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The (2 + 1)-dimensional Lax integrable equation is decomposed into solvable ordinary differential equations with the help of
known (1 + 1)-dimensional soliton equations associated with the Ablowitz-Kaup-Newell-Segur soliton hierarchy. Then, based
on the finite-order expansion of the Lax matrix, a hyperelliptic Riemann surface and Abel-Jacobi coordinates are introduced to
straighten out the associated flows, from which the algebro-geometric solutions of the (2 + 1)-dimensional integrable equation

are proposed by means of the Riemann 6 functions.

1. Introduction

Algebro-geometric solutions are an important class among
exact solutions of soliton equations, which can be regarded
as explicit solutions of the nonlinear integrable evolution
equation and used to approximate more general solutions.
Based on the nonlinearization technique of Lax pairs and
direct method, many of algebro-geometric solutions of
(1 + 1)-dimensional [1-3], (2 + 1)-dimensional [4, 5], and
differential-difference [5, 6] soliton equations have been
obtained, such as the Gerdjikov-Ivanov, modified Kadomt-
sev-Petviashvili, and Toda lattice equations [7-9]. The exis-
tence of infinitely many exact solutions is a reflection of this
complete integrability.

Many other techniques for finding exact solutions have
been also discovered: inverse scattering theory, Darboux
transformation, Riemann-Hilbert method, etc. Recently,
more exact solutions of soliton equations are found
[10-13], and more dynamic behaviors are studied [14-16].

Ablowitz-Kaup-Newell-Segur (AKNS) soliton hierarchy
is an important class of integrable equations, which can be
reduced to Korteweg-de Vries (KdV), modified Korteweg-
de Vries (mKdV), sine-Gordon equation hierarchies, etc.
The purpose of the paper is to further develop the direct

method for constructing algebro-geometric solution of the
following (2 + 1)-dimensional integrable equation [15]
which concerns with the AKNS soliton hierarchy [17].
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In fact, system (1) is the Lax integrable equations from
the AKNS soliton hierarchy, which has nonisospectral zero
curvature representation. Backlund transformation for a
splitting of sI(2) and a soliton exact solution for it was
obtained [18].

The whole paper is organized as follows: in Section 2, we
use Lenard operator pairs to briefly derive (1 + 1)-dimensional
AKNS soliton hierarchy and give the (2 + 1)-dimensional inte-
grable equation (1). Then, in Section 3, based on the solutions
of the (1 + 1)-dimensional soliton equations and the elliptic
coordinates, the solution of the (2 + 1)-dimensional integrable
equation is reduced to solving ordinary differential equations.
In Section 4, a hyperelliptic Riemann surface and Abel-Jacobi
coordinates are introduced to straighten the associated flows.
The Jacobi’s inversion problem is discussed, from which the
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algebro-geometric solution of the (2 + 1)-dimensional integra-
ble equation is obtained in terms of the Riemann theta func-
tions. A short summary is in Section 5.

2. The (2 + 1)-Dimensional Soliton Equation

It is well known that the AKNS soliton hierarchy is isospec-
tral evolution equation hierarchy associated with the spectral
problem [17].
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Consider the Lenard gradient sequence {Sj};fo by
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where §; = (S§1>, S]@, 853)) and

It is easy to see that §; is uniquely determined by the
recursion relation. A direct calculation gives that
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The auxiliary spectral of (2) is
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The compatibility condition between (2) and (6) is the
zero curvature equation:

U, -V + [U, v<”>} =0, (7)

n

which is equivalent to the hierarchy of soliton equations
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The first two nontrivial members in the hierarchy are
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Let t, =y, ty=t, u(x, y,t) =q(x, y, t), and v(x, y,t) = r(x
,¥,t) in (9) and (10); then, we can obtain the (2+1
)-dimensional equation (1) by the use of the following equa-
tion:

(v, —uv), ==2(uv),. (11)

Therefore, if q and r are the compatible solutions of (9)
and (10), then we can get that u=g and v=r are also the
solutions of the (2 + 1)-dimensional equation (1).

3. Variable Separation

In this section, we shall show how the (1 + 1)-dimensional
(9) and (10) are reduced to solvable ordinary differential
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equations. Assume that (2) and (6) have two basic solutions

v=(y,v,)" and ¢=(¢,,¢,)". We define a matrix W of
three functions f, g, h by

T No = U o= 0 -
(0w +v9) _<h —f>’ (1 0>.

W:

N =

It is easy to verify by (2) and (6) that
Wx = [U’ W}’
(13)

which imply that the functions detW is a constant indepen-
dent of x and t,,. Equation (13) can be written as

9. =291 - 24f,
h. = 2h)+ 2rf, (14)
fr=qh-rg,9,=-29A - 2fB,
h, =2hA +2fC, (15)

f=hB-gC.

Now, suppose that the functions f, g, and h are finite-
order polynomials in A:
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Substituting (16) into (14) yields
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T
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It is easy to see that /G, =0 has the general solution:
Gy = Sy (18)

where «, is constant of integration. So, KerJ = {cSy|Vc}. Act-
ing with the operator (]"IK)KJrl upon (18), we can obtain

from (3) and (17) that
k
Gi= ) a8 ;k=0,1,--, (19)
=0
where «, ..., & are integral constants. Substituting (19) into
(17) obtains the following stationary evolution equation:
oy KSy+- - +ayKS, = 0. (20)
This means that expression (16) is existent.
In what follows, we decompose (9) and (10) into systems

of integrable ordinary differential equations. Without loss of
generality, let &y = 1. From (3) and (19), we have
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We can write g and h as the following finite products:
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Comparing the coefficients of AN™!, A2, and AN, we
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Let us consider the function detW, which is a (2N +2)
-order polynomial in A with constant coeflicients of the x

flow and ¢, flow:

2N+2
~detW =f*+ gh= H

i1

(A=21;) =R(A). (32)

Substituting (16) into (32), comparing the coefficient of

A2N+1, A,ZN
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,and A2M7! and considering (23), we can obtain
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Therefore, if A, -+, A,,, are 2N + 2 distinct parameters
and y;, vi(k=1,---,N) are compatible solutions of differen-
tial equations (36), (37), and (39), then q and r determined
by (28) are the compatible solution of (9) and (10), so we
can get that u and v are also the solution of the (2+1
)-dimensional equation (1).

4. Algebro-Geometric Solution

We first introduce the hyperelliptic Riemann surface

I:&=R(\),
2N+2 40
R = [ (A-1), 40
j=1

with genus g=N. On I, there are two infinite points co,
and co,, which are not branch points of I'. Equip I" with
the canonical basis of cycles a,, -+, ay, by, -+-, by, and the
holomorphic differentials

)l:1;21”'3N~ (41)

Using A and B, we can define the matrices C and 7,
where
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Then, matrix 7 can be shown to be symmetric, and it has

positive define imaginary part. We normalize w; into the

new basis w;t
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For a fixed point p,, then we introduce Abel-Jacobi coor-
dinate as follows:
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In a similar way, we obtain from (36)-(39), (47), and
(48) that
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On the basis of these results, we get the following:
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An Abel map on I' is defined as

P T
A(p>=j 0,0 = (@y,-+0y)T,
Py (54)

A (Z”kpk) = Y mA(py)-

Consider two special divisors Y7, p,(jf)(m =1,2), and we
have
AT VAR
A Zpl :ZA(Pl ):ZJ w =Py,
k=1 k=1 k=1 po
~ (55)
CATER VACINER N
Al ye’ | =Y A )=ZJ ©=p,
k=1 =1 k=1+Po

The Riemann

where p1Y = (i, E()), 9y = (o E (7).

theta function of I' is defined as
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where (= (C}y) " (C2) = Zjl\;(jzj. According to the
Riemann theorem, there exist two constant vector M,, M,
€ CN such that
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has exactly zeros at y,, .-+, for m=1or v, ---, vy for m
=2 and m = 3. To make the function single valued, the sur-
face I' is cut along all aq;, b, to form a simple connected
region, whose boundary is denoted by y. Notice the fact that
the integrals
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Here, we only need to compute the residues in (59) for
k=1,2,3. In the way similar to calculations in [1, 2, 4], we
obtain

Re 5)_o, AdInF,, (1) =Res, gz 'dInF,,(z7")
= (-1)3,1n0\™,s=1,2;m=1,2.

(61)
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- Q,t +1,), and 71, 17, are constants. Thus from, we arrive at
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With the help of the above equations, we arrive at the
algebro-geometric solution of the (2 + 1)-dimensional equa-
tion (1):

(1)

U=q=exp J O,dx+0O,dy + O,dt + ¢, |,
(0,0,0)

(65)

(x351)
v=r=exp <J Aldx+A2dy+A3dt+c2>,
(0,0,0)

where ¢, and c, are constants.

5. Summary

The nonisospectral (2 + 1)-dimensional breaking soliton sys-
tem is given by the Lenard gradient sequence for a classical
(1 +1)-dimensional AKNS spectral problem. Then, the
(2 + 1)-dimensional Lax integrable equation associated with
the AKNS soliton hierarchy (1) is decomposed into solvable
ordinary differential equations with the help of known (1 +1
)-dimensional soliton equations. With introducing the
hyperelliptic Riemann surface and the Abel-Jacobi coordi-
nates, the flow can be straighten out, and the algebro-
geometric solutions of the (2 + 1)-dimensional soliton sys-
tem (1) are presented by means of the Riemann 6 functions.
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