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ABSTRACT
Aiming at the structural learning problem of the additive noise 
model in causal discovery and the challenge of massive data 
processing in the era of artificial intelligence, this paper com-
bines partial rank correlation coefficients and proposes two new 
Bayesian network causal structure learning algorithms: PRCB 
algorithm based on threshold selection and PRCS algorithm 
based on hypothesis testing. We mainly made three contribu-
tions. First, we proved that the partial rank correlation coeffi-
cient can be used as the standard of independence test, and 
explored the distribution of corresponding statistics. Second, 
the partial rank correlation coefficient is associated with the 
correlation, and a causal discovery algorithm PRCB based on 
partial rank correlation and an improved PRCS algorithm based 
on hypothesis testing are proposed. Finally, comparing with the 
existing technology on seven classic Bayesian networks, it 
proves the superiority of the algorithm in low-dimensional net-
works; the processing of millions of data on three high- 
dimensional Bayesian networks verifies the high-efficiency per-
formance of the algorithm in high-dimensional large sample 
data; the application performance of the algorithm is tested 
by performing fault prediction on the real power plant equip-
ment measurement point data set. Theoretical analysis and 
experimental results have proved the superiority of the 
algorithm.
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Introduction

In recent years, the problem of causality discovery has been a research hotspot 
in the field of artificial intelligence and knowledge discovery(Chen et al. 2021; 
Foraita et al. 2020; Zeng et al. 2021). Researchers have proposed a variety of 
models for representing causality, which are widely used in statistics, biome-
dicine, and data mining (Mazlack 2009). With the rise of artificial intelligence 
and the advent of the era of big data, all fields urgently need to deal with the 
challenges brought by massive data. As an important tool for analyzing data, 
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the causal relationship model has become more and more important for its 
corresponding research problems. For example, emotion analysis has always 
been a hot topic in the field of artificial intelligence. Scholars have proposed 
a large number of machine learning and deep learning algorithms to carry out 
emotion recognition in text and other aspects (Aytuğ Onan, Korukoğlu, and 
Bulut 2016; Aytuğ Onan and Korukoğlu 2017; Aytug Onan and Toçoğlu 
2021). However, with the increase of data volume and the continuous 
improvement of the performance requirements of emotion analysis, the pro-
spects of algorithms that only focus on the classification results of emotion 
recognition are limited. Therefore, analyzing data from the perspective of 
causality, providing more abundant auxiliary information and effectively deal-
ing with large amount of data can not only improve the competitiveness of 
algorithms, but also have certain practical significance.

Pearl of the University of California first proposed a Bayesian model based 
on probability theory and graph theory in 1988 (Pearl 2014). Typical Bayesian 
network structure learning algorithms can be roughly divided into three types: 
(1) Based on the method of dependency analysis, by learning the dependency 
and independent relationships between data variables, the conditional inde-
pendent relationship structure between node variables is determined, which is 
thought as the structure of Bayesian networks. This type of algorithms are 
suitable for structure learning of sparse Bayesian networks, such as the classic 
SGS algorithm (Spirtes, Glymour, and Scheines 1989). (2) Based on the scoring 
search method, the core idea is to search in all structure spaces, by calculating 
a certain scoring function (measure the degree of fit between the network 
topology and the sample set), until the network structure that best matches the 
data set is found, such as K2 algorithm (Cooper and Herskovits 1992). 
Commonly used scoring methods mainly include Bayesian scoring, minimum 
description length scoring, Bayesian information criterion) and Akaike infor-
mation criterion. Commonly used search algorithms mainly include greedy 
search method, branch and bound method, simulated annealing method and 
genetic algorithm. (3) Based on the hybrid method of dependency analysis and 
scoring search, the first two types of methods have their own advantages and 
disadvantages. The hybrid method combines the ideas of these two types of 
methods. First, rely on the analysis to obtain the node order or reduce the 
search space, and then perform the scoring search. To find the best network is 
the current research hotspot in this field, such as CB algorithm (Singh and 
Valtorta 1993), SC algorithm (Friedman, Nachman, and Pe’er 2013), MMHC 
algorithm (Tsamardinos, Brown, and Aliferis 2006), L1MB algorithm 
(Schmidt, Niculescu-Mizil, and Murphy 2007), PCB (Yang, Li, and Wang 
2011) and PCS (Yang et al. 2016) algorithm.

In fact, most of the above algorithms have achieved relatively good results 
on discrete data or continuous data with multiple linear models. However, due 
to the assumption that the data distribution obeys a linear relationship, it 
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cannot be applied to the causal structure learning on the multivariate non-
linear model, which limits the application prospects. In order to solve the 
Bayesian network structure learning problem of nonlinear data, Hoyer 
extended the Bayesian causality model and proposed an additive noise 
model that can describe nonlinear data. Subsequently, many corresponding 
independence test methods and their structure learning algorithms are gener-
ated. For example, Fukumizu proposed the HSIC independence test method 
(Fukumizu et al. 2007), which is based on the normalized cross-covariance 
operator of regenerative kernel Hilbert space, independent of the selection of 
kernel parameters, and has simple empirical estimation and good conver-
gence. Tillman further proposed KPC algorithm based on the framework of 
PC algorithm and HSIC independence test method (Tillman, Gretton, and 
Spirtes 2009). Huang B made a series of improvements on Tillman’s work and 
proposed the CS-NOD algorithm (Zhang et al. 2017). In addition, there are 
LSMI independence test methods proposed by Yamada M (Yamada and 
Sugiyama 2010) and KCI independence test methods proposed by Zhang 
K (Zhang et al. 2012).

Data subject to a single linear distribution is not common in the real world, 
but there are a lot of nonlinear relations. For example, in the field of engineer-
ing and technology, the data transmitted by sensors that detect the status of 
plant equipment generally follows a nonlinear distribution. In the field of 
financial development, the fluctuation data of stock prices in the stock market 
can hardly meet the linear distribution. In the field of medical imaging, the 
image data obtained for the treatment of patients, even if the detection data set 
aided by image processing method is obtained, usually does not show linear 
distribution. Therefore, from the perspective of practical application, the study 
of the causal structure relationship under the nonlinear model has more 
practical significance and application value.

However, most current non-linear causality discovery algorithms have the 
following problems: (1) directly calculate the relationship between two variables 
and ignore the joint interference between the variables in the multivariable 
system, resulting in low accuracy. (2) Most nonlinear algorithms can also be 
used in linear models in theory, but many algorithms ignore the accuracy of 
linear models. Linear models can be regarded as a special form of nonlinear 
models. If the algorithm performs well on linear data and can handle complex 
nonlinear data, and it will be more competitive. (3) The algorithm has high time 
complexity. Many algorithms use theoretically powerful calculation methods in 
order to deal with complex nonlinear function relationships. However, obtain-
ing results often takes a lot of time, which can only be applied to small sample 
data and cannot process large sample data in a limited time.

In response to the above problems, this paper starts from the study of partial 
Spearman correlation coefficient (Conover 1998) (a kind of partial rank 
correlation coefficient), and proposes two causal structure learning algorithms 
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based on partial rank correlation – PRCB and PRCS. The algorithm we 
proposed can not only eliminate the joint interference between multiple 
variables, and thus detect the conditional correlation between system vari-
ables, but also has high accuracy in the learning of causal structure under 
linear and non-linear models. In addition, its efficient data processing cap-
abilities can cope with the massive data problems generated by various indus-
tries in the era of big data, and it has broad application prospects. The partial 
rank correlation in this article is the partial Spearman correlation. Our con-
tributions are mainly reflected in the following three aspects:

(1) Under the additive noise model, it is proved that the partial rank 
correlation coefficient can be used as a measure of independence, and 
the correlation is redefined from the perspective of partial rank 
correlation.

(2) Applying partial rank correlation coefficients to Bayesian structure 
learning, two new causal discovery algorithms are proposed: PRCB 
based on threshold selection and PRCS based on hypothesis testing, 
and the theoretical basis of the algorithm is explained.

(3) The above algorithm has been carried out three parts of experiments: 
linear and nonlinear experiments with small sample data of low- 
dimensional networks, linear and nonlinear experiments with large 
sample data of high-dimensional networks, and application experi-
ments on real data sets. A large number of experimental results show 
that the algorithm has excellent accuracy and time efficiency in linear 
and non-linear experiments, can effectively process a large amount of 
data generated in practical applications, and dig out hidden causal 
relationships.

The rest of this article is organized as follows. The second part reviews the 
previous research work and methods related to Bayesian structure learning. 
The third part introduces the partial rank correlation coefficient and proves 
that it can be used as a measure of independence. The fourth part proposes 
a causal structure learning algorithm based on partial rank correlation (PRCB 
algorithm and PRCS algorithm). The fifth part conducts experiments on the 
algorithm proposed in this paper and the comparison algorithm, and analyzes 
the results. The sixth part summarizes current work.

Related Work

The learning of Bayesian networks generally focuses on structure learning and 
parameter learning. Structural learning of Bayesian networks is the indepen-
dent or dependent relationship among learning variables, which is represented 
by graphical (graph adjacency matrix), and is the main research field of 
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Bayesian learning. Compared with the simple and standard parameter learn-
ing, structure learning needs to balance the accuracy and complexity of model 
building: on the one hand, it needs to build a network topology that can 
represent rich information to obtain reliable learning accuracy, and on the 
other hand, it needs to simplify the network model as much as possible to 
reduce the application maintenance cost and algorithm time complexity.

The current Bayesian network structure learning algorithms can be divided 
into two categories: one is the linear causality discovery algorithm that solves 
the problem of multivariate linear discrete or continuous data causal structure 
learning, and the other is a nonlinear causal discovery algorithm that deals 
with multivariate nonlinear discrete or continuous data causal structure learn-
ing problems. First introduce the linear causality discovery algorithm: Schmidt 
proposed the L1MB algorithm in 2007, and Jean-Philippe in 2008 proposed 
the TC algorithm (Pellet and Elisseeff 2008). Both algorithms can process 
continuous data generated by linear structural equation models that obey 
the linear multivariate Gaussian distribution. But the experiment shows that 
the accuracy of L1MB algorithm is not very high, and the TC algorithm has 
poor time performance and space performance. Wang proposed a two-phase 
(Two-Phase) algorithm (Wang and Chan 2010), which can process the data 
generated by the linear structural equation model and obey the linear multi-
variate Gaussian distribution or linear non-multivariate Gaussian distribution, 
but the algorithm’s time complexity is very high. Yang proposed a PCB 
algorithm based on partial correlation and an improved PCS algorithm. This 
algorithm can process the data generated by the linear structural equation 
model with arbitrary distribution of disturbances. It effectively combines local 
learning ideas and partial correlation techniques. Firstly, the skeleton of 
Bayesian network is reconstructed based on partial correlation, and then 
greedy hill-climbing search is performed to orient the edges to determine 
the final network graph, which has good structure learning ability and efficient 
time performance. The simulation results show that when the data set is 
generated by a linear structural equation model that is disturbed by arbitrary 
distribution, the algorithm has achieved excellent results in all indicators.

Next, introduce the development process of nonlinear causality discovery 
algorithm: Hoyer proposed additional noise model, linear Gaussian model and 
linear non-Gaussian model are special forms of this model, and proposed 
causal structure learning based on nonlinear regression and HSIC indepen-
dence test method. Yamada et al. proposed a method based on least squares 
mutual information-independent regression (Yamada and Sugiyama 2010), 
and the experiment showed that this method was superior to HSIC regression 
in inferring causality. Mooij et al. proposed an evaluation method for causal 
structure based on MAP (Maximum A Posteriori) estimation (Mooij et al. 
2009). This method effectively reduced the number of regression, but the 
computational complexity was still not negligible. In addition to research in 
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the area of independent testing methods, there are other studies dealing with 
non-linear methods, such as: Gretton A et al. proposed the KMI (kernel 
mutual information) method (Gretton, Herbrich, and Smola 2003). Yamada 
M et al. proposed A cross-domain matching (CDM) framework based on 
square loss mutual information (SMI) (Yamada et al. 2015). Wu P et al. 
established an integration framework based on nonlinear independent com-
ponent analysis (ICA) (Wu and Fukumizu 2020). Andrea’s model based on 
ESN reformulated the classical Granger causality (GC) framework for multi-
variate signals generated by any complex network, which can well detect 
nonlinear causality (Duggento, Guerrisi, and Toschi 2019). However, most 
of the algorithms have poor accuracy and high complexity, and can not be 
effectively applied to high-dimensional scenarios.

Based on the above problems, this paper starts from the PCB algorithm that 
achieves the best results in the linear model, and improves the PCB algorithm 
by combining the partial rank correlation coefficient, and proposes a causal 
discovery algorithm based on the partial rank correlation. This algorithm not 
only has the reasonableness of testing variables conditional correlation in the 
PCB algorithm and the efficient performance in terms of running time, it can 
also effectively deal with the causal relationship mining problem between the 
data generated by the nonlinear model, and it is more able to cope with the 
high-dimensional big data challenges in the era of artificial intelligence. We 
conducted a large number of comparative experiments with the above algo-
rithm, and achieved excellent results in seven low-dimensional network small 
sample data and three high-dimensional network large sample data, and 
successfully applied to real data sets.

Summary of mathematical notations

Related Theoretical Basis

Introduction to Correlation Coefficient

In statistics, correlation table, correlation graph and correlation coefficient are 
all commonly used measurement tools to reflect the correlation between 
random variables. Different from the correlation table and graph, which 

Notation Mathematical meanings

G 
V 
X, Y, Z  
Xi; Yi 

xi , yi 
PN(i) 
kKα

Directed acyclic graph 
Variable set in G 
A variable in V 
i-th N-dimensional feature vextor 
Value assignments for X and Y 
The candidate neighbors for the i-th feature 
Partial rank correlation threshold 
Threshold of partial rank correlation hypothesis test
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cannot accurately indicate the degree of correlation between variables, the 
correlation coefficient is a statistical index, and the calculated statistical value is 
used to reflect the degree of correlation between two random variables. It 
usually uses non-parametric hypothesis test to measure the statistical depen-
dence between random variables, and is widely used in many fields such as 
biomedical science and financial stocks. Common correlation coefficients are: 
simple correlation coefficient (Kleijnen, Helton, and Safety 1999), partial 
correlation coefficient (Pellet et al. 2007), Spearman rank correlation coeffi-
cient (Fieller, Hartley, and Pearson 1957) and partial rank correlation 
coefficient.

Partial Rank Correlation Coefficient

Partial rank correlation coefficient is a measure of the degree of linear or 
non-linear correlation between two variables given other variables. It is 
a global sensitivity analysis method that uses “level difference” to ana-
lyze. The applicable conditions are consistent with the Spearman rank 
correlation coefficient, the input data is a pair of graded data or graded 
data converted from continuous variable observations. As can be seen 
from the above, the Spearman correlation coefficient is obtained by 
converting the original value into a rank order value and then perform-
ing Pearson correlation calculation. The partial correlation coefficient is 
obtained by regressing the observed variable and the condition variable 
to obtain the residual error and then performing the Pearson correlation 
calculation. The definition of partial rank correlation is given below: 

Definition 3.1 Partial rank correlation coefficient: For any two variables Xi 
and Xj in a variable set V, the partial rank correlation coefficient under a given 
set Z � Vn Xi;Xj

� �
is the correlation coefficient between SXi and SXj , denoted 

as ρr Xi;XjjZ
� �

, where SXi and SXj are convert Xi, Xj, and Z into rank order 
values Di, Dj and DZ, and then perform linear regression to obtain the 
residuals. The calculation formula is as follows: 

ρr Xi;XjjZ
� �

¼ ρ Di;DjjDZ
� �

¼ γ SXi ; SXj

� �

¼
γDiDj

� γDiDZ
γDjDZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � γ2

DiDZ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � γ2

DjDZ

q ¼
rXiXj � rXiZrXjZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

XiZ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

XjZ

q
(1) 

In Formula 1, ρ, γ, and r represent partial correlation coefficient, Pearson 
correlation coefficient, and Spearman rank correlation coefficient, respec-
tively. It can be seen from Definition 3.1 that the partial rank correlation 
is calculated by converting the original value into a rank order value and 
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then performing the partial correlation calculation. Compared with the 
partial correlation coefficient, a step value conversion is performed. the 
partial correlation calculation is used to replace the Pearson correlation 
calculation in the Spearman coefficient, which is one step more regression 
residual calculation than the rank correlation coefficient. This calculation 
method enables partial rank correlation to integrate the advantages of 
partial correlation and rank correlation, and its applicable scope is con-
sistent with the Spearman correlation coefficient, and it also has 
a theoretical basis for testing the conditional correlation between random 
variables. The partial rank correlation coefficient is easy to calculate, can 
effectively process data that obeys any distribution, and has strong anti- 
interference ability against possible abnormal values.

We already know the definition and calculation method of partial rank 
correlation coefficient, but can it be applied to the study of causal structure as 
a measure of independence test?

Proof of Partial Rank Correlation Coefficient as a Measure of Independence Test 
Standard

Definition 3.2 Additive noise model: The additive noise model is defined as 
a set of equations, such as xi ¼ fxi pa Xið Þð Þ þ uxi .

V= X1;X2; . . . . . . ;Xnf g is a set of n random variables, Xi 2 V is one of 
the random variables, PaðXiÞ is represented as the parent node of Xi, xi 
and pa Xið Þ are a specific value state of Xi and PaðXiÞ respectively, and uxi 

is random due to unknown factors perturbation, fxi represents the corre-
sponding functional dependence. The above equation shows that the 
value xi of each variable Xi 2 V is a function of the value pa Xið Þ of its 
parent node PaðXiÞ plus a random disturbance uxi . The additive noise 
model is a causal model in the form of a function. fxi is any linear or non- 
linear function, and the generated data set can be a multivariate normal 
distribution or not a multivariate normal distribution. 

Definition 3.3 Conditional independence: A set of variables 
V= X1;X2; . . . . . . ;Xnf g, Xi,Xj 2 V, Z � Vn Xi;Xj

� �
. If the probability mode 

P (discrete or continuous) satisfies P Xi;XjjZ
� �

¼ P XijZð ÞP XjjZ
� �

(the joint 
probability distribution of Xi and Xj relative to Z is equal to the respective 
marginal probability fractional product), then Xi and Xj are called conditional 
independent and denoted as Ind Xi;XjjZ

� �
.
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Theorem 3.1: For the additive noise model, when the partial rank correlation 
coefficient ρr=0, the two variables are conditionally independent.

Proof: The value range of the partial rank correlation coefficient is [−1,1]. 
When ρr>0, it means that the two variables are conditionally positively 
correlated, and when ρr<0, it means that the two variables are condition-
ally negatively correlated. For the additive noise model "Xi, Xj 2 V, Xi 

and Xj are any two variables in the set V, and Z � Vn Xi;Xj
� �

represents 
the other variables in V except Xi and Xj. It can be seen from definition 
3.2 that the distribution of Xi and Xj can be normal or non-normal, and 
the relationship between Xi and Xj can be a linear function or a nonlinear 
function. The partial rank correlation coefficient of Xi and Xj relative to 
Z can be calculated by the formula. Regardless of the overall distribution 
of random variables and the size of the sample, as long as the observa-
tions of random variables are paired graded data, or graded data con-
verted from continuous variable observation data, partial rank correlation 
coefficients can be used for research. The partial rank correlation coeffi-
cient indicates the conditional correlation direction of Xi (independent 
variable) and Xj (dependent variable) relative to the set Z. Under the 
conditions of a given set Z, if when Xi increases, Xj tends to increase, the 
partial rank correlation coefficient is positive; if when Xi increases, Xj 

tends to decrease, the partial rank correlation coefficient is negative; 
when the partial rank correlation coefficient 0 indicates that Xj has no 
tendency when Xi increases, that is, any change in variable Xi does not 
affect the probability distribution of variable Xj. According to the defini-
tion 3.3, it indicates that Xi and Xj are conditionally independent relative 
to Z, that is, there is no correlation between Xi and Xj, and the opposite is 
also true. That is, the necessary and sufficient condition for ρr to be 0 is 
that Xi and Xj and are conditionally independent of each other. 
Therefore, for an additive noise model, we can use the partial rank 
correlation coefficient as a measure of independence.

Causal Structure Learning Algorithm Based on Partial Rank Correlation

Based on the theoretical basis of Chapter 3, we have the following definitions: 

Definition 4.1 Strong correlation: "Xi, Xj 2 V, Z � Vn Xi;Xj
� �

, Xi and Xj 
have strong correlation if and only if the partial rank correlation coefficient 
ρr Xi;XjjZ
� �

� k, where k is the threshold.
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Definition 4.2 Weak correlation: "Xi, Xj 2 V, Z � Vn Xi;Xj
� �

, Xi and Xj 
have weak correlation if and only if the partial rank correlation coefficient 
ρr Xi;XjjZ
� �

< k, where k is the threshold.

According to the above definition, by setting the threshold value, relevant 
nodes and redundant nodes can be screened out for the network node vari-
ables of causal structure learning, so as to obtain the Bayesian network 
structure framework and reduce the search space needed for the construction 
of learning model.

PRCB Algorithm Based on Threshold

In this section, we give the framework of the PRCB (Partial-Rank-Correlation- 
Based) algorithm as shown in Table 1 . PRCB algorithm is mainly divided into 
two stages, namely constraint stage and search stage. In phase constraints, 
PRCB algorithm firstly by partial rank correlation coefficient for each random 
variable selection of relevant candidate neighbor node set, form without the 
direction of the Bayesian network framework in order to reduce the searching 
space of follow-up, and restricted the greed of mountain climbing searching 
method is used to search in the network frame orientation, end up with 
Bayesian network structure.

PRCB algorithm requires the input data variables to be observable complete 
data sets (that is, there are no hidden variables), and the research object can be 
continuous linear or nonlinear data. Obtain data set 
D= D1;D2; . . . ;Di; . . . ;Dnf g of n nodes X= X1;X2; . . . ;Xi; . . . ;Xnf g, where 
Xi and Di represent the i-th node and the data of the node respectively.

Constraint Phase
The main objective of the algorithm constraint stage is to select the relevant 
nodes for each node in the input data set so as to obtain the Bayesian network 
skeleton. We can get the following properties: the mutual relationship between 
any two adjacent nodes in the causal network is “strongly correlated,” and vice 
versa. Therefore, the value based on partial rank correlation coefficient defined 

Table 1. PRCB algorithm framework.
Algorithm:

Input: Data set D = D1;D2; . . . ;Di; . . . ;Dnf g; a given threshold k
Output: Bayesian Network Graph between Nodes G
1./* In the constraint phase, obtain the skeleton of the primary Bayesian network*/
Select a set of candidate neighbor node sets PNðXjÞ for each variable Xi 2 X
2./* In the search stage, the final Bayesian network graph is obtained*/
In the first step, get the skeleton of the Bayesian network by performing a greedy hill climbing search to find the 

network (G) with the best score
3./* Return the Bayesian network graph*/
Output: G
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in this paper can be used as the measurement standard of strong correlation 
and weak correlation. The node set strongly correlated with the target node 
can be selected according to the strength of correlation, and the candidate 
neighbor node set can be selected for each variable node.

In addition, the execution process of constraint phase is similar to that of 
MMHC algorithm, L1MB algorithm, SC algorithm and PCB algorithm. 
However, the input data of MMHC algorithm and SC algorithm are required 
to be distributed discretely, so they cannot be directly applied to continuous 
data sets. Both PCB algorithm and L1MB algorithm are based on data sets that 
obey linear distribution, so they are not suitable for data sets that meet non-
linear distribution. However, both KPC algorithm and CD-NOD algorithm, 
which are suitable for nonlinear data sets, use kernel function to test condi-
tional independence. With the expansion of network size and the increase of 
data samples, their time cost will increase exponentially. Therefore, the current 
constraint algorithms all have some limitations.

From the algorithm framework shown in Table 2, the input of the con-
straint stage is the data set D= D1;D2; . . . ;Di; . . . ;Dnf g and a threshold k, 
each column of the data set corresponds to a variable, each row is a sample 
instance, and the output is the set of candidate neighbors PNðXjÞ for each 
variable and its candidate neighbor matrix PNM. The first step of the 
algorithm is to initialize PNðXjÞ to be empty, and all elements of PNM are 
0. Then we select its candidate neighbor set for each variable and obtain the 
final candidate neighbor matrix. Specifically, first we calculate the partial 
rank correlation coefficient ρr Xi;XjjZ

� �
of each pair of variables Xi and Xj 

under a given set Z. If the absolute value of ρr Xi;XjjZ
� �

is greater than or 
equal to the threshold k, according to definition 4.1, Xi and Xj have a strong 
correlation, and Xi is added to the set of candidate neighbors of Xj and set 
PNM(i,j) = 1; otherwise, the absolute value of ρr Xi;XjjZ

� �
is less than the 

threshold k. According to definition 4.2, Xi and Xj are weakly correlated, and 
Xi is not added to the candidate neighbors of Xj and set PNM(i,j) = 0. For 

Table 2. PRCB constraint phase algorithm framework.
Algorithm:

Input: Data set D = D1;D2; . . . ;Di; . . . ;Dnf g; a given threshold k
Output: Set of candidate neighbor nodes PNðXjÞ for each variable Xj ; 

Candidate neighbor matrix PNM
1. PNðXjÞ ¼ ϕ, (Xj 2 V, j = 1 to n) PNM(i, j) = 0 (i = 1 to n, j = 1 to n)
2. For Xj 2 V, j = 1 to n do
3. For Xi 2 V, i = 1 to n, i � j, Z � Vn Xi; Xj

� �
do

4. Calculation ρr Xi; XjjZ
� �

5. If abs(ρr Xi; XjjZ
� �

) � k
6. PNðXjÞ ¼ PNðXjÞ [

Xi ; PNM i; jð Þ ¼ 1
7. else
8. PNM i; jð Þ ¼ 0
9. Output PNðXjÞ and PNM
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example, if k = 0.1, for variables X5, if ρr X1;X5jZð Þ=0.06, ρr X2;X5jZð Þ=0.16, 
ρr X3;X5jZð Þ=0.26, because the partial rank correlation coefficients of the 
variables X2 and X3 and X5 are greater than the threshold 0.1, and the partial 
rank correlation coefficients of the variables X1 and X5 are less than the 
threshold 0.1, X2 and X2 are selected as candidate neighbor nodes of X5, and 
X1 is not selected as X5‘s candidate neighbor nodes, that is, PN 
(X5) = X2;X3f g. PNM(1,5) = 0, PNM(2,5) = 1, PNM(3,5) = 1. Since the 
partial rank correlation coefficient has symmetry, that is, ρr Xi;XjjZ

� �
¼

ρr Xj;XijZ
� �

(i < j), if Xi and Xj have a strong correlation, then Xj and Xi 

also have a strong correlation. The selection of candidate neighbors itself has 
no directionality. In the search phase, it includes the operation of inverting 
the edge. After greedy search, the direction of the edge can be finally 
determined. Therefore, PNM (i, j) is set to 1, PNM is the upper triangular 
matrix and the diagonal elements are all 0. Through this operation, the 
efficiency can be improved in the search phase.

Search Phase
In the search stage of the algorithm, the restricted greedy search method based 
on the scoring function is used to complete the search orientation of the 
network, and the final task is to obtain the determinate Bayesian network 
structure diagram. After the execution of the constraint phase of the algo-
rithm, a limited Bayesian network skeleton can be obtained, on which the 
whole searching phase of the algorithm is carried out. As a result, the search 
scope that can be executed is limited, and the time performance of the 
algorithm can be greatly improved by reducing the search space of greedy 
search. Greedy mountain-climbing search method is described as follows: 
based on the input data set and the existing network structure, some scoring 
function is performed to obtain the initial score, and the network structure is 
changed by adding edges, deleting edges and transforming edges in the net-
work skeleton, so as to adjust the score until the network structure with the 
best score is found. It can be seen that the scoring function of evaluating the 
network structure and the search method of adjusting the network structure 
have great influence on the algorithm.

PRCB algorithm uses the scoring function based on information theory. Its 
main principle is to use the Minimum Description Length (MDL) in coding 
theory and information theory. The MDL principle is briefly described as 
follows: select the model with the minimum total description length for the 
data set, where the total description length (that is, the length of data to be 
saved) is equal to the compressed data length plus the description length of the 
model. Thus, the structure learning of Bayesian networks can be regarded as 
seeking a graph model that satisfies the MDL principle (that is, the sum of the 
description length of the network and the encoding length of the data is 
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minimum). By means of MDL scoring function, the searching stage of the 
algorithm tends to search for a causal network with a relatively simple struc-
ture among the network structures that can describe rich data information, so 
that the accuracy and complexity of the network are well balanced.

PRCB algorithm uses the mountain climbing search method to simulate the 
process of mountain climbing to adjust network structure. The specific 
description is as follows: first select a position randomly for search (similar 
to mountain climbing), then select an optimal solution in the adjacent search 
space and move it to this position (similar to mountain climbing in a higher 
direction), and then conduct the next search in this position, and repeatedly 
execute the above process until the “highest point” is reached. In order to solve 
the problem that the mountain climbing search method using local search 
strategy is easy to fall into local optimal, this paper changes the network 
structure randomly to search again when it falls into local optimal.

In summary, the PRCB algorithm obtains a network skeleton PNM 
(candidate neighbor matrix) of the final graph in the constraint stage, and 
then adopts the greedy mountain-climbing search method based on MDL 
scoring function in the search stage to conduct search orientation in the 
network skeleton, thus finally determining the Bayesian network structure 
graph. Different from the general search algorithms, the limited greedy 
search method adopted in this paper has to perform operations such as 
adding edges, deleting edges and inverting edges within the scope of network 
skeleton. The score of the network structure is adjusted continuously 
through testing the operations of the network edge mentioned above, and 
the operation that maximizes the decrease degree of the MDL score of the 
network structure is adopted until the optimal causal Bayesian network 
graph is obtained.

Time Complexity Analysis
The PRCB algorithm includes two phases: the constraint phase and the search 
phase. Therefore, the time complexity of the PRCB algorithm mainly includes 
the time complexity of the constraint phase and the time complexity of the 
search phase. The time complexity of the search phase has long been known, 
and we will not repeat it. The main calculation is the time complexity of the 
constraint phase. The calculation mainly focuses on the calculation of the rank 
correlation coefficient matrix R and its inverse matrix. Multiplying two n × n 
matrices requires n2 times of vector (length n) inner product. The complexity 
of the inner product operation for a vector of length n is O(n), so the time 
complexity of matrix multiplication is up to O(N3). According to the defini-
tion of rank correlation coefficient, the calculation of the rank correlation 
coefficient between any two variables mainly focuses on ranking the samples of 
all variables, and performing heap sort on one of the variables. The time 
complexity is O(mlogm), so the time complexity of sorting n nodes is 

APPLIED ARTIFICIAL INTELLIGENCE e2023390-1669



O(mnlogm), and finally the Spearman correlation coefficient between all 
nodes is calculated according to the formula, and the time complexity is 
O(mn). Therefore, the time complexity of calculating the matrix R is O 
(mnlogm+mn). The calculation of the inverse matrix and the calculation of 
matrix multiplication have the same time complexity, so the time complexity 
of calculating the inverse matrix of the matrix R is at most O(n3). In summary, 
the total time complexity of the constraint phase is O(mnlogm+mn+n3).

PRCS Algorithm Based on Hypothesis Testing

This section further discusses the partial rank correlation coefficient, combines 
the statistical hypothesis testing method to expand the PRCB algorithm, and 
proposes an improved PRCS (Partial-Rank-Correlation-Statistics) algorithm 
based on the hypothesis testing, which solves the above PRCB algorithm 
threshold selection problem. This section will prove the effectiveness of the 
algorithm in theory, and in the fifth chapter, through a large number of 
experiments to prove the effectiveness and efficiency of the algorithm on linear 
and non-linear data.

The algorithm framework is shown in Table 3 below:
The improved algorithm is consistent with the previous algorithm frame-

work except that the original threshold comparison is transformed into 
a p-value test. The following only introduces the p-value calculation in the 
constraint phase of the algorithm.

Alternative Hypothesis Testing for Partial Rank Correlation Coefficient
First, by proposing Theorem 4.1, the statistical distribution properties of 
partial rank correlation coefficients are introduced. For the detailed proof 
process, please refer to the appendix at the end of the article. 

Table 3. PRCS algorithm framework.
Algorithm:

Input: Data set D = D1;D2; . . . ;Di; . . . ;Dnf g; Hypothesis testing threshold Kα
Output: Bayesian Network G
1.Initialization PNðXjÞ ¼ ;, (Xj 2 V, j = 1 to n)
PNM(i,j) = 0 (i = 1 to n, j = 1 to n)
2./* In the constraint phase, obtain the skeleton of the primary Bayesian network*/
For Xj 2 V, j = 1 to n do
For Xi 2 V, i = 1 to n, i � j, Z � Vn Xi; Xj

� �
do

Calculation ρr Xi; XjjZ
� �

Calculation p-value Xi; Xj
� �

If p-value Xi; Xj
� �

< Kα

PNðXjÞ ¼ PNðXjÞ [
Xi ; PNM i; jð Þ ¼ 1

else
PNM i; jð Þ ¼ 0
3./* In the search stage, the final Bayesian network graph is obtained*/
G = DAGsearch(D,PNM)
Output G
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Theorem 4.1: For the data generated by the additive noise model, the dis-
turbances conform to an arbitrary distribution and are not correlated with 
each other. V is the variable set, m is the number of samples, n is the number of 
variables, and m is large enough. "Xi, Xj 2 V, Z � Vn Xi;Xj

� �
, partial rank 

coefficient ρr Xi;XjjZ
� �

, abbreviated as ρij, regardless of whether the data con-
forms to the multivariate normal distribution, the distribution of the statistic t1 
approximately obeys the student t distribution with m-n degrees of freedom. 

t1 ¼
ρij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ρ2
ij

� �
= m � nð Þ

r

For two variables Xi and Xj, ρij represents the partial rank correlation 
coefficient between the two variables Xi and Xj. The true value of ρij can be 
tested by hypothesis testing. The null hypothesis and the two-sided alternative 
hypothesis are as follows:

H0 : E ρij

� �
¼ ρij vs H1 : E ρij

� �
�ρij

Construct the T statistic as follows: 

T ¼
ρ̂ij � ρij

SEðρ̂ijÞ

ρij is a hypothetical value, usually taken as 0, ρ̂ij is an estimated value, which 

represents the expected value of ρij, and SE ρ̂ij

� �
is an estimate of the standard 

deviation of ρ̂ij. According to theorem 4.1, no matter whether the data set 
conforms to the multivariate normal distribution, the T statistic approximately 
obeys the student t distribution with m-n degrees of freedom, so it can be 
judged to accept and reject the hypothesis through the p-value.

Under the condition of the null hypothesis, the p-value is the significance 
probability, and its statistic represents the probability in the actual sample. So 
when the p-value is less than the significance level, the null hypothesis is 
rejected. The significance level is the confidence level, and usually takes the 
value 0.10, 0.05, 0.01, 0.005, etc. Let ρ̂act

ij denote the partial rank correlation 

coefficient, PrH0 denote the calculated probability, and ρact
ij ¼

ρ̂act
ij � ρij

� �
=SE ρ̂ij

� �
denote the value of the T statistic, then the p value can 

be written as: 

p � valueðXi;XjÞ ¼ Pr
H0

ρ̂ij � ρij

SEðρ̂ijÞ

�
�
�
�
�

�
�
�
�
�
>

ρ̂act
ij � ρij

SEðρ̂ijÞ

�
�
�
�
�

�
�
�
�
�

 !

¼ 2Φ � ρactj jð Þ
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Where  is the cumulative distribution function of the standard normal 
distribution, and the p value is the probability that the ρ̂ij value deviates 
from ρij. If the p-value p � value Xi;Xj

� �
is less than the significance level, 

the null hypothesis is rejected, which means that the correlation between Xi 
and Xj is strong. Conversely, if the p-value is greater than the significance level, 
the null hypothesis is accepted, which means that Xi and Xj are independent of 
each other. So we can use p-value to define strong correlation and weak 
correlation. 

Definition 4.3 Strong correlation: "Xi, Xj 2 V, Xi and Xj have strong corre-
lation if and only if p � value Xi;Xj

� �
<Kα.

Definition 4.4 Weak correlation: "Xi, Xj 2 V, Xi and Xj have weak correla-
tion if and only if p � value Xi;Xj

� �
� Kα.

Therefore, by defining 4.3 and 4.4 to compare the p-value and the signifi-
cance level Kα, if the p-value is greater than Kα, the null hypothesis is 
established, and the correlation between Xi and Xj is weak, otherwise Xi and 
Xj are strongly correlated. The above threshold Kα is the significance level in 
probability statistics, that is, the degree of confidence.

In this section, through the application of statistical hypothesis testing 
methods, the problem of threshold selection is successfully solved, and an 
improved PRCS algorithm is proposed. The input data set of the algorithm is 
D= D1;D2; . . . ;Di; . . . ;Dnf g and the significance level Kα. By calculating the 
p-value and comparing it with Kα instead of the original threshold comparison, 
the candidate neighbor node set of each node is obtained, and the Bayesian 
structure skeleton is constructed for the subsequent search stage, and the causal 
Bayesian network diagram is finally obtained. Since the specific algorithm 
details are similar to the PRCB algorithm above, I will not elaborate on it here.

Time Complexity Analysis
The PRCS algorithm also includes two phases: the constraint phase and the 
search phase. Similar to the PRCB algorithm, the PRCS algorithm also needs to 
calculate the correlation coefficient matrix R and the calculation of its inverse 
matrix. The time complexity of this part is O(mnlogm+mn+n3). In addition, 
the PRCS algorithm calculates the p-value and then determines the correlation 
through hypothesis testing. Compared with the PRCB algorithm directly 
compares the absolute value, it takes a little time. However, the quantitative 
calculation is not very good, and the amount of calculation is not very large, so 
it is ignored here. In summary, the total time complexity of the constraint 
phase is O(mnlogm+mn+n3).
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Experimental Results and Analysis

In this section, we conducted three parts of the experiment. The first part of 
the experiment tests the effectiveness of the causal structure learning algo-
rithm based on partial rank correlation proposed in this article on low- 
dimensional networks: generate simulation data sets through 7 classic 
Bayesian networks and 6 common linear and non-linear functional relation-
ships, test the PRCB and PRCS algorithms, and compare them with some 
classic Bayesian network structure learning algorithms (KPC, PCB, LIMB, TC, 
BESM, Two-phase and CD-NOD algorithms) to compare the quality of 
structure learning. In addition, in order to prove the superiority of conditional 
correlation in complex multivariable systems, we added the rank correlation 
coefficient-based causal structure learning algorithm (RCS algorithm pub-
lished by Fan in 2021 (Yang et al. 2021)) into the comparison experiment. 
The second part of the experiment further proves the superior performance of 
the PRCS algorithm based on hypothesis testing on the high-dimensional 
network large sample data set: through 3 classic high-dimensional Bayesian 
networks and 6 functional relationships to generate a million simulation data 
sets, using RCS Algorithm for reference comparison. The third part of the 
experiment tests the reliability of our proposed algorithm on real data sets: by 
collecting a data set of power plant equipment measurement points, combin-
ing the algorithm in this paper with the feature selection method, designing 
a fault prediction system, and detect the predictive performance of the system 
to the fault point. All our experiments are performed on a computer running 
Windows 10 operating system Intel® Core(TM) CPU @ 2.90 GHz and 16 
GB RAM.

Experiment 1: Test Algorithm Performance under Low-dimensional Network

Performance Evaluation Index
The experimental performance of the algorithm was evaluated using the ten- 
fold cross-validation method, that is, each comparison algorithm was exe-
cuted on each data set for ten times and the average value of the ten results 
was obtained. The performance of the algorithm is measured by the total 
number of structural errors in Bayesian causal network (including the 
number of missing edges, the number of redundant edges and the number 
of directional inverse edges, that is the total number of incorrect edges in the 
learning network model compared with the real network model) and the 
total execution time of the algorithm. This index is often used as a key 
measure to verify the accuracy of the learned Bayesian causal network 
structure.
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Network and Data Set
The network models used in this paper are all from real decision support 
systems, including agriculture, insurance, financial stocks and biomedicine 
and many other fields. Because it presents the real network structure, it is very 
classic, and is often used in the experiment of Bayesian structure learning and 
other fields.

Table 4 lists the relevant information of 7 classical low-dimensional 
Bayesian network structures, where the number of nodes represents the total 
number of variable nodes in the network, while the number of edges repre-
sents the total number of edges existing in the network.

Experiments using simulated data sets are made by the following six 
kinds of additive noise model of ANM, including ANM <1> the data set is 
to obey the linear distribution of father-child node mapping relation and 
satisfy the gaussian noise disturbance, ANM <2-6> the data set is to obey 
the nonlinear distribution of father-child node mapping relation and 
satisfy the gaussian noise disturbance. The specific generation method is 
as follows: 

ANM< 1> : xi ¼WT
Xi

pa Xið Þ þ N 0; 1ð Þ;

ANM< 2> : xi ¼WT
Xi

sin pa Xið Þð Þ þ rand 0; 1ð Þ;

ANM< 3> : xi ¼WT
Xi

exp � pa Xið Þð Þ
2� �
þ rand 0; 1ð Þ;

ANM< 4> : xi ¼WT
Xi

cos pa Xið Þð Þ þ rand 0; 1ð Þ;

ANM< 5> : xi ¼WT
Xi

pa Xið Þð Þ
2
þ rand 0; 1ð Þ;

ANM< 6> : xi

¼WT
Xi

"
pa Xið Þ þ sin pa Xið Þð Þ þ exp � pa Xið Þð Þ

2� �
þ

cos pa Xið Þð Þ þ pa Xið Þð Þ
2

� �

þ rand 0; 1ð Þ

.

Table 4. Network information.
Network Number of nodes Number of sides

1 alarm 37 46
2 carpo 61 74
3 factors 27 68
4 insurance 27 52
5 mildew 35 46
6 water 32 66
7 chain 7 6
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The weight WT
Xi 

is usually generated randomly, that is, 
WT

Xi
¼ �1 þ N 0; 1ð Þ=4, where ±1 means randomly generated data of −1 or 

+1, and N(0, 1) means generating data conforming to a standard normal 
distribution with a mean of 0 and a variance of 1. pa Xið Þ represents the parent 
node of Xi. According to the formula, each Xi can be regarded as multiple 
parent nodes through the superposition of functional dependencies.

Based on the network structure of the 7 classical Bayesian networks and the 
data generation method of the additive noise model ANM described above, 
network simulation data sets with samples ranging from 100 to 20000 were 
generated respectively. The algorithm execution results were cross-verified by 
ten folds. The first seven algorithms mentioned above were executed on each 
data set for the linear model, and the five algorithms, KPC, CD-NOD, RCS, 
PRCB and PRCS, were executed on each data set for the nonlinear model.

Experimental Results and Analysis
This paper proposes that the performance of PRCB algorithm is affected by the 
threshold, so the appropriate threshold should be determined in advance 
before the empirical study of the effectiveness of the algorithm. We tested 
the structural error number of PRCB algorithm with different thresholds 
(0,0.01,0.05 and 0.1) on the linear data sets with different network structures 
and different sample sizes (100,500,1000,500,10000 and 20000). The results are 
shown in Figure 1.

We adopted the above experiment and got a good threshold of 0.01. In the 
following experiments, the PRCB algorithm is based on this threshold value. 
For the PRCS algorithm based on significance test, the significance level is 
selected as 0.005. Then it is compared with KPC, PCB (0.1), Limb, TC (0.005), 
BESM(0.005), TWO_PHASE and RCS in linear experiment.

Figure 2 is the result of continuous data of linear multivariate Gaussian 
distribution generated by ANM<1 > . In two of these figures, the X-axis 
represents the sample size (100, 500, 1000, 5000, 10000, and 20000), and the 
Y-axis represents the number of structural errors or the running time. In the 
experiment, due to the lack of some statistical information and the perfor-
mance limitation of the algorithm itself, some algorithms can not perform ten- 
fold cross validation on a specific data set or fail to complete the calculation 
within 12 hours.

The following will compare and analyze the PRCB and PRCS algorithms 
with other algorithms in linear experiments:

The PRCB and PRCS Algorithms and L1MB Algorithm, TC Algorithm, 
Two-Phase Algorithm and KPC Algorithm in the Linear Experiment. The 
PRCB and PRCS algorithms have better accuracy and time performance. 
The L1MB algorithm selects the Markov blanket for each node through the 
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LARS algorithm. This method can describe the correlation between a set of 
variables and a variable, rather than the correlation between two variables, so 
this method has certain limitations. The TC algorithm and the Two-Phase 
algorithm are oriented by identifying the V structure and the orientation 
algorithm of constraint propagation. There are edges that cannot be oriented. 
They are treated as structural errors in the experiment, so their accuracy is not 
very high. The KPC algorithm uses a kernel-based conditional dependency 
standard for conditional independence test, so the time complexity of the 
algorithm is particularly high. From the experimental results, the algorithm is 
only suitable for small samples. On all networks, when the number of samples 
in the data set is greater than 1000, the running time of the KPC algorithm is 
greater than 12 hours. In contrast, the algorithm proposed in this article 
determines the Bayesian network skeleton by directly measuring the 

Figure 1. For ANM<1>, in different networks and data sets, the structural error of the PRCB 
algorithm at different thresholds.
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conditional correlation between the two variables, and then obtains the final 
network diagram by the hill-climbing search method. Not only does it not 
need to spend a lot of time to obtain the Markov blanket for each node, but the 
resulting network will not have undirected edges, so that its accuracy and time 
performance are significantly improved compared to the four algorithms.

The PRCB and PRCS Algorithms and the BESM Algorithm, PCB Algorithm and 
RCS Algorithm in the Linear Experiment. The PRCB algorithm has better 
accuracy and time performance, while the PRCS algorithm is slightly 
worse than the three algorithms. PCB algorithm, BESM algorithm and 
RCS algorithm, respectively, use partial correlation coefficient, linear 
regression analysis and rank correlation coefficient to measure the inde-
pendence of variables, and have good structural learning performance, 
and the three algorithm frameworks are the same as the algorithm frame-
work proposed in this paper. Therefore, the key to determining the 
performance of the algorithm is the standard used to measure the inde-
pendence of the variables: partial correlation coefficient and linear regres-
sion analysis are both used to test the degree of linear correlation between 
variables. Partial rank correlation and rank correlation are more inclined 
to calculate the degree of nonlinear correlation. However, as the number 
of samples increases, the effects of the methods in the measurement of the 
degree of linear correlation tend to be the same, and the PCB and BESM 
algorithms only slightly outperform the PRCS and RCS algorithms when 
the sample is small. The PRCB algorithm can achieve the best results 
because the partial rank correlation is calculated based on the converted 
rank order value, which is more stable than the partial correlation and 

Figure 2. For ANM<1>, the structural errors and running time of the nine algorithms in different 
networks and data sets.
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regression analysis calculated by using the original data, and is not inter-
fered by outliers; second, because it is based on threshold selection, the 
optimal threshold determined by a large number of experiments makes it 
more effective in processing small samples than algorithms based on 
hypothesis testing.

In short, in the linear Gaussian experiment, the partial rank correlation- 
based causal discovery algorithm PRCB has fewer structural errors than other 
algorithms, and has achieved better results. The PRCS algorithm based on 
hypothesis testing shows a moderately upper level in linear experiments, and 
has a slight disadvantage compared with the optimal algorithm.

In the nonlinear experiment, we use the multivariate nonlinear non- 
Gaussian data generated by ANM<2-5> to carry out the experiment. Due to 
space constraints and consistency of experimental results, only experimental 
results with ANM<2,3> are presented here. Figures 3 and 4 show the structure 
error and time performance of the five algorithms, KPC, CD-NOD, RCS, 
PRCB and PRCS, under different networks and different data sets.

The following non-linear result analysis discusses the pros and cons of the 
PRCB and PRCS algorithms and other algorithms.

PRCB and PRCS Algorithm, KPC Algorithm and CD-NOD Algorithm in 
Nonlinear Experiments. The PRCB and PRCS algorithm have better accuracy 
and time performance. The experimental results show that the proposed 
algorithm has less structural errors and faster computational efficiency on 
multivariate nonlinear non-Gaussian data. Especially, compared with CD- 
NOD and KPC algorithms, it has great advantages in processing large sample 
data sets. Due to the exponential growth of the time required for conditional 

Figure 3. For ANM<2>, the structural error and running time of the five algorithms in different 
networks and data sets.
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independence test of these two algorithms, the time efficiency is low for high- 
dimensional and complex networks and the results cannot be obtained within 
a limited time. The PRCB and PRCS algorithms only calculate the partial rank 
correlation coefficient between two variables under the condition of all the 
remaining variables, which can be quickly obtained by calculating the inverse 
matrix of the rank correlation coefficient matrix. This simple calculation 
method not only achieves higher accuracy in all networks, but also handles 
high-dimensional and complex networks and cases where the number of 
samples is relatively large.

PRCB and PRCS Algorithm and RCS Algorithm in Nonlinear Experiments. The 
PRCS algorithm has a slightly higher accuracy, and the PRCB algorithm has 
a slightly lower performance level. The RCS algorithm uses the rank correla-
tion coefficient to directly test the independence of random variables. 
Compared with the PRCS algorithm, it only does not consider the joint 
interference between the variables existing in the multi-complex system. 
However, due to the small number of nodes in the low-dimensional network 
and the simple function relationship mentioned above, the joint interference 
between variables is not obvious. The PRCS algorithm using partial rank 
correlation has only a slight advantage compared with the RCS algorithm 
based on rank correlation.

Since the above experiments cannot effectively distinguish the perfor-
mance of the PRCS algorithm and the RCS algorithm on low- 
dimensional networks, we hereby conduct mixed function experiments. 
The result is shown in Figure 5, compared with other algorithms, the 
PRCS algorithm has better accuracy and time performance. Based on the 

Figure 4. For ANM<3>, the structural error and running time of the five algorithms in different 
networks and data sets.
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data generation method of ANM<6>, there are both linear relationships 
and a large number of non-linear relationships between nodes in the 
network, and the joint interference between variables in a multivariate 
system becomes more complicated. In this case, the RCS algorithm, 
which directly measures the degree of rank correlation between two 
variables, cannot effectively eliminate interference, and its accuracy is 
greatly affected. However, the KPC algorithm and the CD-NOD algo-
rithm that perform a large number of conditional independence tests 

Figure 5. For ANM<6>, the structural error and running time of the five algorithms in different 
networks and data sets.

Figure 6. For ANM<1>, the structural error and running time of the two algorithms on the high- 
dimensional network large sample data set.
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based on the kernel function are not only time-consuming but also not 
accurate. From the experimental results, the PRCS algorithm that uses 
the conditional correlation has obvious advantages, and has the least 
number of structural errors and running time in each network, which 
confirms the superiority of using partial rank correlation in the multi-
variate system.

In summary, regardless of whether the data is linear or conforms to the 
Gaussian distribution, the PRCB and PRCS algorithms have high accuracy and 
time performance. This feature shows that the algorithm has good adaptabil-
ity. With the advent of the era of big data, algorithms that can process large 
sample data of high-dimensional networks have more application prospects. 
For this reason, in addition to conducting experiments on a small sample data 
set of low-dimensional networks, we conducted the second part of the experi-
ment to explore the performance of algorithms on high-dimensional 
networks.

Experiment 2: Testing the Performance of the Algorithm on a Large Sample 
Data Set of High-dimensional Networks

Network and Data Set
To simulate the scenario of high-dimensional features, we created 3 complex 
networks, as shown in the following table:

Table 5 shows information about three classic high-dimensional networks. 
The number of nodes is the total number of nodes in the network, and the 
number of edges is the total number of edges in the network. In the 

Figure 7. For ANM<2>, the structural error and running time of the two algorithms on the high- 
dimensional network large sample data set.
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experiment, the data set was generated by the additive noise model. We used 
the additive noise model ANM with the same six functions as in Experiment 1, 
and the specific generation method was described above. Based on six data 
generation modes of ANM and three high-dimensional network structures, 
network simulation data with sample sizes ranging from 1000 to 1000000 were 
generated, respectively.

Since most of the algorithms tested in the first experiment are dwarfed when 
dealing with small sample data of low-dimensional networks, their performance 
will no longer be tested in the second experiment. Although the PRCB algorithm 
has achieved the best results in the linear experiment of the small network, its 
performance in the nonlinear experiment is not good. The selection of the 

Table 5. Network information.
Network Number of nodes Number of sides

1 alarm10 370 570
2 hailfinder10 560 1017
3 gene 801 972

Table 6. Performance comparison of PRCS and RCS on high-dimensional large sample 
data.

Algorithm Functional relationship
Structural error 

(Win)
Time performance 

(Win)

PRCS/RCS Linear function 3/0 3/0
Sin function 3/0 3/0
Power function 3/0 3/0
Cos function 3/0 3/0
Exponential function 3/0 3/0
Mixed function 3/0 3/0

Table 7. Some sensor measuring point information of a power plant.
Measuring point number Measuring point Unit

1 Unit load MW
2 A side steam turbine inlet steam temperature °C
3 Inlet steam temperature of A side medium pressure main valve °C
4 A side cold re-steam temperature °C
5 First extraction steam temperature °C
6 Second extraction steam temperature °C
7 Six extraction steam temperature °C
8 Low pressure exhaust steam temperature (motor end) °C
9 Low pressure exhaust steam temperature (valve end) °C
10 1# bearing metal temperature (right side) °C
11 2# bearing metal temperature (left side) °C
12 Speed 1# r/min
13 Rotor eccentric %
14 Axial displacement 1 um
15 Differential expansion um
16 2#Bearing vibration um
17 Six-stage extraction steam pressure MPa
18 Main steam flow t/h
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significance test threshold of the PRCS algorithm is consistent with the conven-
tional statistical theory, and does not require prior information and expert knowl-
edge. Theoretically, the PRCS algorithm can be applied to different fields and is 
more universal, and it not only performs well in the nonlinear experiment of small 
networks, but also shows only a slight disadvantage in the linear experiment. 
Therefore, we used the PRCS algorithm to carry out the experiments in this part, 
and the RCS algorithm based on the rank correlation coefficient was used as 
a reference for comparison experiments. The experimental results adopt the cross- 
validation method to take the average value after ten times of verification.

Experimental Results and Analysis
In the experiment of large sample data set of high-dimensional network, we 
use multivariate linear Gaussian data or nonlinear non-Gaussian data 
generated by ANM<1-6> to carry out the experiment. Due to space con-
straints and consistency of experimental results, only experimental results 
with ANM<1,2,6> are shown here, as shown in Figures 6–8. The X-axis in 
the figure represents the sample size (1000, 5000, 10000, 100000, and 
1000000), and the Y-axis represents the number of structural errors or 
running time.

From the above chart data (Table 6), in the experiment of high- 
dimensional network large sample data set, no matter how the function 
relationship changes, regardless of the sample size, the PRCS algorithm 
has extremely significant advantages in terms of structural error and 
time performance compared to the RCS algorithm. The PRCS algorithm 

Figure 8. For ANM<6>, the structural error and running time of the two algorithms on the high- 
dimensional network large sample data set.
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framework is the same as the RCS algorithm framework. PRCS uses 
conditional correlation and RCS directly measures correlation when 
measuring the independence of variables. From this we can see that 
there is a large amount of joint interference between variables in 
a multi-complex system. It is unreasonable to directly measure the 
correlation between variables without considering such interference pro-
blems, and defects will appear in specific tests. In terms of time perfor-
mance, the PRCS algorithm for calculating partial rank correlation 
coefficients should theoretically be higher than the RCS algorithm for 
calculating rank correlation coefficients, but in reality, as the number of 
samples increases, the RCS algorithm becomes slower and slower. After 
repeated reasoning and verification, we came to the conclusion: 
although in the constraint stage of the algorithm, the RCS algorithm 
has less time complexity and faster speed, but it does not have obvious 
advantages. In the search phase of the algorithm, because the RCS 
algorithm constructs a bad network skeleton, the search is stuck in the 
local optimum, and it takes a lot of time to get the final network 
diagram. In contrast to the PRCS algorithm, due to the use of condi-
tionally related partial rank correlation coefficients, the joint interfer-
ence of multivariate variables can be effectively eliminated, and a good 
network skeleton can be obtained, so that the causal network diagram 
can be obtained quickly in the search stage. With this, we once again 
proved the superiority of the causal structure learning algorithm based 
on partial rank correlation.

Next, we specifically analyze the structural error and execution time of 
the PRCS algorithm on the high-dimensional network. In terms of time, 
even if the data dimension increases, the time of the PRCS algorithm 
still increases linearly. In the above experiment, even if it processes 
one million data sets generated by the largest gene network, it takes 
only 400s to 500s. Compared with the huge data stream and high- 
dimensional features, the time performance is very impressive. In 
terms of the number of network structure errors, by calculating the 
total number of network structure edges of each network, we can get: 
136900 (alarm10), 313600 (hailfinder10) and 641601 (gene), correspond-
ing to the average number of errors for each network on a million data 
sets: 593.05 (alarm10), 1099.58 (hailfinder10) and 1067.37 (gene). We 
can find that relative to the huge data stream and high-dimensional 
features, the network structure error rate is less than 1%, indicating 
that the PRCS algorithm maintains a good accuracy rate and can effec-
tively solve the problem of causal discovery on high-dimensional large 
sample data sets.
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In summary, we can think that the PRCS algorithm is suitable for 
scenarios with arbitrary data distribution, arbitrary network structure, 
and high-dimensional large samples, and can achieve good results. The 
two-part experiment proves that the PRCS algorithm can better dig out 
the hidden causal relationship in the data set and restore the causal 
network diagram. It lays the experimental and theoretical basis for the 
application of the following causal structure learning algorithm based on 
partial rank correlation in the power plant measuring point fault predic-
tion system.

Experiment 3: Application of the Algorithm on Real Data Sets

Power Plant Measuring Point Data Set
The data used in the experiment are collected from the sensor data of the 
measuring points recorded in a power plant in 2020. The data recorded 520 
points between 1–1 and 2020-3-24. The equipment was collected every 30 sec-
onds, generating an average of 60,480 pieces of data per week. The physical 
significance of some measuring points is shown in Table 7.

Obviously, derived from the real production environment of power 
plant data with high dimension, the data quantity is large and frequent 
fluctuations of continuous characteristics of conventional methods to 
prevent equipment failure from the data, also can’t when the equipment 
failure by detecting data changes quickly determine the fault point, and 
after the failure is difficult to obtain effective mechanism of information 
to put an end to the same kind of the cause of the problem. Therefore, 
we will use the PRCS algorithm to build the causal network structure of 
the data, to find out the potential causality between the test points, so as 
to effectively predict the operation status of the test points, and provide 
a strong basis for fault detection and fault prevention in power plants.

Causal Fault Detection System Based on Partial Rank Correlation
Based on the above, we propose a fault detection system as shown in Figure 9. 
The system is divided into three stages. The first stage: It is used to realize the 
network structure learning based on the input power plant measuring point data 
set, and obtain possible candidate neighbor measuring points (TCN) for each 
measuring point data. At this stage, for each input measuring point data Xj, 
TCN Xj

� �
are initialized to empty. For each other measuring point Xj, TCN Xj

� �

is obtained by calculating DEP Xi;Xj
� �

(DEP Xi;Xj
� �

¼ p � value Xi;Xj
� �

, the 
calculation method of p-value is described in section 4.2). If DEP Xi;Xj

� �
is less 

than a certain significance detection threshold, Xi is added to TCN Xj
� �

, and 
based on symmetry, Xj is also added to TCN Xið Þ.
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The second stage: Perform a score search on the Bayesian network structure 
skeleton obtained in the first stage, and use a restricted greedy search method 
to obtain the final causal structure network diagram.

The third stage: feature selection based on the causal structure network 
diagram, and a reduced subset is obtained by selecting the measurement 
points directly related to the current measurement point prediction (the 
selection conditions of the measurement points are based on prior knowledge 
such as Markov blanket). The subset of measurement points is input into the 
deep learning model for training to obtain a model that meets the require-
ments, and the model is used to predict the trend of the current measurement 
point.

Experimental Results and Analysis
In the experiment, we can obtain the causal network structure diagram of 
each measuring point in the power plant. Due to the large number of 
measuring points, only part of the causal network structure diagram is 
shown here.

As shown in Figure 10, some measuring points have inter-causality or 
indirect causality, while isolated nodes in the figure (without arrows pointing 
or pointing out) indicate that data changes of the measuring points them-
selves are not affected by other measuring points, that is, there is no causal 
relationship. From the data, these isolated measuring points are constant 
values and do not change with time. Therefore, the causal network diagram 
is very consistent with the actual measuring point state according to the 
combined data.

Figure 9. Flow chart of causal fault detection system based on partial rank correlation.
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After obtaining the network diagram reflecting the causality relation-
ship between the measured points, we trained the prediction model of 
the target measured points to verify the accuracy and effectiveness of the 
causality analysis. The experiment uses the long – short – term memory 
network LSTM as a prediction model. The data from January 7 to 13 of 
20 years were selected as the training data, and the data from January 14 
was selected as the test data. In order to better illustrate the reliability of 
the causality diagram constructed by the PRCS algorithm and the super-
ior performance of the fault detection system based on this design, we 
use all the measuring points to predict the trend of the current measur-
ing points, and make a contrast experiment with the prediction of the 
current measuring points based on the relevant measuring points 
selected by the PRCS algorithm. The results are shown in the following 
figure

As can be seen from Figure 11, the original data of each measuring 
point in the power plant has a complex nonlinear mapping relationship, 
and the mechanism relationship is also particularly complex. If all mea-
suring points are used to predict the current trend of measuring points, 
the results will be somewhat different from the actual data. However, the 
fault detection system we designed is based on the causal network 

Figure 10. Part of the causality diagram of a measuring point in a power plant.
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diagram constructed by the PRCS algorithm. After feature selection, we 
find the directly related measurement points of each measurement point 
from the original data of the non-linear and irregular state. Then predict 
based on the selected subset of measurement points, and the obtained 
predicted trend basically fits the real trend data of the current measure-
ment point. The model prediction results of the above five measuring 
points (2,42,106,210,325) show that our PRCS algorithm can effectively 
remove the influence of irrelevant measuring points on observation mea-
suring points. This proves that the causal fault detection system based on 
partial rank correlation has good detection performance.

Figure 11. Experimental results of power plant fault measurement points prediction.
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By referring to the data and conducting common mechanism analysis, 
it can be concluded that the causality diagram of measuring points in 
Figure 10 is relatively consistent with the mechanism analysis. The 
causality relationship obtained based on the algorithm will help us to 
better predict and diagnose the fault model. Therefore, we can draw the 
conclusion that the causal discovery algorithm model based on partial 
rank correlation can effectively identify the nonlinear causal relationship 
of multivariate systems, remove the influence of redundant variables 
well, and have excellent learning ability of causal network structure, 
which is more competitive than similar algorithms. The fault detection 
system designed by this algorithm can not only monitor each measuring 
point in real time before the power plant failure, but also help the 
maintenance personnel to quickly determine the cause of the failure 
and repair the measuring point when the power plant failure occurs. 
And through the study of the corresponding causal network structure, 
we can reveal some hidden mechanisms that have not been discovered so 
far, so that the products with better performance are expected to achieve 
a wide range of application prospects.

Figure 11. Continued.
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Conclusion

The problem of causal discovery in the era of big data is a topic worthy 
of in-depth exploration. In this article, by studying the partial rank 
correlation coefficient and its application in additive noise models, we 
propose two novel causal structure learning algorithms based on partial 
rank correlation – PRCB and PRCS algorithms. First, we prove that the 
partial rank correlation coefficient can be used as a measure of inde-
pendence, and redefine the correlation between variables in 
a multivariate system from the perspective of partial rank correlation. 
Second, by applying partial rank correlation to Bayesian network struc-
ture learning, a PRCB algorithm based on threshold selection is pro-
posed. However, the optimal threshold of the PRCB algorithm requires 
prior knowledge and a large number of experiments to obtain. We 
further introduced statistical hypothesis testing methods to solve such 
defects, and proposed a PRCS algorithm based on hypothesis testing. 
Finally, with the help of theoretical analysis and a large number of 
experiments, it is verified that the proposed algorithm can not only 
effectively deal with the causal structure learning problem of linear 
Gaussian or nonlinear non-Gaussian data on low-dimensional networks, 
but also can efficiently deal with the analysis of large sample data sets 
on high-dimensional networks. The results show that the causal struc-
ture learning algorithm based on partial rank correlation not only has 
a reliable theoretical basis, but also has extremely high accuracy and 
efficient time performance, and it has a good algorithmic competitive-
ness. And the causal fault detection system designed based on this 
algorithm has proved its superior performance in experiments. It can 
build a Bayesian network diagram by mining data causality, thereby 
predicting the trend of fault measurement points, and assisting the 
fault prevention and fault maintenance of power plant equipment, and 
has a good application prospect.

In future research, we will further explore the application research of the 
algorithm in additive noise models, and the proposed algorithm is used to 
detect and isolate faults in sensor systems (Darvishi et al. 2020). Theoretically, 
the algorithm framework proposed in this paper has strong transferability, and 
can also be applied to financial stock trend prediction and medical image 
processing tasks.
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Appendices

Acronym

Related work comparison table

BESM Based on simultaneous equations model

CB CI test based methods and Bayesian methods
CS-NOD Constraint-based causal Discovery from Nonstationary/heterogeneous Data

HSIC Hilbert-Schmidt-Independence-Criterion
KCI Kernel-based-Conditional-Independence
KPC Kernel-PC

L1MB L1-regularized-Markov-Blanket
LSMI Least-Squares-Mutual-Information

MMHC Max-Min-Hill-Climbing
PCB/PCS Partial-Correlation-Based/Partial-Correlation-Statistic

PRCB/PRCS Partial-Rank-Correlation-Based/Partial-Rank-Correlation-Statistics
RCS Rank-Correlation-Based

Multiple Linear Causal Discovery Algorithm Multivariate Nonlinear Causal Discovery Algorithm

L1MB Algorithm HSIC conditional independence test
TC Algorithm MAP (Maximum A Posteriori)
Two-Phase Algorithm KPC Algorithm

PCB/PCS Algorithm CS-NOD Algorithm

PRCB/PRCS Algorithm
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Statistical Distribution Properties of Partial Rank Correlation Coefficients

Theorem 4.1: For the data generated by the additive noise model, the 
disturbances conform to an arbitrary distribution and are not correlated 
with each other. V is the variable set, m is the number of samples, n is 
the number of variables, and m is large enough. "Xi, Xj 2 V,, PNðXjÞ ¼

; partial rank coefficient ρr Xi;XjjZ
� �

, abbreviated as ρij, regardless of 
whether the data conforms to the multivariate normal distribution, the 
distribution of the statistic T approximately obeys the student 
t distribution with m-n degrees of freedom. 

T ¼
ρij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ρ2
ij

� �
= m � nð Þ

r

Proof: First of all, the following theorems 1, 2, 3 can be obtained by 
looking up the information. For the data generated by the additive noise 
model, if the disturbance conforms to the normal distribution, the data set 
obeys the multivariate normal distribution. "Xi, Xj 2 V, Z � Vn Xi;Xj

� �
, 

the order of the partial rank correlation coefficient ρij is n-2, then applying 
theorem 1 and theorem 3, we can get that T obeys the student 
t distribution with m-n degrees of freedom. For the data generated by 
the additive noise model, if the disturbance does not conform to the 
normal distribution, the data set does not obey the multivariate normal 
distribution. According to theorem 2, even if the data is non-normal, as 
long as the sample is not very small, the statistic t1 approximately obeys 
the student t distribution with m-2 degrees of freedom. According to 
theorem 3, the sampling distribution of partial rank correlation coefficient 
is the same as that of rank correlation coefficient, so it can be obtained 
that T obeys the student t distribution with m-n degrees of freedom, and 
the theorem is proved.

Theorem 1: If the variable has a bivariate normal distribution, and rij repre-
sents the Spearman rank correlation coefficient between the variables Xi and 
Xj, then the t1 distribution of the rank correlation coefficient statistics obeys 
the student t distribution with m-2 degrees of freedom, m is the sample size, 
which is 

t1 ¼
rij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
ij

� �
= m � 2ð Þ

r
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Theorem 2: Even if the data is non-normal, theorem 1 is approximately true 
when the number of samples is not very small.

Theorem 3: Let ρij:k denote the partial rank correlation coefficient of order 
k. Under the non-zero hypothesis, the sampling distribution of ρij:k is the same 
as the distribution of rij, and the statistic t2 obeys the student t distribution 
with m-2-k degrees of freedom. 

t2 ¼
ρij:k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ρ2
ij:k

� �
= m � k � 2ð Þ

r
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