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RESEARCH ARTICLE

Detecting Physiological Needs Using Deep Inverse 
Reinforcement Learning
Khaoula Hantous , Lilia Rejeb , and Rahma Hellali

Université de Tunis, Institut Supérieur de Gestion de Tunis, SMART-LAB Strategies for Modelling and 
ARtificial inTelligence Laboratory, Tunis, Tunisie

ABSTRACT
Smart health-care assistants are designed to improve the com
fort of the patient where smart refers to the ability to imitate the 
human intelligence to facilitate his life without, or with limited, 
human intervention. As a part of this, we are proposing a new 
Intelligent Communication Assistant capable of detecting phy
siological needs by following a new efficient Inverse 
Reinforcement learning algorithm designed to be able to deal 
with new time-recorded states. The latter processes the 
patient’s environment data, learns from the patient previous 
choices and becomes capable of suggesting the right action at 
the right time. In this paper, we took the case study of Locked-in 
Syndrome patients, studied their actual communication meth
ods and tried to enhance the existing solutions by adding an 
intelligent layer. We showed that by using Deep Inverse 
Reinforcement Learning using Maximum Entropy, we can learn 
how to regress the reward amount of new states from the 
ambient environment recorded states. After that, we can sug
gest the highly rewarded need to the target patient. Also, we 
proposed a full architecture of the system by describing the 
pipeline of the information from the ambient environment to 
the different actors.

ARTICLE HISTORY 
Received 12 May 2021  
Revised 30 November 2021  
Accepted 9 December 2021  

Introduction

Locked-in syndrome (LIS) or pseudocoma is a disease that causes quadri
plegia and anarthria with consciousness preservation (Smith and Delargy, 
2005). This means that the damaged patients are still aware of their environ
ments, and they retain their vertical eye movement and blinking. 
Nevertheless, almost all their voluntary muscles are completely paralyzed, 
which causes a complete inability to communicate verbally. There are three 
categories in this disease: classic LIS, incomplete LIS, and complete LIS 
(Bauer, Gerstenbrand, and Rumpl, 1979). The first is defined by quadriplegia 
and dysarthria (motor speech disorder) with the capability of vertical eye 
movement. The second keeps the same symptoms as the first and adds other 
voluntary eye movement. The third type is defined by the immobility and 
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inability to communicate, with full consciousness (Smith and Delargy 2005). 
There are many common causes of this syndrome, e.g., poisoning, overdose, 
nerve cell damage, and Stroke.

For LIS patients, there is only one Alternative Communication method 
that is eye communication. Patients count on their caregiver to understand 
them. The latter relies on eye-control methods which are eye blinking and 
eye gaze. There are two critical steps in the eye-tracking process: eye 
detection that consists in localizing the eye position in the captured 
image, and gaze estimation (also called gaze detection) that consists in 
estimating where the user is looking (Tatler, Witzner Hansen, and Pelz, 
2019). Gaze tracking techniques are integrated into Alternative and 
Augmentative Communication (AAC) systems. They permit the user to 
communicate with others without talking. That is why such systems in 
persons with speaking disabilities’ life represent a vital need (Light et al., 
2019). AAC research field is concerned with assisted communication for 
people that have a speech impairment. One of AAC research’s main aims is 
to investigate the possibilities of improving communication skills for non- 
speakers through the use of communication aids (Newell, Langer, and 
Hickey, 1998). There are several AAC systems that consider eye-tracking 
techniques. For instance, FEMA (Chareonsuk et al., 2016), which is 
a software designed for Amyotrophic Lateral Sclerosis (ALS) patients, 
enables them to use the computer as ordinary people using face and eye 
movements. They proved that the accuracy rate of left-click, right-click, 
double-click, scroll down, left movement and right movement is more than 
80%. proposed an AAC architecture that helps researchers develop an 
adaptive communication environment at a low cost (Loja et al., 2015).

Besides, there are some commercial tools that are designed for similar 
type of users, and some of them have a patent that gives them the authority 
conferring their license or title for a set period like Tobii that is a leading 
eye-tracking technology by gaining many patents (Patents, 2020). Eye Tribe 
Tracker1 is an eye-tracking device that can determine where the user is 
looking using details derived from his eyes. It calculates the coordinate of 
the point that the user is focusing on. The user should calibrate his eyes by 
editing the options. He should be in front of the trackbox in a manner that 
the system can theoretically track him. Eye Tribe Tracker is designed to 
help people with severe motor disabilities. It allows them to write texts, 
send e-mails, participate in online chats, etc. Moreover, it helps them in 
web browsing and pdf reading. Pages scroll when he reads on the bottom 
part of the page. The mentioned functionalities are offered by Eyegaze,2 

EyeControl3 and GazePoint.4

It should be noted that the majority of the previous solutions provide a very 
low eye fatigue because they retain a high precision in the detection of the 
movement of the pupil. They are user-friendly and easy to use. However, the 
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patient takes a long time to express what he needs. The process is hard and 
slow. Patients are obliged to write a whole sentence using their eyes to express 
what they need. In some cases, they should rely on cards of needs where the 
caregiver is obliged to present all of them to the patient until understanding 
what he wants. That’s why we are proposing a smarter solution that consists in 
detecting the needs according to the environment and the behavior of the 
target patient.

Our system’s intervention commune in facilitating the patient’s life by 
analyzing and trying to learn from the history of his behavior. The contribu
tion consists in adding an intelligent layer to the AAC systems that are actually 
used by the target patients. It records, analyzes, and predicts the need depend
ing on the history, knowing that when the patient approves the proposed 
suggestion, the system records the time and the state of the environment. To 
do so, we studied the two sides of RL. On the first side, RL seeks to learn the 
optimal behavior based on experiences, and IRL seeks to best understand and 
represent the observed behavior by learning the corresponding reward func
tion. IRL introduces a new way of learning policies by deriving expert’s 
intentions, in contrast to directly learning policies, which can be redundant 
and have poor generalization ability.

To choose the appropriate method for this problem, we reffered to 
(Coronato et al., 2020) who proposed a useful guideline for the application 
of RL to the health-care problems. They provide some indications to the 
designer in order to help him in choosing the appropriate RL method. We 
concluded that we should adopt the Inverse Reinforcement Learning (IRL) 
paradigm because of the following five facts: (1) The problem involves a multi- 
step decision process. Patient’s needs are expressed sequentially. There is no 
complete and accurate model of the environment. Patient’s environment is 
difficult to present. (2) The actions and states can be presented as arrays. (3) 
We cannot let the agent interact with the real environment because we cannot 
propose all the possible needs at each time step, and let the patient answer 
through trial-and-error. Also, we cannot conclude his preference since he can 
change them depending on his mind or mood. (4) We are not able to model 
the reward function R for every possible state features. After studying the IRL 
variants, we decided to adopt the Deep Inverse Reinforcement Learning using 
Maximum Entropy since multiple reward functions can explain the patient’s 
behavior, and Maximum Entropy variants are the best to represent the pro
blem when there are multiple-reward functions that can explain the expert’s 
behavior (Arora and Doshi, 2021).

This paper is organized as follows: Section 2 presents the notions of RL and 
IRL. Section 3 introduces our new approach of need detection. It consists in 
detailing the Intelligent Communication Assistant by explaining the architec
ture of the new AAC system with a full details about the front-end and back- 
end algorithms. Section 4 is dedicated to the logical assumptions that we 
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followed to simulate a data that presents the patients needs. Section 5 presents 
the experimentation and the obtained results that prove the effectiveness of the 
proposed approach. To conclude, a brief discussion is proposed in Section 6, in 
which we aim to present the open issues that we identified and some future 
works to be done.

Reinforcement Learning

Reinforcement Learning (RL) is a computational approach that consists in 
determining how to map among situations by enunciating actions that max
imize the numerical reward signal. The learner does not know which actions to 
take, but instead, he must discover which one will yield the best situation 
(Sutton and Barto, 1998; Sutton and Barto, 2018). This section presents the 
background of RL because it is essential to have a good understanding of RL 
paradigm, to be able to understand IRL paradigm and the other variants. As 
mentioned in Figure 1, those two paradigm use the same terminologies that 
are as follows: Environment, Policy and Reward. But, there is a difference 
between the input and the output of their algorithms.

Basic Notions

According to Sutton and Barto, the process of sequential decision-making 
contains two steps: The agent is provided with an initial observation of the 
environment, and he is required to choose some actions from the given set of 
possibilities (Sutton and Barto, 1998). Those steps incorporate six fundamen
tal elements:

• The environment defines the world that the agent interacts with, and it has 
a primary loop. In each iteration, it produces a state and a reward for the 
agent to sense and process. Then, it receives an action from the agent and 
cycles back to produce another state again.

• The agent learns to achieve goals by interacting with the environment. In 
each iteration, the agent senses the state, then he chooses an action and 
receives the appropriate reward from the environment.

Figure 1. The two RL paradigms.
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• The state (noted as st) represents a situation of the environment that 
occurs at the time-step t. It describes the shape of the environment based 
on which the agent is going to choose his actions.

There are three types of states: a discrete state like a tic-tac-toe game, 
a high-dimensional state like the pixels in a video game and a continuous 
states like the industrial controller with continuous values (temperature 
and pressure).

• The Time-step (noted as t) divides time into discrete steps. Each one of 
them determines a cycle in the environment–agent interaction.

• The reward (noted as Rt) is a scalar value, a floating-point number, 
returned by the environment when the agent selects an action. It repre
sents the goal or a set of goals and depends on the reinforcement learning 
problem designer.

• The action (noted as at) is one of the possible choices of decisions that the 
agent can take in each time-step. It can be discrete or continuous. Discrete 
actions are limited with a set of possible actions like {Left, Right, Up, 
Down}.

The Problem setup is presented by the interaction between the described 
elements. The Interface is composed of an environment that exposes the 
state, and an agent who senses that state, and takes an action. The envir
onment processes the action and produces two things: a reward and a new 
state. This cycle continues a certain number of times. The agent interacts 
with the environment over time. At each time step t, the agent receives 
a state st from a state space S, and selects an action at from an action space 
A, following a policy πðatjstÞ. The agent receives a scalar reward rt, and 
transitions to the next state stþ1, according to the environment dynamics, 
or model, for reward function Rðs; aÞ and, state transition probability 
Pðstþ1jst; atÞ, respectively. In an episodic problem, this process continues 
until the agent reaches a terminal state. After that, it restarts. The return is 
the discounted, accumulated reward multiplied with the discount factor γ 2
½0; 1� (Yuxi, 2018).

Reinforcement Learning (RL)

Reinforcement learning problems are formulated using the Markov property 
(Markov, 1954), which enunciates that the current state characterizes the state 
of the word and depends on the current observation, i.e., there is no need to 
back the whole history and consider all the previous states. A Markov Decision 
Process (MDP) is defined by the quintuple (S;A;R; P; γ) (Bellman, 1957). It is 
a discrete-time stochastic control process that assume that the effect of taking 
an action at a given state only depends on the present state-action pair and not 
on the previous states and actions.
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The goal of reinforcement learning algorithms is to design the policy. 
A policy π is a function that specifies what action to take in each state 
(S! A) toward reaching the objective that is maximizing the cumulative 
discounted reward (Equation 1). The goal of reinforcement learning algo
rithms is to design the set of state-actions that constitute the policy. As 
a result, their output is defined by the specific sample of trajec
tories: s0; a0; r0; s1; a1; r1; ::etc. 

max
X

t >¼0
γtrt (1) 

Thereby, the goal of the learner is to find the optimal policy π� (Equation 2). 

π� ¼ arg max
π

E½
X

t�0
γtrtjπ

" #

(2) 

The value function is the prediction of the expected, accumulative, discounted, 
future reward, measuring how good each state, or state-action pair, is (Yuxi, 
2017). The state-value is obtained by calculating the expected return following 
the policy π in the state s. It is calculated using Equation 3. 

vπðsÞ ¼ E½Rtjst ¼ s� with Rt ¼
X1

k¼0
γkrtþk (3) 

On the other side, there is a known class of algorithms useful for solving 
reinforcement learning problems: the class of evolutionary algorithms. 
According to the taxonomy made by (Ivanov and D’yakonov, 2019), this 
class of algorithms cannot be considered the fifth class because it does not 
utilize the RL structure like the other described classes of algorithms.

Inverse Reinforcement Learning (IRL)

The second RL paradigm is Inverse Reinforcement Learning (IRL) which is 
a learning approach capable of inferring the Reward Function of an agent, 
given its policy or observed behavior” (Arora and Doshi, 2018). Given the 
execution traces, IRL algorithms are capable of recovering the reward R i.e., 
given the policy π� and the dynamic D. 

D ¼ fτ1; τ2; ::τng (4a) 

τ ¼ ðs0; a0Þ; ðs1; a1Þ; ::; ðsj; ajÞ (4b) 

IRL considers the problem of extracting a reward function from observed 
(nearly) optimal behavior of an expert acting in an environment (Abbeel and 
Ng, 2010).
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IRL
IRL consists in modeling the preferences of another agent using its observed 
behavior, thereby avoiding a manual specification of its reward function 
(Arora and Doshi, 2018). IRL is very efficient because of its potential to use 
recorded-data in a task to build autonomous agents capable of modeling 
others by catering to the following needs:

• Learning from an expert by creating an agent using the expert’s prefer
ences. E.g, helicopter flight control by (Abbeel et al., 2007), an expert 
helicopter operators’ sophisticated preferences were learned from 
recorded behavior data using IRL. This reward function was then used 
to teach a physical remotely controlled helicopter advanced maneuvers 
using RL.

• Learning from another agent to predict its behavior. E.g, route pre
diction for taxis (Ziebart et al., 2008b). The idea consists in training 
a model using the route preferences of 25 taxi drivers demonstrated 
in over 100 000 miles of collected data. They demonstrate the per
formance of the proposed model by inferring both decisions at the 
next intersection, the route to a known destination, and the destina
tion given partially traveled route

To sum up, IRL supposes that the expert or the agent behaves accord
ing to an underlying policy πE, which may not be known. If a policy is 
unknown, the learner observes the sequence of state-action (also called 
trajectories) built by the expert. Here, the reward function is unknown, 
but the learner usually needs some structure that helps in the learning 
(Arora and Doshi, 2018).

IRL problem is first formally studied by Russell in 1998 and described like 
follow: Given the MDP’s tuple, IRL is capable of determining a set of possible 
reward functions R such that π is the optimal policy. Since the objective of IRL 
is to learn the unknown R�, it is capable of handling the following possible 
cases:

(1) Finite-state MDP with known optimal policy that represents the easiest 
scenario defined by a finite-state MDP with a known and completely 
observed policy. For the ease of representation, the optimal policy is 
given by πðsÞ ¼ a1.

(2) Infinite-state MDP with known optimal policy that describes infinite 
state space problems in which the reward function is approximated 
using a linear combination of useful features (Ng and Russell, 2000).

(3) Infinite-state MDP with unknown optimal policy also called Apprenticeship 
Learning with Sample trajectories. It is designed to handle complex 
applications in which the desired trajectory is hard to describe e.g., the 
helicopter aerobatic maneuver trajectory that depends on the helicopter 
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dynamics (Abbeel, Coates, and Ng, 2010). The demonstrations provided 
by the expert can be used to extract the desired trajectory through 
apprenticeship learning.

This classification was made by (Zhifei and Meng Joo, 2012), and they 
proposed a detailed explanation about the objective function, input and output 
of each case. In our case, the patient’s room and needs represents an infinite- 
state MDP with known optimal policy because we aim to simulate the optimal 
policies that describe the patient’s behavior depending on the patient’s room.

IRL Methods
IRL involves solving the MDP with the function hypothesized in current 
iteration and updating the parameters, constituting a search that terminates 
when the behavior derived from the current solution aligns with the observed 
behavior. According to Arora and Doshi (2021), the foundational methods for 
IRL are:

(1) Max margin methods which maximize the margin between the values of 
the observed behavior and the hypothesis i.e., they cover a solution that 
maximizes some margin. For example: minimizing the margin between 
the feature expectations of a policy computed by the learner and the 
empirically computed feature expectations from the expert’s trajectory.

(2) Max entropy methods maximize the entropy of the distribution over 
behaviors. According to this principle, the distribution that maximizes 
the entropy makes minimal commitments beyond the constraints and is 
least wrong. We broadly categorize the methods that optimize entropy 
based on the distribution, whose entropy is being used, that is chosen by 
the method.

(3) Bayesian learning methods learn posterior over hypothesis space using 
Bayes rule. This means that the Bayesian IRL methods are based on how 
they model the observation likelihood.

(4) Classification and Regression learn a prediction model that imitates 
observed behavior. IRL may be formulated as a multi-class classification 
problem by viewing the state-action pairs in a trajectory as data-label pairs.

Maximum Entropy methods are useful when multiple-reward functions can 
explain the expert’s behavior (Arora and Doshi, 2021). Consequently, we 
decided to adopt it because multiple reward functions can explain the patient’s 
behavior.

Deep IRL Using MaxEnt
Inspired from the solution of (Ziebart et al., 2008a) who, first, applied the 
maximum entropy principle to solve IRL problems for cases where the reward 
function depends only on the current state. At this phase, we aim to present 
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the relationship between states, actions, rewards, environment features and 
neural network weights using the demonstration of Ziebart et al. Rewards are 
represented by a linear sum of weighted features as shown in Equation 5. Φ :

S! R is the feature set, wT is the weight vector, and R is the reward vector. 

Rðs; aÞ ¼ wTΦðsÞ: (5) 

Note that the feature vector ΦðsÞ is a function of states only, and actions were 
not considered. To represent the couple of (state, action) considering the 
feature vector Φðs; aÞ, where Φ is a function of states and actions, the learner 
may consider reward functions as a linear combination of features, as shown 
in Equation 6 (You et al., 2019). 

Rðw; s; aÞ ¼ w1ϕ1ðs; aÞ þ w2ϕ2ðs; aÞ þ . . .þ wkϕkðs; aÞ

¼ wTΦðs; aÞ
(6) 

The use of non-parameterized features requires to design the features manu
ally, which may be a difficult task since it may not always be possible to 
approximate a certain unknown reward functions having a complicated 
form. Hence, You et al. (2019) consider the use of parameterized features 
using the parameter vector θ. 

Rðw; θ; s; aÞ ¼ wTΦðθ; s; aÞ (7) 

Equation 7 tunes the vector θ besides of tuning only the weight vector wT in 
order to maximize the likelihood. Consequently, we can calculate Equation 8 
using NN backpropagations by following the gradient descent. 

@Rðw; θ; s; aÞ
@θ

(8) 

We aim to train the model based on the history of the patient. In other words, 
from his optimal choices that represent the optimal policies. The expert E is 
the Intelligent Assistant who acts according to the dynamic D. The latter 
presents the recorded optimal policies of each episode. Equation 4 defines 
the formulation of this dynamic. Each trajectory τ is defined by the trajectory 
ðs0; a0Þ; ðs1; a1Þ; ::; ðsj; ajÞ that describe each couple of (state, need).

Our goal is to design an algorithm capable of learning from those optimal 
trajectories in order to be able to suggest the most fittable needs in the new 
unknown situations, i.e., new ambient environment records. To learn the 
reward function, Chen et al. (2019) introduced the characteristic function 
that needs to be specified artificially. As a result, the reward function is defined 
by the Equation 9. 

rθðsÞ ¼ θTϕðsÞ (9) 
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ϕðsÞ is an artificial characteristic function. One solution is to use neural 
networks to represent the reward function. At this point, the reward 
function can be expressed like illustrated in Equation 10 where f ðsÞ is the 
characteristic function as shown in Figure. This representation is proposed 
by (Chen et al., 2019). 

rðsÞ ¼ θTf ðsÞ (10) 

A New Intelligent Communication Assistant

As explained before, the idea behind this research work is to propose a new 
Intelligent Communication Assistant able of detecting the needs of LIS patient. 
In this section, we will introduce the ambient environment that is necessary to 
feed the system. After that, we studied human needs from the psychology 
perspective and then extracted the patients needs. Then, we present the 
proposed algorithms for need detection. Finally, we present the full architec
ture of the Intelligent Communication Assistant.

Ambient Patient Environment

To enhance patient care, we suppose that the patient follows his healing 
process in a smart environment that employs ambient intelligence (AmI) 
technologies. For instance, (Kartakis et al., 2012) designed a smart patient 
room with a user interface development to assist both patients and 
medical staff in order to enhance Health-Care Delivery through Ambient 
Intelligence Applications. Importantly, AmI supports the pervasive diffu
sion of intelligence in the patient environment thanks to wireless tech
nologies (e.g., Zigbee, blacktooth, RF, Wi-Fi, and intelligent sensors). 
Many other research works focused on enhancing health-care services 
through AmI applications. We took the problem from the data scientist’s 
perspective. What caught our attention is data delivered from those 
intelligent environments and how we can use it to ameliorate the patient 
life. Smart patient rooms can record data related to the patient (e.g., 
recording the heart beating, blood pressure, pulse oximetry, etc.) and 
related to his environment (e.g., temperature, bed, tv, window, door, 
visitor detecting, etc.).In our work, we consider six features that describe 
the patient’s room in order to catch the environment’s state, as mentioned 
in Figure 2.

With respect to the notation of RL that we presented in Section 2, we 
consider that S is the set of the possible states that represents the dynamic 
environment where each state is defined by the six features that we defined 
in Table 1.
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Patient’s Needs

Maslow is the first to introduce the concept of the hierarchy of needs, in 
which he suggests that normal people search to accomplish the most basic 
needs for survival before searching for the more complex ones. He 
focused on the problematic of studying behaviors by learning the facts 
that make people happy and the things they do to achieve that aim. The 
Hierarchy of Needs presents a motivational theory in psychology that 
groups human needs into the five following levels: Physiological Needs, 
Security and Safety Needs, Social Needs, Esteem Needs, and Self- 
Actualization Needs (Maslow, 1943).

A good deal of psychological research criticized Maslow’s classification 
of needs. Some of them reported that needs doesn’t really follow 
a hierarchy (Wahba and Bridwell, 1976). On the other hand, some other 
researchers were influenced by Maslow’s contributions and considered 
them as a big shift in psychology. For instance, (Tay and Diener, 2011) 
put the hierarchy to test and discovered that the fulfillment of the needs 
was strongly correlated with happiness. We concluded that satisfying 
human needs is not an easy task because they differ from one person to 
another. On the first side, we have needs that depend on the studied 

Bed state

Lighting percentage

Temperature outside

Temperature Inside

Window state

Real time

Figure 2. Abstracted illustration of the patient’s ambient room.

Table 1. A brief description of the environment’ recorded features.
Environment’s feature Description

Time Saving the real time, at which the state is detected.
Room Temperature Tracking the temperature inside the patient’s room that must be between 18 and 20 

degrees. This caliber is not affected by the change of seasons.
Exterior Temperature Tracking the temperature of the exterior i.e., outdoor temperature.
Lighting percentage Recording the percentage of the brightness inside the room. Values are in between of 0 

and 100.
Window state Picking the state of the window that can be either open or close. In the first case, values 

are between [0.1], and in the second case values are between [1.2].
Bed state Picking the state of the bed that can be either low, intermediate or high. If values are 

between [0.1], the bed is low. If values are between [1.2], the bed is intermediate. 
Finally, If values are between [2.3], the bed is high.
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person, his background, center of interest, hobbies, relationships, etc. On 
the other side, we have LIS patients who only want to accomplish the 
basic survival needs, and to balance between those two sides, we can treat 
the basic survival needs that belong to the lowest level by focusing on the 
physiological needs.

Physiological needs aim to satisfy the body homeostasis requirements, e.g., 
adjusting the room temperature, opening or closing the window, maintain
ing the bed state, augmenting, or reducing the light. It treats Nutrition and 
Hygiene needs, e.g., making dinner, brushing teeth, shaving, or getting 
a shower. LIS patients cannot use their jawbones because they cannot 
move the muscle of their mouths. Thus, we excluded nutrition needs except 
water drinking. Hygiene needs are divided into two types: body hygiene and 
environmental hygiene. Body hygiene is related to the body state and time, 
but environment hygiene is directly related to the environment. After study
ing the disease and understanding the human needs process, we are aware 
that the satisfaction of needs is not an “all-or-none” phenomenon. We can 
not deal with all the patient’s needs. This explains why we oriented ourselves 
to the needs related to the environment. Along with this, we will focus on the 
body homeostasis needs by designing the appropriate ambient patient 
environment.

As mentioned previously, this work will rely on the chosen six features (See 
Figure 2) by considering the following needs: Open the window, Close the 
window, Change the bed position, Move, Drink, Set the temperature, Sleep and 
Adjust the light. Body homeostasis needs will be detailed in the subsection 4.1, 
at which, a full explanation of the considered assumptions for need represen
tation is presented. With respect to RL notation, A is the finite set of available 
actions that we defined previously.

Learning the Physiological Needs

At this phase, we aim to present Algorithm 1 that is able to take the set of 
time-recorded states S, set of action A, reward function R and the dynamic of 
the environment D as an input (see equation 4). After that, the neural 
network is trained depending on the content of D by assigning the room 
state observations’ values to the input and the designed reward amount to the 
output. 

Algorithm 1 Deep Inverse Reinforcement Learning to learn the patient’s behavior
Input: S;A;D; nepisode
Output: R̂ ⊳ Estimation of the reward payoff for any new couples of ðst; atÞ

1: Randomize the weights w to small random values ⊳ Randomizing the 
neural network weights
2: observation index 0                          ⊳ The index of the recorded states
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3: Initialize the input vector InVect
4: Initialize the output vector OutVect
5: for episode = 1 to nepisode do
6: for each ðst; atÞ 2 τepisode do
7: observation index observation indexþ 1
8: for each ai 2 A do
9: if The patient accepts the suggested need then
10: Payoff ½i�  1
11: else
12: Payoff ½i�  � 1
13: InVect½observation index�  st
14: OutVect½observation index�  Payoff
15: for epoch = 1, Epochs do ⊳ Epochs represents the total number of epochs
16: Apply the network input vector InVect to network
17: Calculate the output vector of the network using OutVect
18: Calculate the errors for each one of the outputs
19: Calculate the necessary updates for weights Δw to minimize this error
20: Add up the calculated weights’ updates Δw to the accumulated total updates

updates ΔW
21: Adjust the weights w of the network by the updates ΔW

To simplify the proposed pseudocode, we illustrated the process of the 
neural network in Figure 3.

Figure 3. Reward function approximation based on deep natural network.
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For each recorded trajectory τ, the algorithm associates a new 
observation index and then fills the InVect½observation index� with the 
environment feature values i.e., Time, Room Temperature, Window 
state, etc. and associates to the OutVect½observation index� the correspond
ing reward amount for each action (See Figure 4). Finally, the Neural 
network is trained by updating weights using forward and backward 
propagation within a fixed number of epochs. After running 
Algorithm 1, it will be integrated to the Intelligent Communication 
Assistant. The purpose is to suggest the right need at each new state, as 
we will detail in the next subsection.

Intelligent Communication Assistant for LIS Patients

The designed ambient environment is able of delivering data using the 
devoted sensors. The latter will be the input of the Intelligent 
Communication Assistant, as described in Figure 5. For more simplicity, 
let us describe an example of the User Story (US). First, data is collected 
from the ambient environment. Second, the system analyzes the environ
ment and suggests a need to the patient. Third, the patient receives 
a notification and depending on his mind, he can accept or reject the 
proposal. Forth, if he validates it, the communication system connects 
him directly to the caregiver.

For example, it is 08 AM, the patient gets up, and he may need some 
light to start the day. The Intelligent Communication Assistant analyzes 
the room state, calculates the reward, proposes the action with the highest 
reward and sends it as a notification to the patient. If the highly rewarded 
action is “Augmenting the light,” the patient approves it as it corresponds 
to what he needs. The assistant connects him to the caregiver and saves 

− − − − − − −

InVect[observation_index]

+22

: . .

OutVect[observation_index]

+90

Figure 4. Example of the input and output vectors.
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the couple of (state, action), as detailed in Algorithm 2. At this phase, the 
caregiver is free to open the curtain or the light, depending on the 
patient’s case and intentions. 

Algorithm 2 Need suggestion
Input:Trained neural network

1: procedure SUGGESTION-TO-APPROVE(Trained Neural Network)⊳ Function to 
integrate in the AAC system
2: for each New recorded state st do
3: Estimate the reward payoff of each action r̂a by processing new st

inputs using NN
4: Suggest the higher rewarded action to the Patient (notification)
5: if The patient accepts the suggested need then
6: Call the caregiver
7: Record the couple of (State, Action) i.e., (st,at)

Environment Description and Simulation

To feed Algorithm 1 with the required inputs, we need a time-recorded 
dataset that describes the environment of the patient at the moment of 
expressing a physiological need. The existing benchmarks do not cover the 
problem of physiological needs or patients room data. This explains why we 
generated synthetic data according to many logical assumptions that 
describe the behavior of the patient’s overtime. In this section, we will 
present those assumptions and then describe the content of the dataset. 
This dataset was validated by experts.

Patient

Caregiver

Ambient environment

Need
suggestion

Connecting

State 

Validation

Intelligent
Communication 

Assistant

Record 
< , >

The intelligent assistant is integrated in the AAC system

Figure 5. The architecture of the intelligent communication assistant’s system.
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Environment Representation

The first step consists in highlighting the environment states. Obviously, it 
is characterized by many features. The idea, here, consists in recording the 
state of the room at the time of need of expression. Let’s suppose that the 
patient has expressed n needs after 1 day. He can choose one of the 8 
actions that we described previously. Choices return only to him, he can 
ask for all of them, or he can just ask for sleep and spend the entire day 
sleeping at low luminosity. The number of actions per episode returns 
only to the patient’s intents.

Imitating the reasoning of the patients by following some logical 
assumptions to generate data is a real must. Then, the generated data 
will describe the patient’s behavior and habits. Table 2 explains some 
considered hypotheses. As a start, the expert team at Biware (hosting 
entreprise) tried to imitate the reasoning of the patient when he 
expresses one of the following needs: Open the window, Close the win
dow, Change the bed position, Move, Drink, Set the temperature, Sleep 
and Adjust the light.

The chosen actions define the most basic physiological needs related to the 
homeostasis of the patient. They do not cover all the biological requirements 
for human survival, and we should search for more links between the envir
onment and the patient’s need. But for now, we will use them to validate our 
hypothesis.

Dataset Preparation

The dataset describes the patient behavior. We published it on Mendeley 
Data.5 Each daytime is represented by an episode. Simply, Figure 6 gives an 
example of two episodes. The latter describe the same two episodes that are 
mentioned in Table 3.

Table 2. Some of the considered assumption in the data generation.

ID
Action: patient’s 

need Assumption

0 Open the window The patient can open the window all day long between 7AM and 5PM.
1 Close the window Considering that closing the window is at 5:00 PM in winter and 7:00PM in summer.
2 Change the bed 

position
The patient can change the position at any time of the day according to his intents.

3 Move For example: the patient is used to move between 11:00AM to 12:00PM.
4 Drink The patient may ask for a drink at any time and the bed must be in position 3 (The 

patient is awake).
5 Set the 

temperature
The average temperature in the patient’s room should be between 18 and 20 degrees. If 

the patient wants some change in the aeration, he may ask this proposition.
6 Sleep For instance: the patient may ask to sleep between 2:00 PM and 10:00 PM
7 Adjust the light There are two possibilities: whether it’s time to sleep so the patient will ask for standby 

lighting or the brightness level of the room is so low (less than 40) so the patient needs 
more light.
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In the first episode, there are five recorded states recorded on five different 
times ðt1; ::t5Þ. The patient wants to open the window (at ¼ 0) two times on 
the same day, respectively, at 16:22 and at 18:50. Then, he decided to close it 
(at ¼ 1) at 17:12 and 17:56. Also, he Changed the bed position (at ¼ 2) at 
17:36. In the second episode, there are only 2 recorded states, the patient asked 
for sleep (at ¼ 6) at 13:36 and he wants to adjust the light (at ¼ 7) at 18:56. As 
we can see, the dataset describes an unpredictable behavior that refers to the 
most important assumption that enunciates that needs refer to the patient’s 
intent and mood. The ambient environment is changing over time, which 
explains the variation of the values of the environment states.

To this end, we succeeded in generating a dataset that imitates the behavior of 
the patient by following many logical assumptions to be as close as possible to the 
real need expression situations. Table 4 resumes the number of episodes (i.e., 
days). The number of observations is the total recorded needs during all the days. 
The purpose of associating 1800 i.e., 29% for the test dataset is to see the ability of 
generalization of the Intelligent Assistant after training it on 71% of the dataset.

Experimentation and Results

In this section, the results of the execution of the proposed algorithm are 
presented step by step. At first, we start by explaining the adopted Neural 
Network (NN) Model and its parameters. Then, we evaluate its 
performance.

Implementation

All the Deep Neural Network models act as a black box with a multi-layer 
nonlinear structure. Even if they showed their efficiency in many applications, 
they have, always, been criticized for their non-transparency and lack of 

Open the 
window

Close the 
window

Change the 
bed position

Open the 
window

Close the 
window1

Sleep

Adjust the light

2

Figure 6. Example of two episodes.
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prediction traceability. In this section, we will try to explain our reasoning in 
shaping a generative NN capable of giving a rational reward to the most 
fittable needs according to the environment.

The NN is composed of two layers of nodes and designed to learn to 
map examples of inputs to the desired outputs. Figure 4 summarizes the 
shape of the model. Table 5 resumes the chosen parameters. The input 
layer is composed of 6 nodes that describe the ambient environment’s 
features. Two hidden layers are entailed respectively 100 and 32 nodes. 
The output layer has 8 nodes, each one of them involves estimating the 
reward of the related action.

On the other hand, Neural networks work depending on the chosen activa
tion functions. For this purpose, the two hidden layers work corresponding to 
the values returned by the activation ReLu6 function. The latter is chosen 
because of its sensitivity to the activation of the sum of the inputted values and 
avoid the vanishing gradient problem. Finally, we applied Algorithm 1 by 
putting the reward payoffs in the output layer for the purpose of regression.

Performance Evaluation

The designed Neural Network model aims to estimate the reward payoff of the 
new states. This section analyzes the behavior of the learning process by 
revealing the correctly suggested actions comparing to the real ones, and 
also by analyzing the performance of regression. To do so, we used the test 
dataset on the shaped NN after training it. We consider the highest reward 
estimation as a suggestion to the patient. Thus, We measured the Matching by 
considering the fact of associating the highest reward to the right action 
compared to the total number of actions i.e., number of observations (See 
Equation 11) 

Matching percentage ¼
100 �Well suggested need

Total number of needs
(11) 

Table 4. Dataset size.
Dataset Total episodes: Days Total observations

Train 2057 4500
Test 803 1800

Table 5. Deep neural network parameters.
Layer Number of nodes Activation Function

Input 6 –
Layer 1 100 ReLu
Layer 2 32 ReLu
Output 8 –
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This experimentation permits us to reveal some information about the well- 
predicted needs. Table 6 groups the result after processing the train dataset 
200 epochs.

Obviously, the neural network succeeds in learning when the patient wants 
to open or close the window. Also, it predicts well the actions: Change the bed 
position, Move and adjust the light, as highlighted in Table 6. On the other 
hand, it decreases its precision when dealing with Drink and Set the tempera
ture actions. Finally, it drops out its effectiveness when trying to understand 
the Sleep behavior of the patient. We conclude by saying that very well 
predicted needs are directly related to the environment features that’s why 
the neural network succeeds in finding the relationship between them thanks 
to weights and biases calculation. On the other hand, predicting that the 
patient wants to sleep isn’t an easy task because it is related to only two 
features (position of the bed and lighting percentage). In the simulation 
assumption, the patient relies on the caregiver to be able to ask for a Move, 
and the caregiver is not always available to answer to his requests. That’s why 
the model arrives to detect the relationship between the time of moving and 
the need.To this end, we can conclude that needs which are dependent in the 
environment are the luckiest to be well predicted and suggested to the patient, 
contrast to those related to his intent and mood. To conclude, our intelligent 
assistant is capable of suggesting the right need with a 90.56% of Matching (the 
average of all the matching percentages that figured in Table 6).

At this phase, we want to study the reward regression behavior over time. 
Reward regression consists in predicting the payoff of the actions by learning 
from the environment features. To evaluate the results, the comparison should 
be between the real values and the estimated values. Supposing that true 
reward function RE is available for purposes of evaluation, the accuracy is 
the closeness of the learned reward function R̂e compared to the real reward 
payoff RE like follows RE � R̂e

�
�

�
�. To study the performance of the estimated 

payoffs, plotting the regressed rewards gave us a better visibility. We compared 
the reward regression of the following two needs: Open the window that has 
100% Matching and Sleep that has only 56% of right suggested needs, and we 
grouped them in Figure 7.

As illustrated, the first sub-plot is perfectly shaped. The model arrives to 
associate the positive and negative reward for all the tested values. Contrast to 
the second subplot, in which values are scattered between −1.5 and +1.5. Lines 

Table 6. Percentage of giving the highest reward to the fitable action.
Action 
(need)

Open the 
window

Close the 
window

Change the 
bed Move Drink

Set the 
temperature Sleep

Adjust the 
light

Total 
Number

200 200 200 200 200 400 200 200

Matching 100% 100% 98% 96.5% 88.5% 89.5% 56% 96%
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indicates the real needs’ reward payoff that we used in the training process 
since we associated +1 to the right answer and −1 to the wrong one. The 
distance between the points and that line illustrates the error of the prediction.

To this end, we showed the efficiency of the proposed algorithm and model 
in suggesting the right action at the right time. Even if regressed values are not 
conformable to the real reward since the input features are very close. The 
higher reward payoff is, in most of the time, attributed to the real action. The 
idea of the proposed Algorithm showed its efficiency when testing with the 
synthetic database.

Conclusion

In this paper, we propose a new Intelligent Communication Assistant that 
succeeds in detecting eight needs of the LIS patient, which are: Open the window, 
Close the window, Change the bed position, Move, Drink, Set the temperature, 
Sleep and Adjust the light. We discovered that some needs are harder to predict 
like sleeping, and others are predicted with very high precision like opening the 
window. The system is able of suggesting the right need with a 90.56% of 
Matching (the average of all the Matching percentages).

This article presents the training DIRL algorithm using MaxEnt which con
sists in learning from the history of the behavior i.e., the time-recored ambient 
environment’ states. The purpose is to regress the reward payoff of the new states 
and suggest the highest recorded action to the patient via a new communication 
pipeline. To do so, we proposed a new architecture for the Intelligent 
Communication Assistant that sends notifications to the caregiver if the patient 
needs something. The latter can be integrated in one of the existing AAC system.

This solution can be useful for other things like monitoring health 
status and sending notifications to the caregiver. Besides, it can treat 
more needs depending on the ambient environment’s fed data. As 

Figure 7. Comparing needs reward regressions.
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a perspective to this research work, we aim to integrate this module on 
a real AAC system and try to see its impact on different categories of 
patients. Our starting point is the work proposed by (Scobee, 2019) who 
have taken a step toward addressing the incorporation of safety into the 
context of IRL. The goal is to ensure that our system is safe to use and 
deploy, which is a critical element to the acceptance and adoption. The 
challenge here is to propose a new system able of dealing with different 
types of patients, and that is able of discovering the behavioral change 
without decreasing the matching percentage (Accuracy). This means that 
sensitivity analysis is very important because the considered hypothesis 
cannot represent all the patients. That is why we aim to study the impact 
of the unpredictable behavior on the Matching of reward regression. Thus, 
more needs, more precision, and exactitude are required because the 
solution will be used to understand and model the needs of a very 
sensitive category of patients.

Finally, the proposed model should be linked to a real ambient room by 
increasing context-awareness. Thus, the full architecture should be implemen
ted and tested. Also, studying the security and privacy of the ambient envir
onment will improve the reliability of the solution to be ready for use. Finally, 
the system will be more helpful when it treats more needs. Thus, treating more 
needs belonging to the physiological level proposed by (Maslow 1958, 1981) 
will add new actions to the system.

Notes

1. https://theeyetribe.com/
2. https://eyegaze.com/
3. https://www.eyecontrol.co.il/
4. https://www.gazept.com/
5. https://data.mendeley.com/datasets/z3fvh52px9/1
6. ReLu is an activation function that acts as a linear function for values that are greater 

than 0 and associates zero to negative values. It’s a nonlinear function that allows 
learning complex relationships between data by respecting the function: gðzÞ ¼
maxf0; zg with z the weighted biased sum of the inputted nodes.

7. https://biware-consulting.com/
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