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ABSTRACT 
 

Aims: The permeability coefficient, or Kp, is an important descriptor for assessing dermal 
absorption of medicaments utilized for clinical treatment of various dermal accessible 
diseases. Determination of Kp by multiple descriptors by artificial neural network (ANN) 
and multiple regression is compared.  
Study Design: The calculation of Kp utilizing multiple descriptors, and comparison of 
ANN and multiple regression is achieved. 
Place and Duration of Study: Durham Science Center, Chemistry Department of the 
University of Nebraska, between April 2014 and July 2014. 
Methodology: The calculation of Kp by previous methodologies is accomplished for a 
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broad spectrum of medicinal and chemical compounds. The values Kp thus acquired are 
then compared to those obtained by ANN training and multiple regression analysis.  
Various other pharmaceutical based descriptors are then applied to ascertain the benefit 
of Kp determination by those properties.  
Results: Training and determination of Kp by ANN showed that Log Ko/w and molecular 
weight (MW) utilized by conventional means is effective.  However, ANN demonstrated 
the Kp determination by applying properties of Log Ko/w, MW, polar surface area, number 
of atoms, rotatable bonds, molecular volume, and atoms responsible for hydrogen bond 
donor and acceptors, are also effective and offer significant advantages. These 
advantages include the potential of encompassing many more molecular constitutional 
descriptors and molecular properties. Multiple regression showed clearly that the 
application of more descriptors for Kp determination increases the coefficient of 
determination (R

2
). Increased R

2
 shows an improved fit of the raw data to the model 

improved prediction.  
Conclusion: Determination of Kp by applying various descriptors in addition to Log Ko/w 
and MW increases the model fit to the raw data.  ANN prediction of Kp was more effective 
when using additional descriptors. Prediction of Kp by multiple regression was useful, and 
utilizing descriptors with Log Ko/w and MW improved the model fit to the raw data. 
 

 
Keywords: Dermal permeability coefficient; descriptors; dermal; skin sbsorption. 
 

ABBREVIATIONS 
 
Term: Kp, dermal permeability coefficient; PSA, polar surface area; nON, number of oxygen 
& nitrogen atoms; nrotb, number of rotatable bonds; MW, molecular weight; nOHNH, number 
of hydroxyl groups & amine groups; MV, molecular volume; microns, µ; um, micrometer; MR, 
multiple regression; ANN, artificial neural network; Log Ko/w, partition coefficient between 1-
octanol and water layers. 
 

1. INTRODUCTION 
 
Transdermal drug delivery has made many important contributions to medical practice. The 
therapeutic benefits of administering drugs through the skin has been recognized for many 
years. Key to successful use of topical medicaments is understanding the movement of 
drugs through the dermal barriers. The structure of the skin is highly organized, 
heterogeneous, and multilayered [1]. Summation of the various layers that comprise the 
epidermis and dermis, the appendages, and underlying microvasculature comprise a living 
envelope that envelopes the body [1]. The permeability coefficient Kp (cm/hour), is a 
principal parameter in estimating dermal absorption of drugs. The effective use of Kp values 
in assessing compound crossing of the dermal layers necessitates the understanding of 
processes involved with drug transport across the skin.  
 
The skin is broadly considered to be composed of two layers [1]: 1) The epidermis, which is 
a nonvascular layer of approximately 100 µm thick; 2) The highly vascularized dermis of 
about 500 um to 3,000 µm thick. The layer thought to provide the major barrier to the 
absorption into the circulation of most substances deposited on the skin surface is the 
outermost layer of the epidermis, which is the stratum corneum is about 10-40 µm thick.  
Often measured in fluxes, or mass transport of molecules moving through a cross-sectional 
area per time, the diffusional flux is effectively described by Fick’s first law (postulates that 
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flux goes from high concentration to low concentration) [2,3]. Fick's second law predicts how 
diffusion causes the concentration to change with time. Both laws contain the diffusion 
coefficient (D), which being often difficult to assess, the second law can be abbreviated by 
introducing the permeability coefficient (Kp) [2,3]. The permeability coefficient makes easier 
the evaluation of topical drug usage and effectiveness [4].   
 
Advantages of transdermal drug delivery include [2-6]: 1) Avoids degradation that can occur 
in the stomach environment; 2) Avoids enzyme conversion to inactive molecules in many 
cases; 3) Provides steady plasma levels; 4) Transdermal delivery systems are easy to use 
and noninvasive; 5) Increases patient compliance; 6) Deceases medical wastage and 
reduces cost. The most commonly utilized descriptor to represent the diffusion of 
compounds is the permeability coefficient (Kp) [7]. Earlier studies have shown that 
transdermal administration of drugs can also increase the therapeutic index with a 
simultaneous decrease in side effects [8].   
 
The skin is considered the largest organ in the body and it protects against the influx of 
toxins, water, and is generally impermeable to the penetration of foreign molecules [9]. The 
often times observed variations among individuals in the rate at which drugs are absorbed 
through the skin is due to such factors such as thickness of the stratum corneum, skin 
hydration, underlying skin diseases/injuries, ethnic differences, and body temperature [9]. 
Model prediction of Kp by application of quantitative structure activity relationships are in fair 
agreement with experimental data for those compounds that are applied in a water-based 
vehicle when the integrity of the skin was not compromised [10].  
 
Almost all the skin's barrier properties is due to the superficial layers of the epidermis, the 
stratum corneum [11,12]. It is usually viewed as unlikely that noticeable absorption occurs 
through sweat pores and hair follicles [11]. However, the major modes of diffusion include 
intercellular, transcellular, and transappendageal [1,11]. A local or even systemic medicinal 
effects can be achieved by administration of topical drugs [13].   
 
Among the factors affecting the dermal penetration by compounds include the location of the 
compound on the body, age of individual, extent of skin covered by the compound, and 
condition of the skin [1,2]. The rate of penetration into the skin can be quantitatively 
assessed by use of the permeability coefficient (Kp) [1].  Previous studies have determined a 
highly effective mathematical model for Kp determination, by applying the compound’s 
molecular weight (MW) and octanol-water partition coefficient Log Ko/w (Log [1-octanol 
phase/aqueous phase]) [14-17]: 

 
Log Kp = -2.72 + 0.71(Log Ko/w) -   0.0061(MW)                                     (1) 

 
Some studies have shown that the descriptors important for influencing dermal penetration 
by a compound are consistently hydrophobicity (represented by Log Ko/w), molecular size 
(represented by molecular weight or molecular volume), and hydrogen bonding capability 
(represented by H-bond donors –NHn and –OH) [14]. In general, very large molecules 
penetrate the skin slower than small molecules, hence the use of molecular weight to model 
permeability [15]. Other studies have shown that Kp prediction based on molecular volume is 
just as effective as values based on molecular weight. The use of equation (1) has been 
shown to have good predictive capability, producing effective results [1,17].  
 
Therefore, the study and consideration of topical medicaments is advantageous for clinical 
treatment of numerous disease conditions. The ease, versatility, and accuracy of applying 
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the permeability coefficient (Kp) will remain important. Exploration of molecular properties 
that can be applied for characterization and calculation of (Kp) will be beneficial for 
development and understanding of topical pharmaceuticals.  
 

2. METHODOLOGY  
 
2.1 Molecular Modeling and Physicochemical Properties 
 
The molecular structures of all compounds were visualized by utilizing ACD/Chem Sketch 
version 12.01 (copyright © 1994-2009, Advanced Chemistry Development, Inc. 8 King Street 
East, Suite 107, Toronto, Ontario, Canada M5C 1B5) and Chem Windows 3 version 3.0.2 
(Softshell International, 715 Horizon Dr. Ste 390, Grand Junction C0 81506 USA). Various 
properties/descriptors were determined by Molinspiration Cheminformatics (Nova Ulica, SK-
900 26 Slovensky Grob, Slovak Republic), Osiris Property Explorer (Actelion 
Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland), and Molsoft 
property window (copyright Molsoft L.L.C., 11199 Sorrento Valley Road, S209 San Diego CA 
92121 USA).   
 
Various descriptors required for the study were determined by Molinspiration 
Cheminformatics and Osiris Property Explorer. Values of Kp (permeability coefficient) were 
determined by DERWIN v1.42 (copyright © 2000 U.S. Environmental Protection Agency, 
Washington D.C. USA). Diffusion coefficient (D) was determined by Physiology Web 
Diffusion time calculator, last accessed June 15 
http://www.physiologyweb.com/calculators/diffusion_time_calculator.html.  
 

2.2 Artificial Neural Network (ANN) Methodology and Software 
 
Artificial neural network analysis was accomplished by TIBERIUS Data Mining version 
7.0.7a (copyright © Tiberius Data Mining, Melbourne Australia) and back propagation ANN 
Tiberius XL for EXCEL (by Phil Brierley, Melbourne Australia).   
 

2.3 Multiple Regression Analysis  
 
Multiple regression analysis was carried out by utilizing GraphPad Instat version 3.06 
(copyright © 1992-2003 GraphPad Software, GraphPad Software, Inc. 7825 Fay Avenue, 
Suite 230, La Jolla, CA 92037 USA) and Smith’s Statistical Package version 2.80 (copyright 
© 1995-2005 by Gary Smith, Pomona College, Claremont, California 91711). ANOSIM 
(analysis of similarity) and cluster analysis was performed by PAST version 2.15 (copyright 
Hammer and Harper 1999-2012, University of Oslo, Sars gate1, 0562 Oslo, Norway). 
 

2.4 Statistical Analysis 
 
Additional statistical analysis was accomplished for numerical outliers by Grubbs' test (or 
ESD, extreme studentized deviate) using GraphPad calculators of stats, last seen July 2014 
at http://www.graphpad.com/quickcalcs/. Determination of F and T tests, Mann-Whitney, 
Kolmogorov-Smirnov, Kruskal-Wallis, Wilcoxon, and paired tests was accomplished using 
PAST version 2.15. Summary statistics and correlation was performed by EXCEL (Microsoft 
Office Professional Plus 2013) and by Smith’s Statistical Package. Coefficient of 
determination, R

2
, is calculated using GraphPad Instat.  
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3. RESULTS AND DISCUSSION 
 
3.1 Skin Absorption, Topical Drugs, Dermal Permeability Coefficient 
 
The major routes of compound diffusion passage through dermal layers is described in            
(Fig. 1). Penetration by intercellular and transcellular process is far more predominant than 
by transappendageal [1]. Transappendageal is penetration by way of a skin appendage (i.e. 
hair follicles, sebaceous glands, and/or sweat glands); however, these appear on 1% of the 
human skin surface and their capacity as transport channels for the passage of compounds 
from the external environment to the capillary bed is most often negligible [1]. 
 

 
 

Fig. 1. Major routes of diffusion through the skin. Because appendages occupy less 
than 1% of the skin surface for humans, their role as transport channels for the 

passage of substances from the external environment to the capillary bed is  
generally negligible 

 
Molecular descriptors are now playing a key role in scientific research and much work has 
been accomplished to establish quantitative relationships between structures and properties, 
biological activities and other experimental properties [18]. For this study the molecular 
constitutional descriptors [18] of molecular weight, number of oxygen & nitrogen atoms 
(these are hydrogen bond acceptors or nON), number of rotational bonds (nrotb), polar 
surface area (PSA), number of hydrogen bond donors (these are -NHn, -OH or nNHOH), etc. 
are determined for a very broad category of medicinal compounds (see Table 1). In addition, 
molecular properties of Log Ko/w and topological polar surface area are included in the 
characterization of this population of medicaments for purpose of demonstrating the efficacy 
of Kp computation by artificial neural network analysis and multiple regression. 
 
To study the efficacy of predicting Kp values utilizing other descriptors with or without Log 
Ko/w and molecular weight (MW), a broad range of drug categories is selected (see Table 1). 
Various categories included in (Table 1) are: 1) antimicrobial (drugs 1,2,3,4,5); 2) 
anticholinergic (drug 6); 3) antiemetic (drug 7); 4) psychostimulant (drug 8); 5) anesthetic 
(drug 9); 6) steroid hormone (drug 10); 7) stimulant (drug 11); 8) alkaloid drug (drug 12); 9) 
NO enhancer (drug 13); 10) hormone (drug 14); 11) adrenergic agonist (drug 15); 12) opoid 
agonist (drug 16); 13) corticosteroid (drugs 17, 18, 19); 14) analgesic (drug 20). Altogether 
(Table 1) is a highly diversified composite of drug categories, this in addition to their 12 
descriptors of pharmacological significance. 
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Interestingly, this population of 20 diverse clinical drugs have properties that cause each 
drug to be in very high positive correlation to all others (Pearson r > 0.8000). That is, the 12 
descriptors for each drug is very highly correlated to all others. In addition, the set of 12 
descriptors for each drug (not by individual descriptors), the Kruskal-Wallis test indicates the 
20 drugs have similar medians (P =1.0). Descriptor properties having a positive skewness 
(e.g. the mean and the median are both greater than the mode) are Kp, Log Kp, PSA, MW, 
nON, nOHNH, nrotb, molecular volume (MV), Rule of 5, and diffusion coefficient. Only Log 
Ko/w has a negative skewness (the mean and the median are both less than the mode).  
 
ANOSIM (analysis of similarity) outcome of R = 1.005 indicated that significant differences 
exist among the drug samples of (Table 1) (P = 1.0) based on numerical values of these 
properties. Cluster analysis shows additional information of this group of diverse drugs (see 
Fig. 2). Using pair-group average (clusters are joined by average distance between all 
membranes in group) and Euclidean distance (the ordinary distance between two points 
measured with a ruler). 
 

 
 
Fig. 2. Cluster analysis according to highest level of similarity. Drugs 16, 17, 18, 19 are 
most similar (joined at node A); drugs 7, 12, 10, 14 are most similar (joined at node B); 
drugs 3, 1, 5, 6, 20 are most similar (joined at node C); drugs 8, 9, 15 are most similar 
(joined at node D); and drugs 4, 11, 2 most similar (joined at node E); and 13 appears 

distinct (joined at node F) 
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The raw number of six clusters of 20 drugs total in the horizontal dendrogram (see Fig. 2) 
suggests significant differences within the multivariate table of molecular properties 
presented in (Table 1).  
 

3.2 Prediction of Dermal Permeability Constant by Artificial Neural Network 
(ANN) 

 
Artificial neural network modeling applying artificial intelligence are referred to as artificial 
neural networks (ANN) that for this study consists of three layers (see Fig. 3). Patterns (data) 
are presented to the network by means of the input layer, followed by communication to one 
or more hidden layers [19]. For this study the three layers can be represented as the input 
layer, hidden layers, then output layer where outcomes are presented. The ANN system 
applied in this study (Tiberius) is a feed forward multilayer perceptrion trained with a back 
propagation algorithm. This system is a supervised learning approach, where, in supervised 
learning a set of examples is provided and the goal is to find a function in the allowed class 
of functions that matches these examples. The result is a function to infer the mapping that 
is implied by the data [20]. Numerical analysis by ANN is a type of data mining technique 
and has been utilized for pharmacokinetic and pharmacodynamics modeling and analysis 
[21-24], as well as quantitative structure activity relationships [25]. ANN does not require 
rigid experimental designs and can complete mapping with historical or incomplete data by 
gathering information through experience from patterns in the data [25,26] 
 

 
 
Fig. 3. Artificial neural networks are commonly organized in layers that are made up of 

interconnected nodes which contain an activation function. Patterns (data) are 
presented to the network by means of the input layer, followed by communication to 

one or more hidden layers. Within the hidden layers, the actual processing is done by 
utilizing a system of weighted connections. The hidden layers then connect to an 

output layer where the answer is output 
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Table 1. Properties of drugs 
 

Drug Kp 
(cm/hour) 

Log Kp Log 
KO/W 

Polar 
surface 
area (A

2
) 

Natoms MW nON nOHNH Rotatable 
bonds 

Molecular 
volume 
(angstroms

3
) 

Rule 
of 5 

Diffusion 
coefficient 
(cm

2
/second) 

1  Ofloxacin (antimicrobial) 0.00000629 -5.201 -0.262 75.01 26 361.37 7 1 2 311.146 0 5.495E-15 
2 Mafenide (antimicrobial) 0.0000564 -4.287 -0.184 86.19 12 186.24 4 4 2 154.85 0 4.418E-13 
3 Gatifloxacin (antimicrobial) 0.0000221 -4.656 -0.036 83.8 27 375.4 7 2 4 327.59 0 6.783E-14 
4 Chloroxylenol (antimicrobial) 0.0443 -1.354 2.889 20.228 10 156.61 1 1 0 138.72 0 2.726E-07 
5 Ampicillin (antimicrobial) 0.000128 -3.893 -0.873 112.73 24 349.41 7 4 4 298.87 0 2.276E-12 
6 Oxybutynin (anticholinergic) 0.00017 -3.77 4.862 49.771 26 357.49 4 1 8 361.79 0 4.014E-12 
7 Granisetron (antiemetic) 0.0032 -2.494 2.428 50.162 23 312.42 5 1 2 299.35 0 1.422E-09 
8 Methylphenidate (psychostimulant) 0.00648 -2.188 2.283 38.332 17 233.31 3 1 4 231 0 5.865E-09 
9 Lidocaine (anesthetic) 0.00383 -2.417 2.13 32.336 17 234.34 3 1 5 244.86 0 2.037E-09 
10 Testosterone (steroid hormone) 0.00755 -0.295 3.245 37.3 21 288.43 2 1 0 291.54 0 7.917E-09 
11 Nicotine (stimulant) 0.00132 -2.88 1.09 16.13 12 162.24 2 0 1 165.62 0 2.420E-10 
12 Scopolamiine (alkaloid drug) 0.000133 -3.876 1.046 62.3 22 303.36 5 1 5 277.21 0 2.457E-12 
13 Nitroglycerin (no enhancer) 0.00111 -2.954 2.188 165.17 15 227.09 12 0 8 160.02 1 1.711E-10 
14 Estradiol (hormone) 0.0292 -1.535 3.43 40.46 20 272.39 2 2 0 268.74 0 1.184E-07 
15 Clonidine (adrenergic agonist) 0.00155 -2.81 2.612 36.42 14 230.1 3 2 2 181.94 0 3.337E-10 
16 Buprenorphine (opioid agonist) 0.00919 -2.037 4.872 62.162 34 467.65 5 2 5 449.63 0 1.173E-08 
17 Clobetasol propionate 
(corticosteroid) 

0.000825 -3.084 3.678 80.675 32 467 5 1 5 416.9 0 9.453E-11 

18 Betamethasone dipropionate 
(corticosteroid) 

0.00123 -2.91 4.185 106.98 36 504.6 7 1 8 464.7 1 2.101E-10 

19 Halobetasol (corticosteroid) 0.000162 -3.791 2.628 74.598 29 428.9 4 2 2 368.55 0 3.645E-12 
20 Fentanil (analgesic) 0.0127 -1.896 3.7393 23.547 25 336.48 3 0 6 340.163 0 2.240E-08 
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ANN is applied in this study to determine the efficacy of obtaining Kp numerical values 
consistent with the established and recognized approach utilizing equation (1) [14-17].  
Therefore, ANN will be applied to analyze the following models of descriptors: (A) 
Determination of Log Kp using Log Ko/w and MW, only; (B) Determination of Log Kp by 
utilizing Log Ko/w, MW, PSA, natoms, nON, nrotb, nOHNH, and molecular volume 
descriptors; (C) Determination of Kp by utilizing PSA, natoms, nON, nrotb, nOHNH, and 
molecular volume descriptors; and (D) Determination of Kp  utilizing Log Ko/w, MW, PSA, 
natoms, nON, nrotb, nOHNH, and  molecular volume descriptors. 
 
Deming regression is an important statistical method that should be used when comparing a 
known method and a test method [27-29]. Deming regression method, allows the 
comparison of two measurement methodologies (techniques for measuring Kp or Log Kp) 
which supposes that measurement error is present in both the X (known) and Y (test 
method). 
 
A Deming regression line with a slope of one and an intercept of zero would indicate that the 
two methodologies give similar results throughout the entire range of measurements [27-29]. 
 
For rapid and efficient evaluation and visualization of outcome by ANN application for 
predicting Log Kp and Kp from multiple descriptor properties presented in (Table 1), the 
Deming regression plots are place adjacent to each other for all models (A), (B), (C), and (D) 
(see description above), shown in (Fig. 4). For Deming regression the identity line, where 
y=x having slope of 1.000, is not shown.  The Pearson r correlation for the linear regression 
lines within the four plots are as follows (see Fig. 4): (A) r = 0.8147; (B) r = 0.8168; (C) r = 
0.5510; and (D) r = 0.6972. Clearly, by values of r, for Deming regression models (A) and (B) 
in comparing of the actual Log Kp values (x-axis) to ANN predicted values (y-axis), have a 
very strong positive correlation to the ANN predicted values for Log Kp.  Remembering that 
model (A) is the standard Log Kp relationship equation (1) using only descriptors Log Ko/w 
and MW, it appears that ANN can predict Log Kp at a similar accuracy in model (B) with 
additional descriptors PSA, natoms, nON, nrotb, nOHNH, and molecular volume, along with 
Log Ko/w and MW. In model (B) the investigator can incorporate additional properties that 
reflect important pharmaceutical characteristics. For example, the number of oxygen & 
nitrogen atoms (or nON) as well as the number of amine and hydroxyl groups (or nNHOH) 
are indicators of hydrogen bond acceptor and donor features of a lead drug which are used 
to evaluate drug-likeness. The ability to apply more property descriptors than only MW and 
Log Ko/w should allow more extensive evaluation of a new lead compound as well as 
incorporate increased level of compound property descriptors that represent the molecular 
scaffold. The coefficient of determination (R

2
) for model (A) and (B) indicates that 66.37% 

and 66.72% of the variance is represented by the model, respectively.   
 
For model (A) statistical analysis of actual Log Kp to predicted Log Kp showed no outliers by 
Grubb’s test and the following: 1) By t-test and Wilcoxon test the actual and predicted Log 
Kp values have equal means and median (P = .55 and P = .31, respectively); 2) By Mann-
Whitney and Kolmogorov-Smirnov test the actual and predicted Log Kp values have equal 
medians and equal distribution (P = .54 and P = .27, respectively).  
 
For model (B) statistical analysis of actual Log Kp to predicted Log Kp showed no outliers by 
Grubb’s test and the following: 1) By t-test and Wilcoxon test the actual and predicted Log 
Kp values have equal means and median (P = .98 and P = .74, respectively); 2) By Kruskal-
Wallis and Kolmogorov-Smirnov test the actual and predicted Log Kp values have equal 
medians and equal distribution (P = .91 and P = .97, respectively). 
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Fig. 4. Deming regression analysis and comparison of prediction of Log Kp and Kp by 
artificial neural network. Plot A is comparison of Log Kp values of actual values (x-

axis) to predicted values (y-axis) utilizing Log Kow and MW only. Plot B is comparison 
of Log Kp values of actual values (x-axis) to predicted values (y-axis) utilizing Log 

Ko/w, MW, PSA, natoms, nON, nrotb, nOHNH, and molecular volume (MV) descriptors. 
Plot C is comparison of raw numerical Kp values predicted by ANN showing actual 

values (x-axis) to predicted values (y-axis) utilizing PSA, natoms, nON, nrotb, nOHNH, 
and molecular volume (MV) descriptors. Plot D is comparison of raw numerical Kp 

values predicted by ANN, showing actual values (x-axis) to predicted values (y-axis) 
utilizing Log Ko/w, MW, PSA, natoms, nON, nrotb, nOHNH, and molecular volume 

descriptors 
 
Clearly, for Deming regression models (C) and (D) seeing the correlation r values for 
comparing of the actual Kp values (x-axis) to the ANN predicted values (y-axis), have a 
strong positive relationship to the ANN predicted values for Kp. Remembering that model (C) 
is the prediction of Kp using PSA, natoms, nON, nrotb, nOHNH, and molecular volume 
descriptors. Model (D) is the comparison of actual Kp values (x-axis) to ANN predicted Kp 
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values (y-axis) utilizing Log Ko/w, MW, PSA, natoms, nON, nrotb, nOHNH, and molecular 
volume descriptors. It appears that ANN has substantial difficulty of predicting the raw 
numerical values of Kp for both models. The slope value of 1.000 for the identity line (where 
y = x) compared to slope values of 1.429 (model (C)) and 0.5245 (model (D)), shows 
substantial deviation from the highest association of y = x. The R

2
 for these models show 

30.36% and 48.61% representation of the variance for (C) and (D), respectively. Clearly, 
ANN is not effective for predicting raw Kp numerical values even from increased number of 
property descriptors.  
 
For model (C) statistical analysis of actual Kp to predicted  Kp by by ANN showed one outlier 
by Grubb’s test  (for drug 4) and the following: 1) By t-test and Mann-Whitney test the actual 
and predicted Kp values have equal means but not equal medians (P = .56 and P = .01, 
respectively); 2) By Kruskal-Wallis and Kolmogorov-Smirnov test the actual and predicted Kp 
values do not have equal medians and do not have equal distribution (P = .01 and P = .003, 
respectively). 
 
For model (D) statistical analysis of actual Kp to predicted  Kp by by ANN showed one outlier 
by Grubb’s test (for drug 4) and the following: 1) By t-test and Mann-Whitney test the actual 
and predicted Kp values have equal means but not equal medians (P = .61 and P = .03, 
respectively); 2) By Kruskal-Wallis and Kolmogorov-Smirnov test the actual and predicted Kp 
values do not have equal medians and do not have equal distribution (P = .01 and P = .003, 
respectively). 
 
Much of the statistical analysis is suggested in (Table 2) showing summary statistics of Log 
Kp and Kp, actual and predicted by ANN. Note for models (A) and (B) the mean values are 
extremely close, however, for models (C) and (D) the mean values are distant from each 
other. Also, the medians for values of Log Kp and Kp for models (A) and (B) are extremely 
close, however, this is not the case in models (C) and (D).   
 
In short, ANN is able to efficiently predict Log Kp in model (A) utilizing only the Log Ko/w and 
MW descriptors  (same as equation (1)), but also in the model (B) utilizing Log Ko/w, MW, 
PSA, natoms, nON, nrotb, nOHNH, and molecular volume descriptors. However, ANN failed 
to adequately predict Kp numerical values in model (C) using descriptors PSA, natoms, 
nON, nrotb, nOHNH, and molecular volume; and model (D) utilizing Log Ko/w, MW, PSA, 
natoms, nON, nrotb, nOHNH, and molecular volume descriptors. 
 

3.3 Prediction of Dermal Permeability Constant Utilizing Multiple Regression 
 
There are two general applications for multiple regression (MR): prediction and explanation 
[27,28,30]. Using MR for explanatory purposes is exploring relationships among multiple 
variables of a model to elucidate a new understanding of a population. When one uses MR 
for prediction it is using a model to create a regression equation that would optimally predict 
a particular event within the population [30]. Regression equations obtained for cases (A), 
(B), (C), and (D) (see Fig. 4) will now be presented. 
 
For prediction of Log Kp for 20 drug types (see Table 1) utilizing only Log Ko/w and MW for 
case (A), shown in (Fig. 4). The outcome produced the following regression function: 
 

Log Kp  =  0.01597    +   0.003456 (Log Ko/w)    -    0.00005768 (MW)        (2)  
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Table 2. Comparison of actual values of log Kp and Kp to predicted outcome using tiberius ANN 
 

 A B C D 

Tiberius ANN 
prediction of 

Log Kp by Log KO/W 

AND MW 
 

Tiberius ANN 
prediction of 
Log Kp by all 

properties with Log 
KO/W  and MW 

Tiberius ANN 
prediction of Kp 
by all properties 

(NO Log kO/W, NO MW) 

Tiberius ANN 
prediction of Kp 
by all properties 

with Log kO/W and MW 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Log Kp Log Kp Log Kp Log Kp Kp Kp Kp Kp 

Mean -2.916 -2.821 -2.916 -2.919 0.006158 0.007407 0.0074077 0.007109 
Standard error 0.2691 0.2274 0.2691 0.2133 0.002530 0.001168 0.001168 0.001904 
Median -2.895 -2.372 -2.895 -2.775 0.001275 0.006215 0.006215 0.003221 
Standard deviation 1.203 1.016 1.203 0.9540 0.011318 0.005224 0.005224 0.008515 
Sample variance 1.448 1.034 1.448 0.9101 0.0001281 2.729E-05 2.729E-05 7.250E-05 
Kurtosis -0.0401 -0.8858 -0.0401 -1.059 7.0820 -1.338 -1.3384 2.771 
Skewness 0.1314 -0.9039 0.1314 -0.4989 2.6548 0.45695 0.45695 2.0841 
Range 4.906 2.693 4.906 2.704 0.04429 0.01410 0.014106 0.02497 
Minimum -5.201 -4.605 -5.201 -4.488 0.00000629 0.001418 0.001418 0.003205 
Maximum -0.295 -1.912 -0.295 -1.784 0.0443 0.01552 0.01552 0.02817 
Sum -58.38 -56.43 -58.32 -58.39 0.12316 0.14815 0.1482 0.14217 
Count 20 20 20 20 20 20 20 20 
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The computation package determining this equation showed that the constant as well as 
both variable were significant and contribute significantly to the model. Both the Log Ko/w 
and MW data are normally distributed. An R

2
 of 0.3057 is reported, indicating that 30.57% of 

variation in Log Kp results can be explained by the regression. The coefficient of 
determination or R

2
, indicates how well data fit a statistical model and is a statistic used in 

statistical models whose main purpose is either the prediction of future outcomes or the 
testing of hypotheses [27,28]. The R

2
 value provides a measure of how well observed 

outcomes are replicated by the model [27,28]. This is a low value for R
2
, to be compared to 

the following approaches utilizing additional/different descriptors. 
 
For prediction of Log Kp for 20 drug types utilizing descriptors for the case (B), shown in 
(Fig. 4) (descriptors: PSA, natoms, nON, nOHNH, nrotb, Log Ko/w, MW, and molecular 
volume (MV)). The outcome produced the following regression function: 
 

Log Kp = 0.02872 + 0.0001658(PSA) + 0.01557(natoms) – 0.006442(nON) + 0.002614(nOHNH) 
+0.0001645 (nrotb) – 0.0008177(MV) + 0.006574 (Log Ko/w) – 0.0004227(MW)             (3) 

 
The computation package determining this equation showed that only the constant as well 
as Log Ko/w were significant and contribute significantly to the model. Numbers for all 
descriptors, except Log Kp and nOHNH were normally distributed. An R

2
 of 0.5875 is 

reported, indicating that 58.75% of variation in Log Kp results can be explained by the 
regression. This is a much higher value R

2
 than found for case (A) above. 

 
For prediction of Kp for 20 drug types utilizing descriptors for the case (C), shown in (Fig. 4) 
(descriptors: PSA, natoms, nON, nOHNH, nrotb, and molecular volume (MV)). The outcome 
produced the following regression function: 

 
Kp = 0.02474 + 0.0001562(PSA) + 0.0008644 (natoms) – 0.003955 (nON) – 0.002962 

(nOHNH) –0.0009285 (nrotb) – 0.00007585 (MV)               (4) 
 
The computation package determining this equation showed that none of the descriptors or 
constant contribute significantly to the model. Numbers for all descriptors, except Kp and 
nOHNH were normally distributed. An R

2
 of 0.3346 is reported, indicating that 33.46% of 

variation in Kp results can be explained by the regression. This is a low value for R
2
, to be 

compared to the other approaches utilizing additional/different descriptors. 
 
For prediction of Kp for 20 drug types utilizing descriptors for the case (D), shown in (Fig. 4) 
(descriptors: PSA, natoms, nON, nOHNH, nrotb, MV, Log Ko/w, and MW). The outcome 
produced the following regression function: 
 
Kp = 0.02872 + 0.0001658(PSA) + 0.01557(natoms) – 0.006442(nON) + 0.002614(nOHNH) 

+0.0001646(nrotb) – 0.0008177(MV) + 0.006574(Log Ko/w) – 0.0004227(MW)  (5) 
 
The computation package determining this equation showed that the constant and Log Ko/w 
contribute significantly to the model. Numbers for all descriptors, except Kp and nOHNH 
were normally distributed. An R

2
 of 0.5875 is reported, indicating that 58.75% of variation in 

Kp results can be explained by the regression. This is a much higher value of R
2
 than found 

in case (C) above. 
 
Clearly, the use of multiple regression produces effective results in cases of highest R

2
.  

Essentially, multiple regression prediction for Log Kp is most effective when utilizing 
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descriptors for case (B), shown in (Fig. 4) (descriptors: PSA, natoms, nON, nOHNH, nrotb, 
Log Ko/w, MW, and MV). Than the R

2
 becomes 0.5875 and represents 58.75% of variance 

found within the model. The model of case (A) (use of descriptors Log Ko/w and MW) failed 
to produce a substantial R

2
. 

 
Essentially, multiple regression prediction for Kp is most effective when utilizing descriptors 
for case (D), shown in (Fig. 4) (descriptors: PSA, natoms, nON, nOHNH, nrotb, MV, Log 
Ko/w, and MW). Than the R

2
 becomes 0.5875 and representing 58.75% of variance found 

within the model. The model of case (C) (use of descriptors: PSA, natoms, nON, nOHNH, 
nrotb, and MV) failed to produce a substantial R

2
. 

 
Increasing the number of property descriptors to construct the regression model tends to 
improve the R

2
 and increase the extent that the variance of the model is represented by the 

regression equation. The increased number of descriptors allows the investigator to increase 
the level of pharmacological important properties into a study and prediction of the 
permeability coefficient (Kp), however, the R

2
 remains difficult to produce to values greater 

than 0.8000. 
 

4. CONCLUSION 
 
In summation, 20 drugs that cover a broad spectrum of 12 categories of drugs, had 
numerous properties determined and analyzed by cluster analysis to show a total of five 
main clusters of similarity. Applying a forward feeding back propagation artificial neural 
network analysis for determination of Log Kp and Kp showed mixed results. 
 
Outcome of ANN analysis for Log Kp and Kp determination: 
 

1.  ANN analysis was able to effectively predict Log Kp in the case utilizing Log Kow 
and MW. 

2.  ANN analysis was able to effectively predict Log Kp in the case utilizing Log Kow, 
MW, PSA, natoms, nON, nrotb, nOHNH, and molecular volume (MV) descriptors. 

3.  ANN analysis failed to produce accurate numerical values of Kp utilizing descriptors 
PSA, natoms, nON, nrotb, nOHNH, and molecular volume (MV) descriptors. 

4.   ANN analysis failed to produce accurate numerical values of Kp utilizing descriptors 
Log Ko/w, MW, PSA, natoms, nON, nrotb, nOHNH, and molecular volume 
descriptors. 

 
For comparison, a multiple regression analysis for Log Kp and Kp utilizing various number of 
descriptors produced mixed results, when considering R

2
 and the amount of variance within 

the model that is represented by the regression equation. 
 
Outcome for prediction of Log Kp and Kp determination by multiple regression analysis: 
 

1.   Multiple regression failed to produce a regression model for prediction of Log Kp 
utilizing Log Kow and MW descriptors (R

2
 = 0.3057). 

2.   Multiple regression improved substantially in predicting Log Kp from an increased 
number of descriptors (PSA, natoms, nON, nOHNH, nrotb, Log Ko/w, MW, and 
molecular volume (MV)) (R

2 
= 0.5875).   

3.  Multiple regression failed to produce a regression model for prediction of Kp utilizing 
PSA, natoms, nON, nOHNH, nrotb, and molecular volume (MV)) (R

2
 = 0.3346).   
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4.  Multiple regression improved substantially in predicting Kp utilizing additional 
descriptors PSA, natoms, nON, nOHNH, nrotb, MV, Log Ko/w, and MW) (R

2 
= 

0.5875).   
 

The ability to determine Kp by using a variety of molecular properties will be useful for 
discerning the effects that control the efficiency of skin penetration by complex and 
sophisticated drug scaffolds. Design and development of novel topical drugs will be aided by 
applying the dermal permeability coefficient based on multiple pharmacological properties. 
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