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Abstract
In this paper, we consider an extended vector equilibrium problem and prove some existence results
in the setting of Hausdorff topological vector spaces and reflexive Banach spaces. Our results
extend and improve some known results in the literature. Some examples are given.
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1 Introduction
Let X be a Hausdorff topological vector space, K be a nonempty closed convex subset of X and let
f : K ×K → R be a mapping with f(x, x) = 0, for all x ∈ K. Then the equilibrium problem is to find
x̄ ∈ K such that

f(x̄, y) ≥ 0, ∀ y ∈ K. (1.1)

Problems like (1.1) were initially studied by Ky Fan [1] and Brezis et al. [2]. It was Blum and Oettli [3],
who used the term equilibrium problem for the first time. Equilibrium problems include variational
inequality problems as well as fixed point problems, optimization problems, complementarity problems,
saddle point problems and Nash equilibrium problems as special cases, for more details, see, [4–9].
Equilibrium problems provide us a systematic framework to study a wide class of problems arising in
finance, economics and operations research etc.. General equilibrium problems have been extended
to the case of vector-valued bi-functions, known as vector equilibrium problems, see for example,
[10–15].

LetX and Y be two Hausdorff topological vector spaces, K be a nonempty closed convex subset
of X and C be a pointed closed convex cone in Y with intC 6= ∅. Given a vector valued mapping
f : K ×K → Y , the vector equilibrium problem consists of finding x̄ ∈ K such that

f(x̄, y) /∈ −intC, ∀ y ∈ K. (1.2)
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The vector equilibrium problems have been studied by many researchers and proven to be
significant in the study of vector optimization, vector variational inequalities and vector complementarity
problems, for more details, see, [16–21].

For comprehensive bibliography, we refer to Daniele et al. [22] and Giannessi [23] and references
therein.

Motivated by the applications of vector equilibrium problems, in this paper, we introduce and study
an extended vector equilibrium problem and prove some existence results in the setting of Hausdorff
topological vector spaces and reflexive Banach spaces. Some special cases are also discussed.

2 Preliminaries
We need the following definitions and results for the presentation of this paper.

Definition 2.1. The Hausdorff topological vector space Y is said to be an ordered space denoted by
(Y,C) if ordering relations are defined in Y by a pointed closed convex cone C of Y as follows:

for all x, y ∈ Y, y 5 x⇔ x− y ∈ C,

for all x, y ∈ Y, y ≤ x⇔ x− y ∈ C \ {0},

for all x, y ∈ Y, y � x⇔ x− y /∈ C \ {0}.

If the interior of C, intC 6= ∅, then the weak ordering relations in Y are also defined as follows:

for all x, y ∈ Y, y < x⇔ x− y ∈ intC,

for all x, y ∈ Y, y ≮ x⇔ x− y /∈ intC.

Throughout this paper, unless otherwise specified, we assume that (Y,C) is an ordered Hausdorff
topological vector space with intC 6= ∅.

Definition 2.2. Let K be a nonempty convex subset of a topological vector space X. A set-valued
mapping A : K → 2X is said to be KKM mapping, if for each finite subset {x1, x2, ...., xn} of K,

Co{x1, x2, · · · , xn} ⊆
n⋃

i=1

A(xi), whereCo{x1, x2, · · · , xn} denotes the convex hull of {x1, x2, · · · , xn}.

The following KKM-Fan theorem is important for us to prove the existence results of this paper.

Theorem 2.1. (KKM-Fan Theorem) Let K be a nonempty convex subset of a Hausdorff topological
vector space X and let A : K → 2X be a KKM mapping such that A(x) is closed for all x ∈ K and
A(x) is compact for at least one x ∈ K, then⋂

x∈K

A(x) 6= ∅.

Let X and Y be the Hausdorff topological vector spaces and K be a nonempty closed convex
subset of X. Let C be a pointed closed convex cone in Y with intC 6= ∅. Let g : K × X → Y be
a vector valued mapping and η : K × K → X be a mapping. We introduce the following extended
vector equilibrium problem.

Find x0 ∈ K such that for all z ∈ K and λ ∈ (0, 1]

g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y ∈ K. (2.1)
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If λ = 1 and η(y, x0) = y ∈ X, the problem (2.1) reduces to the vector equilibrium problem of
finding x0 ∈ K such that

g(x0, y) /∈ −intC, ∀ y ∈ K. (2.2)

Problem (2.2) was introduced and studied by Tan and Tinh [24].
In addition, if Y = R and C = R+, then problem (2.1) reduces to the equilibrium problem of

finding x0 ∈ K such that
g(x0, y) ≥ 0, ∀ y ∈ K. (2.3)

Problem (2.3) was introduced and studied by Blum and Oettli [3].
The fact that problem (2.1) is much more general than many existing equilibrium, vector equilibrium

problems, etc., motivate us to study Extended vector equilibrium problem (2.1).

Definition 2.3. LetX,Y be the Hausdorff topological vector spaces, K be a nonempty closed convex
subset of X and C be a closed convex pointed cone in Y with intC 6= ∅. Let η : K ×K → X and
g : K ×X → Y be the mappings. Then g is said to be

(i) η-monotone with respect to C, if and only if for all x, y, z ∈ K,

g(λx+ (1− λ)z, η(y, x)) + g(λy + (1− λ)z, η(x, y)) ∈ −C;

(ii) η-hemicontinuous, if and only if for all x, y ∈ K, t ∈ [0, 1], the mapping t → g(ty + (1 −
t)x, η(y, x)) is continuous at 0+;

(iii) η-pseudomonotone, if and only if for all x, y, z ∈ K,

g(λx+ (1− λ)z, η(y, x)) /∈ −intC implies g(λy + (1− λ)z, η(y, x)) /∈ −intC;

(iv) η-generally convex, if and only if for all x, y, z, w ∈ K,

g(z, η(x,w)) /∈ −intC and g(z, η(y, w)) /∈ −intC imply g(z, η(λx+ (1− λ)y, w)) /∈ −intC.

In support of Definition 2.3, we have the following examples.

Example 2.1. Let X = R,K = R+, Y = R2, and C = {(x, y) : x ≤ 0, y ≤ 0}.
Let g : K ×X → Y and η : K ×K → X be the mappings such that

g(x, y) = (y, x2), ∀ x, y ∈ K,

and η(x, y) = x2 + y2, ∀ x, y ∈ K.
Then, g(λx+ (1− λ)z, η(y, x)) + g(λy + (1− λ)z, η(x, y))

= (η(y, x), (λx+ (1− λ)z)2) + (η(x, y), (λy + (1− λ)z)2)

= (y2 + x2, (λx+ (1− λ)z)2) + (x2 + y2, (λy + (1− λ)z)2) ∈ −C
i.e., g(λx+ (1− λ)z, η(y, x)) + g(λy + (1− λ)z, η(x, y)) ∈ −C.
Hence, g is η-monotone with respect to C.

Example 2.2. Let X = R,K = R+, Y = R2, and C = {(x, y) : x ≤ 0, y ≤ 0}. Let F : [0, 1]→ Y be a
mapping such that

F (t) = g(ty + (1− t)x, η(y, x)), ∀ t ∈ [0, 1].

Let g : K ×X → Y and η : K ×K → X be the mappings such that

g(x, y) = (y, x2), ∀ x, y ∈ K,

and η(x, y) = x2 + y2, ∀ x, y ∈ K.
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Then, F (t) = g(ty + (1− t)x, η(y, x)) = (η(y, x), (ty + (1− t)x)2)

= (y2 + x2, (ty + (1− t)x)2),

which implies that t→ g(ty + (1− t)x, η(y, x)) is continuous at 0+.
Hence, g is η-hemicontinuous.

Example 2.3. Let X = R,K = R+, Y = R2, and C = {(x, y) : x ≥ 0, y ≥ 0}.
Let g : K ×X → Y and η : K ×K → X be the mappings such that

g(x, y) = (y,−x2), ∀ x, y ∈ K,

and η(x, y) = x− 2y, ∀ x, y ∈ K.

Then, g(λx+ (1− λ)z, η(y, x)) = (η(y, x),−(λx+ (1− λ)z)2)

= ((y − 2x),−(λx+ (1− λ)z)2) /∈ −intC

implies y ≥ 2x, so it follows that

g(λy + (1− λ)z, η(y, x)) = (η(y, x),−(λy + (1− λ)z)2)

= ((y − 2x),−(λy + (1− λ)z)2) /∈ −intC

Hence, g is η-pseudomonotone with respect to C.

Example 2.4. Let X = R,K = R+, Y = R2, and C = {(x, y) : x ≥ 0, y ≤ 0}.
Let g : K ×X → Y and η : K ×K → X be the mappings such that

g(x, y) = (y, x2), ∀ x, y ∈ K,

and η(x, y) = x− y, ∀ x, y ∈ K.

Then, g(z, η(x,w)) = (η(x,w), z2)

= (x− w, z2) /∈ −intC,

implies x ≥ w, and

g(z, η(y, w)) = (η(y, w), z2)

= (y − w, z2) /∈ −intC,

implies y ≥ w, so it follows that

g(z, η(λx+ (1− λ)y, w)) = (η(λx+ (1− λ)y, w), z2)

= (λx+ (1− λ)y − w, z2)

= (λx+ (1− λ)y − w + λw − λw, z2)

= (λ(x− w) + (1− λ)(y − w), z2) /∈ −intC

implies g(z, η(λx+ (1− λ)y, w)) /∈ −intC.
Hence, g is η-generally convex.

Definition 2.4. A mapping η : K ×K → X is said to be affine in the first argument, if and only if for
all x, y, z ∈ K and t ∈ [0, 1],

η(tx+ (1− t)y, z) = tη(x, z) + (1− t)η(y, z).

Similarly one can define the affine property of η with respect to the second argument.

549



British Journal of Mathematics and Computer Science 4(4), 546-556, 2014

3 Existence Results
We prove the following equivalence lemma which we need for the proof of our main results.

Lemma 3.1. Let X be a Hausdorff topological vector space, K be a closed convex subset of X and
(Y,C) be an ordered Hausdorff topological vector space with intC 6= ∅. Let g : K × X → Y be a
vector valued mapping which is η-monotone with respect to C, positive homogeneous in the second
argument and η-hemicontinuous. Let η : K × K → X be a continuous and affine mapping in the
first argument such that η(x, x) = 0 and η(x, y) = −η(y, x), for all x, y ∈ K. Then for all z ∈ K and
λ ∈ (0, 1], the following statements are equivalent.

Find x0 ∈ K such that

(i) g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y ∈ K;

(ii) g(λy + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y ∈ K.

Proof. (i)⇒ (ii). For all z ∈ K and λ ∈ (0, 1], let x0 be a solution of (i), then we have

g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC.

Since g is η-monotone with respect to C, we have

g(λx0 + (1− λ)z, η(y, x0)) + g(λy + (1− λ)z, η(x0, y)) ∈ −C

and as η(x, y) = −η(y, x), we have

g(λx0 + (1− λ)z, η(y, x0)) ∈ −C + g(λy + (1− λ)z, η(y, x0)). (3.1)

Suppose to the contrary that (ii) is false. Then there exists y ∈ K such that

g(λy + (1− λ)z, η(y, x0)) ∈ −intC.

By (3.1), we obtain
g(λx0 + (1− λ)z, η(y, x0)) ∈ −C−int C ⊂ −intC,

which contradicts (i). Thus (i)⇒ (ii).
(ii)⇒ (i). Conversely, suppose that (ii) holds. Then x0 ∈ K satisfies

g(λy + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y ∈ K.

For each y ∈ K, t ∈ [0, 1], we let yt = ty + (1− t)x0. Since K is convex, yt ∈ K. Then we have

g(λyt + (1− λ)z, η(yt, x0)) /∈ −intC.

Since η is affine in the first argument and η(x0, x0) = 0, we have

g(λ(ty + (1− t)x0)) + (1− λ)z, tη(y, x0)) /∈ −intC.

By positive homogeneity of g in the second argument, we obtain

g(λ(ty + (1− t)x0)) + (1− λ)z, η(y, x0)) /∈ −intC.

As g is η-hemicontinuous, let t→ 0+, we have

g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y ∈ K.

Thus (ii)⇒ (i). This completes the proof.
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Theorem 3.1. Let X be a Hausdorff topological vector space and let K be a nonempty compact and
convex subset of X, and (Y,C) be an ordered Hausdorff topological vector space with intC 6= ∅.
Let g : K × X → Y be a vector valued mapping which is η-monotone with respect to C, positive
homogeneous in the second argument and η-hemicontinuous and let the mapping x → g(λy + (1 −
λ)x, η(y, x)) be continuous. Let η : K ×K → X be a continuous and affine in both the arguments
such that η(x, x) = 0 and η(x, y) = −η(y, x), for all x, y ∈ K. Then, problem (2.1) admits a solution,
that is, for all z ∈ K and λ ∈ (0, 1], there exists x0 ∈ K such that

g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y ∈ K.

Proof. For each y ∈ K, we define

M(y) = {x ∈ K : g(λx+ (1− λ)z, η(y, x)) /∈ −intC};

S(y) = {x ∈ K : g(λy + (1− λ)z, η(y, x)) /∈ −intC}.
Clearly M(y) 6= ∅, as y ∈M(y). We divide the proof into three steps.
Step 1 We claim that M : K → 2K is a KKM-mapping. If M is not a KKM-mapping, then there exists

x ∈ Co{y1, y2, · · · , yn} such that for all ti ∈ [0, 1], i = 1, 2, · · · , n with
n∑

i=1

ti = 1, we have

x =

n∑
i=1

tiyi /∈
n⋃

i=1

M(yi).

Thus, we have
g(λx+ (1− λ)z, η(yi, x)) ∈ −intC, i = 1, 2, · · · , n.

Since η is affine in the second argument and η(yi, yi) = 0, we have

g(λx+ (1− λ)z, η(yi,

n∑
i=1

tiyi)) =

n∑
i=1

tig(λx+ (1− λ)z, η(yi, yi)) ∈ −intC.

It follows that 0 ∈ −intC, which is a contradiction. Thus M is a KKM-mapping.
Step 2

⋂
y∈K

M(y) =
⋂

y∈K

S(y) and S is also a KKM-mapping.

If x ∈M(y), then g(λx+ (1−λ)z, η(y, x)) /∈ −intC. By the η-monotonicity of g with respect to C and
using the fact that η(x, y) = −η(y, x), we have

g(λx+ (1− λ)z, η(y, x)) ∈ g(λy + (1− λ)z, η(y, x))− C. (3.2)

Suppose that x /∈ S(y). Then, we have

g(λy + (1− λ)z, η(y, x)) ∈ −intC.

It follows from (3.2) that

g(λx+ (1− λ)z, η(y, x)) ∈ −intC − C ⊂ −intC,

which contradicts that x ∈M(y). Therefore x ∈ S(y), that is, M(y) ⊂ S(y). Then⋂
y∈K

M(y) ⊂
⋂
y∈K

S(y).

On the other hand, Suppose that x ∈
⋂

y∈K

S(y). We have

g(λy + (1− λ)z, η(y, x)) /∈ −intC, ∀ y ∈ K.
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By Lemma 3.1, we have

g(λx+ (1− λ)z, η(y, x)) /∈ −intC, ∀ y ∈ K.

That is, x ∈
⋂

y∈K

M(y). Hence,⋂
y∈K

M(y) ⊃
⋂

y∈K

S(y). So,
⋂

y∈K

M(y) =
⋂

y∈K

S(y).

Also
⋂

y∈K

S(y) 6= ∅, since y ∈ S(y). From above, we know that M(y) ⊂ S(y) and by Step 1, we

know that M is a KKM-mapping. Thus S is also a KKM-mapping.
Step 3 For all y ∈ K,S(y) is closed.
Let {xn} be a sequence in S(y) such that {xn} converges to x ∈ K. Then

g(λy + (1− λ)z, η(y, xn)) /∈ −intC, for all n.

Since the mapping x→ g(λy + (1− λ)z, η(y, x)) is continuous, we have

g(λy + (1− λ)z, η(y, xn))→ g(λy + (1− λ)z, η(y, x)) /∈ −intC.
We conclude that x ∈ S(y), that is, S(y) is a closed subset of a compact set K and hence compact.
By KKM Theorem 2.1,

⋂
y∈K

S(y) 6= ∅ and also
⋂

y∈K

M(y) 6= ∅. Hence there exists x0 ∈
⋂

y∈K

M(y) =⋂
y∈K

S(y), that is, there exists x0 ∈ K such that

g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y, z ∈ K and λ ∈ (0, 1],

thus, x0 is a solution of problem (2.1).

In support of Theorem 3.1, we give the following example.

Example 3.1. Let X = Y = R,K = R+, and C = {x : x ≥ 0}.
Let g : K ×X → Y and η : K ×K → X be the mappings such that

g(x, y) = xy, ∀ x, y ∈ K,

and η(x, y) = 2x− 2y, ∀ x, y ∈ K.
Then,

(i) For any x, y, z ∈ K,

g(λx+ (1− λ)z, η(y, x)) + g(λy + (1− λ)z, η(x, y))

= [λx+ (1− λ)z]η(y, x) + [λy + (1− λ)z]η(x, y)

= [λx+ (1− λ)z](2y − 2x) + [λy + (1− λ)z](2x− 2y)

= −2λ(y − x)2 ∈ −C,

i.e., g is η-monotone with respect to C.
(ii) For any r > 0,

g(x, ry) = xry = r(xy) = rg(x, y)
i.e., g is positive homogeneous in the second argument.

(iii) Let F : [0, 1]→ Y be a mapping such that

F (t) = g(ty + (1− t)x, η(y, x)), ∀ t ∈ [0, 1].

Then, F (t) = g(ty + (1− t)x, η(y, x)) = [ty + (1− t)x]η(y, x)

= [ty + (1− t)x](2y − 2x),

which is a continuous mapping.
i.e., t→ g(ty + (1− t)x, η(y, x)) is continuous at 0+.
Hence, g is η-hemicontinuous.
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(iv) Let G : K → Y be a mapping such that

G(x) = g(λy + (1− λ)x, η(y, x)), ∀ x ∈ K.

Then, G(x) = g(λy + (1− λ)x, η(y, x)) = [λy + (1− λ)x]η(y, x)

= [λy + (1− λ)x](2y − 2x),

which implies that x→ g(λy + (1− λ)x, η(y, x)) is continuous mapping.

(v) η(x, y) = 2x− 2y. Then,

η(λx1 + (1− λ)x2, y) = 2λx1 + 2(1− λ)x2 − 2y

= 2λx1 + 2(1− λ)x2 − 2y + 2λy − 2λy

= λ(2x1 − 2y) + (1− λ)(2x2 − 2y)

= λη(x1, y) + (1− λ)η(x2, y)

i.e., η is affine in the first argument.
Similarly one can show that η is affine in the second argument.

(vi) By the definition of η, we have
η(x, y) = (2x− 2y) = −(2y − 2x) = −η(y, x) and η(x, x) = 0.

Hence, all the conditions of Theorem 3.1 are satisfied.
In addition,

g(λx0 + (1− λ)z, η(y, x0)) = [λx0 + (1− λ)z]η(y, x0)

= [λx0 + (1− λ)z](2y − 2x0)

= 2[λx0 + (1− λ)z](y − x0) /∈ −intC, for x0 ≤ y,

Thus, it follows that x0 is a solution of problem (2.1) for all z ∈ K and λ ∈ (0, 1].

Corollary 3.1. LetK be a nonempty compact convex subset ofX and (Y,C) be an ordered topological
vector space with intC 6= ∅. Let g : K×X → Y be a vector valued mapping which is η-pseudomonotone
with respect to C and let η : K ×K → X be a continuous and affine mapping in both the arguments
such that η(x, x) = 0, for all x ∈ K. Let the mapping x → g(λx + (1 − λ)z, η(y, x)) be continuous.
Then problem (2.1) is solvable.

Proof. By step 1 of Theorem 3.1, it follows that M is a KKM-mapping. Also it follows from η-pseudo-
monotonicity of g that M(y) ⊂ S(y), thus S is also a KKM-mapping. By step (3) of Theorem 3.1, the
conclusion follows.

Theorem 3.2. Let X be a reflexive Banach space, (Y,C) be an ordered topological vector space
with intC 6= ∅. Let K be a nonempty, bounded and convex subset of X. Let g : K × X → Y be a
vector valued mapping which is η-monotone with respect to C, positive homogeneous in the second
argument, η-hemicontinuous and η-generally convex on K. Let η : K ×K → X be a continuous and
affine mapping in both the arguments such that η(x, x) = 0 and η(x, y) = −η(y, x), for all x, y ∈ K.
Then, problem (2.1) is solvable, that is, for all z ∈ K and λ ∈ (0, 1], there exists x0 ∈ K such that

g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y ∈ K.

Proof. For each y ∈ K, let

M(y) = {x ∈ K : g(λx+ (1− λ)z, η(y, x)) /∈ −intC},

S(y) = {x ∈ K : g(λy + (1− λ)z, η(y, x)) /∈ −intC}, for all z ∈ K and λ ∈ (0, 1].
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From the proof of the Theorem 3.1, we know that S(y) is closed and S is a KKM-mapping. We also
know that ⋂

y∈K

M(y) =
⋂
y∈K

S(y).

Since K is a bounded, closed and convex subset of a reflexive Banach space X, therefore K is
weakly compact.

Now, we show that S(y) is convex. Suppose that y1, y2 ∈ S(y) and t1, t2 ≥ 0 with t1 + t2 = 1.
Then

g(λy + (1− λ)z, η(y, yi)) /∈ −intC, i = 1, 2.

Since g is η-generally convex, we have

g(λy + (1− λ)z, η(y, t1y1 + t2y2)) /∈ −intC,

that is, t1y1 + t2y2 ∈ S(y), which implies that S(y) is convex. Since S(y) is closed and convex, S(y)
is weakly closed.

As S is a KKM-mapping, S(y) is weakly closed subset of K, therefore S(y) is weakly compact.
By KKM Theorem 2.1, there exists x0 ∈ K such that x0 ∈

⋂
y∈K

M(y) =
⋂

y∈K

S(y) 6= ∅. That is, there

exists x0 ∈ K such that

g(λx0 + (1− λ)z, η(y, x0)) /∈ −intC, ∀ y, z ∈ K and λ ∈ (0, 1].

Hence problem (2.1) is solvable.

4 Conclusions
In this paper, we have extended the classical vector equilibrium problem. Some existence results are
proved in the setting of Hausdorff topological vector spaces and reflexive Banach spaces. The results
of this paper can be viewed as generalizations of many known equilibrium problems and can be used
for further research in this area.
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