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ABSTRACT 
 

We investigate the electron ground state energy, the first excited energy and the electron 
density of probability within the effective-mass approximation for a finite strain elliptical 
wire. A magnetic field is applied perpendicular to the wire axis. The results are obtained 
by diagonalizing a Hamiltonian for a wire with elliptical edge. The electron levels are 
calculated as functions of the ellipse parameter of the wire with different values of the 
applied magnetic field. For increasing magnetic field the electron has its energy 
enhanced. The electron energy decreases as the elliptical wire size increases. The 
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density of probability distribution in the wire with different size in the presence of a 
magnetic field has been calculated also. The smaller elliptical wire size can effectively 
draw electron deviation from the axis. Calculated ground state energy is compared with 
that one obtained in previous work. 
 

 
Keywords: Energy levels; electron density of probability; magnetic field; elliptical wire.   
 

1. INTRODUCTION  
 
In the past 40 years, modern growth techniques like molecular beam epitaxy, chemical 
vapour deposition metal organic chemical vapour deposition and advanced lithography 
techniques have made the realization of high quality semiconducting heterostructures 
possible. The peculiar optical and electronic properties of nanometric systems with quantum-
confined electronic states are promising for uses in devices. Low-dimensional quantum 
nanostructures such as quantum wires and quantum dots have attracted considerable 
attention in view of their basic physics and potential device applications [1,2]. Quantum wire 
nanostructures can be fabricated now with monolayer precision, with dimensions of a few 
nanometers, free from damage due to lithographic processing by the use of all-growth 
fabrication processes based on epitaxial techniques. One of the most successful all-growth 
techniques for fabricating wires has been cleaved edge overgrowth [3-5]. In this approach, 
elliptical wires are created. Because of size quantization, the physical properties of charge 
carriers in quantum structures strictly depend on external shape of the system under 
investigation.  
 

Recently, considerable effort was devoted to the achievement of self-assembled quantum 
wires, which can be formed under certain growth conditions by solid source molecular beam 
epitaxy. In this case the wires are formed by the Stranski-Krastanow growth mode, in which 
the materials that are deposited on top of each other have a substantially different lattice 
parameter. Spontaneous formation of self-assembled InAs quantum wires on InP (001) 
substrate, having 3.2% lattice mismatch, has been recently demonstrated [6,7]. These 

nanostructures are promising candidates for light-emitting devices for wavelengths 1.30 µm 

and 1.55 µm [8,9].
 

 

In the theoretical works, it is customary to assume a circular, rectangular, V-groove and T 
shape for quantum wire. Considerable experimental and theoretical attention has also been 
devoted to elliptical quantum wire and ellipsoidal quantum dot. There are many 
investigations focus on the quantum wires and quantum dots [10-22]. The scattering matrix 
and Landauer-Buttiker formula within the effective free-electron approximation has been 
used to investigate theoretically the electron transport properties of a quantum wire [20]. The 
effects of strong coupling magnetopolaron in quantum dot has been studied by using 
variational method [21]. The ground-state energy of electron in a quantum wire in the 
presence of a magnetic field parallel to wire axis is calculated [22]. The influence of laser 
field in quantum wells and dot have been considered also [23-25]. The linear and nonlinear 
optical absorption in a disk-shaped quantum dot is investigated in a magnetic field [26]. III-V 
semiconductor is investigated particularly [27-31]. In addition, quantum ring has been 
studied also [32-35]. A two-electron system of a quantum ring under the influence of a 
perpendicular homogeneous magnetic field has been investigated [35]. Among the papers, 
electron energy spectrum in quantum wires have been studied. Electronic states in quantum 
dots have been calculated. Binding energy in quantum rings have been studied using 
variational method.  
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In this paper, we present a diagonalization technique (within the effective-mass 
approximation) for obtaining the electron energy levels and wave functions in a finite 
potential wire of the shape of ellipse. Then we have the electron ground states and the first 
excited states varied with transverse magnetic field and the ellipse eccentricity of the wire 
considering the lattice mismatch of the wire. We have calculated the density of probability 
distribution also. In Sec.II we set up our model and Hamiltonian. In Sec.III we present our 
numerical results. We offer conclusions in Sec.IV. We expect that these conclusions will be 
useful in perfecting the understanding of the growth process. 
 

2. THEORY 
 
We note first of all that the shape of the wire is ellipse. Let us consider an electron moving in 
a quantum wire of elliptical shape. We consider the geometry of InAs/InP QWR as a elliptical 
quantum box with the major axis a along the x direction and semi-major axis b along the y 
direction. Different effective masses are assumed inside and outside the wire. Schematic 
illustration of a elliptical quantum box is given in Fig. 1. 
 

 
 

Fig. 1. The cross-section and the characteristic dimensions of the elliptical quantum 
wire 

 
In our work, the uniform magnetic field is perpendicular to the axis of the wire and is 
assigned by the vector potential  

 

zByA ˆ=
r

                                                                                                            (1) 

 
Electron is confined in the x- and y- directions and can move freely along the wire direction 
because of the strong confinement in the x-y plane. Within the effective mass approximation, 
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the Hamiltonian of the electron in a quantum wire is given by 
 

( )
),()

ˆ
(

,2

1
)

ˆ
(

ˆ
yxVA

c

e
P

yxm
A

c

e
PH +−−=

∗

vvvvr
                                                    (2) 

 

where ( )yxm ,
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is the electron effective mass, ),( yxV is the strained conduction band offset, 
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where a and b are the ellipse semiaxes.  
 

( )
hydcce ayxEV ε+= ,0                                                                                              (5) 

 

( )yxEce , is the unstrained conduction band offset, ca is the hydrostatic deformation 

potential for the conduction band, and zzyyxxhyd εεεε ++=  denotes the hydrostatic strain. 

The formation of self-assembled InAs/InP quantum wire is based on the strain-relaxation 
effect. It is therefore interesting and important to consider the influence of strain on the 

electronic properties of the quantum wire. It is well known that xxε  and yyε  are determined 

as a function of the size of the wire, while zzε is equal to the misfit strain 

( ) InPInPInAs aaa 0000 −=ε  within the strained QWR and equal to zero in the barrier. 

Therefore, the expression hydε  in the case of hydrostatic strain for the electron depends only 

on the x- and y coordinates. It should be noted that in our strain calculation model this value 
is independent of the size of the quantum wire, because the sum of the normal strain 

components hydε  is constant. For the electron, the edge of the conduction band is shifted 

down by the hydrostatic strain hydca ε , which is MeV144 for InAs/InP quantum wire. 

  We have used the effective electron Bohr radius in InAs, 
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different. The Hamiltonian in the wire can be given as 
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The Hamiltonian in the barrier can be given as 
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We investigate the elliptical quantum wire in elliptic coordinates system. In the elliptic 

coordinatesξ  and θ  bound to the Cartesian by the relationships 

 

θξ coscoshhx = ；          θξ sinsinhhy =                                                       (8)  

 
where h is half of the distance between the foci of the ellipse. We expand the electron wave 
function in terms of confluent hypergeometric function basis set because of a magnetic field 
is perpendicular to the axis of the wire, 
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where, nma is the coefficient of the expansion and )),,(( θθξρϕnm  is the orthogonal basis 

we have chose. 
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where, α is a parameter and F  is a confluent hypergeometric function. The quantum 

numbers m  and n  are integers. Eq. (10) is a set of orthogonal series with which the wave 
function is developed. We use a diagonalization method to calculate the electron energies 
and wave function. The Schrodinger equation of the electron can be written as  
 

( ) ( )θξψθξψ ,,ˆ EH =                                                                                                  (11) 

 
Inserting Eq. (9) into Eq. (11), we obtained the secular equation 
 

0, =− ′′′′ mmnnmnnm EH δδ                                                                                             (12) 

 
The elements of the Hamiltonian matrix can be given as 
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After obtaining the eigenvalues (the ground states and the excited states) and the wave 
functions of the electron, we can get the energy levels when the magnetic field fixed and the 
electron density of probability distribution. 
 

3. NUMERICAL RESULTS AND DISCUSSION 
 
In order to study the electron energy levels and the influence of a transverse magnetic field, 
the ground state energy, the first excited state energy and the density of probability 
distribution have been calculated for different magnetic fields. Several different size elliptical 
quantum wires have been investigated in this paper.  

 

0ξ
 is a parameter which can describe the shape of an ellipse in ellipsoidal coordinates. The 

value of 0ξ
 belongs to the interval (0, ∞ ). When 0ξ

 tends to zero, the ellipse tends to be a 

line segment of the 2a-length; When 0ξ
 tends to infinity, the ellipse tends to be an 

approximate circle.  
 
The parameters we used in this paper are list in Table 1 [36]. For these values of the 

parameters, the units of length and energy are respectively,
o

Α=∗
3.3491 0a , 

meVRy 36.11 =∗
, ( )TB8517.11 =γ . The conduction band offset of the wire is meV513  

when the strain is considered. 
 

Table 1. The electron energy and the density of probability distribution  
are calculated using these parameters 

 
Material me εεεε

 a0(Å) Eg(eV) Ac 
InAs 0.023 15.15 6.058 0.417 -5.08 
InP 0.077 12.5 5.869 1.424 --- 

 
Fig. 2 shows the ground state energy of electron in elliptical quantum wire in a transverse 

magnetic field equal to 0.5T as a function of
0

ξ . It is observed that for elliptical quantum 

wires where 5.01.0
0

<< ξ  the ground state energy of electron decreases rapidly as the 

parameter 
0

ξ  increases, especially for 
•= 01.0 ah  and the energy value of the wire for 

•= 01.0 ah   is bigger than for 
•= 02.0 ah  when the 

0
ξ  is fixed. That’s because the ground 

state energy of electron is determined by the magnetic field applied on the x-axis and the 
size of the elliptical quantum wire when the magnetic field is fixed. The difference of the two 
curves is due to the different size of the wire. In small size wire, the confinement is much 
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stronger than in big size wire. Therefore the effect of the magnetic field on the energy of the 
electron becomes strong as the wire size increases. The size of elliptical quantum wire 

becomes big as the parameters h  and 
0

ξ  increases. 

 
Fig. 2. The ground state energy of electron for a transverse magnetic field of 0.5T 

 

Fig. 3 represents the parameter 
0

ξ  dependence of the ground state energy of electron in 

elliptical quantum wire in a transverse magnetic field equal to 1.0T. The results are similar to 
the case of the transverse magnetic field equal to 0.5T. The value of the ground state energy 

of the electron decreases as the parameter 
0

ξ  increases. The difference between the two 

energy values for the wires with 
•= 01.0 ah  and 

•= 02.0 ah  becomes small as the 
0

ξ  

increases. From Fig. 2 and Fig. 3, it can be seen that the energy value in the wire when the 
magnetic field equal to 1.0T is bigger than that of 0.5T because of large magnetic field 
effects.  
 

In Fig. 4, we plot the fist excited energy of electron versus the parameter 
0

ξ  for different 

elliptical quantum wires as the parameter 
•= 01.0 ah  and 

•= 02.0 ah  in a transverse 

magnetic field equal to 0.5T. As can be seen, the fist excited energy decreases as 
0

ξ  

increases and the energy in the wire for 
•= 02.0 ah  is smaller than the energy for

•= 01.0 ah . 

That is because the spatial confinement caused the results when the magnetic field is fixed. 
The spatial confinement is determined by the size of elliptical quantum wire, which becomes 

big as the parameters h  and 
0

ξ  increases. In comparing the results in Fig. 4 to the data in 

Fig. 2, we can find that the first excited energy is bigger than the ground state energy of the 
electron in the elliptical quantum wire. 
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Fig. 3. The ground state energy of electron for a transverse magnetic field of 1.0T 

 

For the wires with the parameter 
•= 01.0 ah  and

•= 02.0 ah , the fist excited energy of 

electron as a function of the parameter 
0

ξ  in elliptical quantum wire for a transverse 

magnetic field equal to 1.0T is shown in Fig. 5. The energy decreases with the parameter 
0

ξ  

increasing. The difference between the curves of the first excited energy for the wires given 

0
ξ  with the parameter 

•= 01.0 ah  and 
•= 02.0 ah  increases as the 

0
ξ  increases. The 

results are similar to the case of the transverse magnetic field equal to 0.5T. From Fig. 4 and 
Fig. 5, we obtain that the first excited energy of the electron in a magnetic field equal to 1.0T 
is bigger than the energy in a magnetic field equal to 0.5T when the size of the wire is fixed. 
That is because when the wire size is fixed, the value of the first excited energy of the 
electron with the bigger applied magnetic field becomes more big due to the energy comes 
both from the spatial confinement and the magnetic field confinement. From Figs. 3 and 5, 
we can conclude that the first excited energy is bigger than the ground state energy in a wire 
with a fixed magnetic field. 
 
We can also calculate the electron ground state energy and the first excited energy when the 
magnetic field varies or the value of the magnetic field equal to zero using this method. For a 
given wire, the ground state energy and the first excited energy of electron increase as the 
applied magnetic field increases in the elliptical quantum wire.  
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Fig. 4. The first excited energy of electron for a transverse magnetic field of 0.5T 
 
The electron ground state energy is similar to the case that the magnetic field parallel to the 
wire axis [22] when the value of the magnetic field equal to 0.5T. It is probably that the 
difference of the two cases that in the presence of the magnetic field along x-axis and z-axis 
is obviously when the value of the magnetic field becomes larger. 
 
To further confirm the size of quantum wire effect, the electron density of probability 

distribution
2

ψ in the wire with  h=0.10
∗
0a , h=0.15

∗
0a , h=0.20

∗
0a  for 2πθ =  and 1.0

0
=ξ  

in the presence of a magnetic field equal to 1.0T is shown in Fig. 6. After calculating the 
wave functions of the electron, we obtained the density of probability of the electron. It can 

be clearly seen that the electron density of probability 
2

ψ  increases with ξ  increases, 

reaching a maximum value between 0.35 and 0.38 and then decreases rapidly. After 
comparing the three curves, we have got that the smaller size elliptical quantum wire tends 
to shift the electron wave function away from the wire center. The smaller size wire can 
effectively draw electron deviation from the axis, so the electron energy is become bigger 
correspondingly.  
 
We can calculate the density of probability distribution in other region of the wire, such as 

6πθ = , 4π , 3π  and so on. We can also get the density of probability distribution in 

other elliptical quantum wires. 
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Fig. 5. The first excited energy of electron for a transverse magnetic field of 1.0T 

 

 

    Fig. 6. 
2

ψ for a electron in wire with h=0.10
∗
0a

, h=0.15
∗
0a

, h=0.20
∗
0a

 for B=1.0T as 

2πθ =  and 1.0
0

=ξ  
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4. CONCLUSION 
 
In summary, considering the hydrostatic strain， through investigating a self-assembled 

InAs/InP finite elliptical quantum wire in a transverse magnetic field by a diagonalized 
method within the effective-mass approximation, we have obtained that the ground and first 
excited state energies and the density of probability distribution. The ground state energy 
has been compared with that one obtained when the magnetic field applied along z-axis. 
 
The main results are that the ground state energy and the first excited state energy are 

become small as 
0

ξ  varies from 0.1 to 0.5 with 
•= 01.0 ah  and 

•= 02.0 ah  in the presence 

of a fixed transverse magnetic field when the applied magnetic value equal to 0.5T and 1.0T. 
The electron ground state energy and the first excited energy with the magnetic field varies 
by diagonalizing a Hamiltonian for a wire with elliptical edge. The ground state energy and 
the first excited energy of electron increase as the applied magnetic field increases. We 

have obtained the density of probability distribution in the wire with h=0.10
∗
0a

, h=0.15
∗
0a

, 

h=0.20
∗
0a

 for 2πθ =  and 1.0
0

=ξ  in the presence of a magnetic field equal to 1.0T. The 

smaller size elliptical quantum wire tends to shift the electron wave function away from the 
wire center with a fixed magnetic field, so the electron energy is become bigger in a smaller 
size wire. The electron ground state energy is similar to the case that the magnetic field 
parallel to the wire axis when the value of the magnetic field is small. 
 
The numerical calculations reveal that the influences of the magnetic field and the barrier on 
the electron energy levels are considerable. It is shown that the energy depends on the 
magnetic field strength and the size of the ellipse, whereas their competition determines the 
energy levels. The electron energy levels for the narrow elliptical wire are more sensitive to 
the applied magnetic field and for the bigger magnetic field are sensitive to the elliptical wire 
size. 
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