metrics’ values for our systempmesented in Tables 3 and 4. The classes that inherit
from more than one class (thus implementing multiple irdnec#) are underlined.

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

Table 3. CK reusability metrics for java classes

Class DIT + NOC CBO + LCOM WMC + RFC
Persol 3 2 4
Student 0 2 4
Paren 0 2 4
FullTimeEmployee 2 2 4
FullTimeStudent 1 3 4
FullTimeParer 1 3 4
StudentEmployee 3 5 8
ParentStudentEmoly 3 5 8
Total: 13 24 40
Table 4. CK reusability metrics for C++ classes
Class DIT + NOC CBO + LCOM WMC + RFC
Persol 3 2 4
Student 2 2 4
Paren 2 4
FullTimeEmployee 2 2 4
FullTimeStudent 1 0 0
FullTimeParer 1 0 0
StudentEmployee 3 2 4
ParentStudentEmoly 3 2 4
Total: 17 12 24

6 Results and Discussion

The metrics’ values presented in Tables 1 and 2 show thaatleeimplementation has higher values for
WMC, CBO, RFC, and LCOM for all four classes inhagtifrom two parents. The higher the value of each
of these metrics the less desirable is the code asisdied in the previous section resulting to the C++
implementation to be more desirable than the Java.r®ifained unchanged in both implementations, but
NOC in the C++ implementation is higher which is a desirahkracteristic due to the fact that classes
could have more than one child.

Analysis of the results based on the combined metrics apppraposed by Goel and Bhatia [29] clarifies
the differences between the two implementations furthere$eblnd 4 show that the C++ implementation
has major advantages. The DIT metric’s values for bafflementations are identical, but the NOC's are
different. The C++ implementation has higher NOC value bguhts this is because the Student and Parent
classes have two children each as a result of inheritygc¢he FullTimeStudent, FullTimeParent,
StudentEmployee and ParentStudentEmployee classes as shHaign3dnWhere in the Java implementation
the same two classes are declared as inner-objects fosathe four classes. Therefore, the C++
implementation has a positive measure over Java for thibinech metric. For the second metric CBO,
Table 1 shows 1 for each of the four classes inheritimg two. Due to the fact that each inherits from one
and incorporates the other as an inner-object. LCOM in treeidgplementation as shown in Table 1 is also
higher by 8 due to the need for methods to access therdatders of the inner objects in the multiple
inheriting four classes, two for each. Therefore, CBO+LC@iWies for the Java implementation double the
C++ with 12 counts extra as shown in Tables 3 and 4. Au# the Java implementation is less reusable as
discussed in the previous section. The third metric is dhhebmation of WMC and RFC. They both have
higher values in the Java implementation by 8 counts emahd same reason LCOM increased. Resulting
to the two metrics having 16 counts extra in the Jaygeimentation than in C++ as shown in Tables 3 and
4. All four multiple inheriting classes increased by 4 eacthe Java implementation thus resulting for them
to be considered less reusable as discussed in the pregidio.

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

7 Conclusions

The paper measures using CK metrics the effect ofemghting multiple inheritance in two widely used
programming languages namely Java and C++. The case stdlisiespecially designed to have a number
of multiple inheritance relationships between its clasaed at different levels. At the same time the
‘diamond problem’ present in multilevel multiple inheritan@ses is avoided to ensure a fair comparison.
There are four multiple inheritance relationships at tldifferent levels. The CK set of metrics has gained
wide acceptance by the software engineering commanitywas empirically tested by many researchers as
discussed in section 4. As discussed in the introductictioseone of the fundamental benefits of multiple
inheritance is to better structure the description oéabjmodeling their natural status and enabling further
code reuse to that benefited from single inheritance. €lisa$ to use a combination of the CK metrics as
set by Goel and Bhatia [29] to measure the reusabilith@ftwo implementations. Analysis of the results
based on the combined metrics approach as discussed in sB@iociearly affirms that the Java
implementation is less reusable. The C++ implementatiora trégher NOC indicating the ability of a C++
class to become a better parent for multiple classeshvibiconsidered as positive measure of reusability.
CBO and LCOM have an inverse effect on reusability the rntteeeless reusable a class is and the java
implementation doubled the C++ in this combined metric clearlyesigm that the C++ implementation is
more reusable. The higher count of WMC in combination with R6fCthe Java implementation further
asserts that the C++ implementation is more reusable. Tbenoeitof the experiment presented in this paper
confirms the concerns raised by a number of researchers thieodlava implementation (or simulation) of
multiple inheritance as highlighted in section 3. Thirunaragtaal. [9] cautioned that code reuse would be
limited, polymorphism could not be fully supported, and odarg cannot easily be implemented with inner
classes. Tempro and Biddle [10] raised two main drawbddies first, is that in some cases the amount of
code needed to achieve reuse is almost as much as the augleesed. The second, is the difficulty in
accessing objects imposed by the solution which renderseslas be highly coupled with low cohesion.
This paper provides clear evidence using software metin@s implementing (or simulating) multiple
inheritance in Java will result to undesirable effemsthe produced software such as, increased coupling,
lack of cohesion and increased software complexitgliteato major negative effects on the reusability of
the produced software. Due to the fact that Java is a goopobgramming language in wide use, it is
important that developers realize its limitations in iempénting a very useful object oriented mechanism
such as multiple inheritance. Developers may be encouragesetsome of the published and practiced
approaches to simulate multiple inheritance, but they muatvage of the impact of such implementations
on the developed software and especially on the reusabiflitys classes. The impact of which is
compounded with the increase in the number of multiple irgvexé opportunities present in the developed
software.

Competing Interests
Author has declared that no competing interests exist.

References

[1] Booch G. Object-oriented analysis and design with appitat 2° Edition (Addison-Wesley in
December); 1998.

[2] Stroustrup B. Multiple inheritance for C++. The C/C++ Usexgdal; 1999.
[3] Stroustrup B. The C++ Programming Language, Fourth Edifiddison-Wesley; 2013.
[4] Ducournau R, Morandat F, Privat J. Emprical assessmeabjett-oriented implementations with

multiple inheritance and static Typing, in OOPSLA 2009taDer 25-29, 2009, Orlando, Florida,
USA. ACM; 20009.

10

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

(3]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

(20]

[21]

Taft ST, Duff RA, Brukardt RL, Ploedereder E, Leroy P,t@di Ada 2005 reference manual:
Language and standard libraries. LNCS 4348 (Springer); 2006.

Flanagan D. Java in a NUTSHELL" &dition (O’Reilly & Associates, Inc.; November); 1999.

Gosling J, Joy B, Steele G, Bracha G, Buckley A. TheaJamguage specification — Java SE, 7
Edition, (Oracle America, Inc.); 2013.

Oracle. Multiple Inheritance of State, Implementatiord &gpe; 2014.
(Accessed 15th December 2014)
Available: http://docs.oracle.com/javase/tutorial§Aandl/multipleinheritance.html

Thirunarayan K, Kniesel G, Hampapuram H. Simulating multipkeiitance and generics in Java.
Computer Languages, (Elsevier Science Ltd). 1999;25(42189-

Tempro E, Biddle R. Simulating multiple inheritance in JaM@e Journal of Systems and Software,
(Elsevier Science Inc.). 2000;55:87-100.

Venners B. Inheritance versus composition: Which one should youehdasa World, Inc; 2014.
(Accessed 23 July 2014)
Available:http://www.javaworld.com/article/2076814/coeasp/inheritance-versus-compaosition--
which-one-should-you-choose-.html

Lagorio G, Servetto M, Zucca E. Featherweight JigsaReplacing inheritance by composition in
Java-like languages. Information and Computation, (Etsdric.). 2012;214:86-111.

Marcela G, Marion P, Coral C. A survey of metrics oML class diagrams. Journal of Object
Technology. 2005;4(9):59-92.
Available: http://www.jot.fm/issues/issue 2005 11/artideTH Zurich)

Chidamber SR, Kemerer CF. A metrics suite for objectnted design. IEEE Transactions on
Software Engineering. 1994;20:6.

Li W, Henry S. Object-oriented metrics that predict meimability. Journal of Systems and Software.
1993;23(2):111-122.

Harrison R, Counsell SJ, Nithi RV. An evaluation of the MD®et of object-oriented software
metrics. IEEE Transactions on Software Engineering. 1998;24

Lorenz M, Kidd J. Object-oriented software metrics: Aqtical guide. (Prentice Hall, Englewood
Cliffs, New Jersey); 1994.

Briand L, Devanbu W, Melo W. An investigation into coupling meas for C++. 19 International
Conference on Software Engineering (ICSE 97), Boston, US3V;492-421.

Marchesi M. OOA metrics for the united modeling langu&j&Euromicro Conference on Software
Maintenance and Reengineering. 1998;67-73.

Harrison R, Counsell S, Nithi R. Coupling metrics for ebjeriented design, "5 International
Software Metrics Symposium Metrics. 1998;150-156.

Bansiya J, Davis C. A hierarchical model for objedewted design quality assessment. IEEE
Transactions on Software Engineering. 2002;28(1):4-17.

11

Albalooshi; BIMCS, 16(5): 1-12, 2016; Article noNB3S.25851

[22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

Genero M, Piattini M, Calero C. Early measuresUdL class diagrams. L'Object, (Hermes Science
Publications). 2001;6(4):489-515.

Basili VR, Briad LC, Melo WL. A validation of object-iented design metrics as quality indicators.
IEEE Transactions Software Engineering. 1996;22:751-761.

Cartwright M, Shepperd M. An empirical investigation ofjedlb-oriented software in industry.
Technical Report TR 96/01, Department of Computing, Talbohfles, Bournemouth University;
1996.

Nielsen S. Personal communication, June 18; 1996.

Pant Y, Henderson-Sellers B, Verner JM. Generalizatioabgect-oriented components for reuse:
Measurement of effort and size change. J. Object-@deRtogramming. 1996;9:19-41.

Chidamber SR, Darcy DP, Kemerer CF. Managerial usestfics for object-oriented software: An
exploratory analysis. IEEE Transactions on Softwargif&ering. 1998;24:8.

Abreu FB, Cuche JS. Collecting and analyzing the MOOR®ins. Workshop on Object-Oriented
Product Metrics for Software Quality Assessment (ECO8PRBrussels, Belgium. 1998;258-260.

Goel BM, Bhatia PK. Analysis of reusability of objectearied system using CK metrics.
International Journal of Computer Applications. 2012;60(10332

© 2016 Albalooshi; This is an Open Access articistributed under the terms of the Creative Comma@itsibution License
(http://creativecommons.org/licenses/byj4®@hich permits unrestricted use, distributiondameproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be asedsere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/14573

12

