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Abstract
In this work we investigate the Neumann boundary value problem in the unit ball for a non-
homogeneous biharmonic equation. It is well known, that even for the Poisson equation this
problem does not have a solution for an arbitrary smooth right hand side and boundary functions;
it follows from the Green formula, that these given functions should satisfy a condition called the
solvability condition. In the present paper these solvability conditions are found in an explicit form for
the natural generalization of the Neumann problem for the non-homogeneous biharmonic equation.
The method used is new for these type of problems. We first reduce this problem to the Dirichlet
problem, then use the Green function of the Dirichlet problem recently found by T. Sh. Kal’menov
and D. Suragan
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1 Introduction
Let Ω = {x ∈ Rn : |x| < 1} be the unit ball, ∂Ω = {x ∈ Rn : |x| = 1} be the unit sphere.

Consider on the domain Ω the Neumann boundary value problem:

∆u(x) = g(x), x ∈ Ω, (1.1)

∂u

∂ν
(x) = ψ(x), x ∈ ∂Ω, (1.2)
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where ν is the unit outer normal vector to sphere ∂Ω, g(x) and ψ(x) are given functions; we always
suppose that the right hand side and the boundary functions are sufficiently smooth and from here
on do not pay any attention to their smoothness.

It follows from the Green formula, that unlike to the Dirichlet problem, this problem does not have
solutions for arbitrary (even, as we supposed, smooth) functions g(x) and ψ(x) (see, for example,
[1]); these functions should satisfy the necessary and sufficient solvability condition:∫

Ω

g(x)dx =

∫
∂Ω

ψ(x)dSx.

In the paper [2] by B.E. Kanguzhin and B.D. Koshanov the general Nuemann problem for the
polyharmonic equation:

(−∆)mu(x) = g(x), x ∈ Ω, (1.3)
∂kju

∂νkj
(x) = ψkj (x), j = 1, ...,m, x ∈ ∂Ω, (1.4)

was considered, where m is any positive integer, 0 < ki < kj ≤ 2m − 1, 1 ≤ i < j ≤ m. The
authors found a solvability condition for the problem (1.3), (1.4) (see [2], Theorem 4.2). This condition
follows from equality to zero of the determinant of a m ×m matrix, one column of which consists of
integrals

∫
∂Ω

[ψkj (x)−∂kj/∂νkj (εm,n ∗ g(x))]dSx, εm,n = dm,n|x|2m−n and dm,n is a constant. Note,
the equation which one has as a result is very difficult to verify.

There are no work yet where these conditions are simplified in the general case. But the authors
of the paper [3] considered a particular case of the problem (1.3), (1.4), i.e. m = 2, k1 = 1 and k2 = 2
and presented the solvability condition in a different form, which could be easily verified:∫

Ω

1− |x|2

2
g(x)dx =

∫
∂Ω

[ψ2(x)− ψ1(x)]dSx.

This result was generalized for an arbitrary m and kj = j by authors of this paper [4] (see also
[5]).

If we compare the Neumann problem (1.1), (1.2) with the Diriclet problem (i.e. u(x) = ψ(x), x ∈
∂Ω) for the same equation, then we can note that in the boundary we have different functions (i.e. the
function itself and its derivative).

If we generalize in the same way the Neumann problem for the biharmonic equation (i.e. m = 2),
then we should take k1 = 2 and k2 = 3 (instead of k1 = 1 and k2 = 2 as in [3]). So the more natural
generalization of the Neymann problem for the biharmonic equation has the form:

∆2u(x) = g(x), x ∈ Ω, (1.5)

∂k+1u

∂νk+1
(x) = ψk(x), k = 1, 2, x ∈ ∂Ω, (1.6)

Note in the Dirichlet problem for the equation (1.3) with m = 2 one has k1 = 0 and k2 = 1 in
(1.4).

A function u(x) ∈ C4(Ω) ∩ C3(Ω) is called to be a solution of problem (1.5), (1.6), if it satisfies
(1.5), (1.6) in classical sense.

It should be noted that many the Neumann type problems (different from (1.6) for equation (1.5)
were considered in the paper by [6] (see also references therein). The author found the necessary
and sufficient solvability conditions in a very simple form.

The main goal of the present paper is to find solvability conditions for the Neumann problem (1.5),
(1.6). In Theorem 4.1 (see also Theorem 5.1) we show that in fact there are n + 1 such conditions.
Since the homogeneous problem has n+ 1 solutions, then this fact states that the Neumann problem
(1.5), (1.6) is correct in the Fredholm sense.

It should be noted that in our study of problem (1.5), (1.6) the Green function of the Dirichlet
problem for equation (1.5) is essentially used. In the paper [7] a similar method was used in the
solution of the boundary value problem for the Poisson equation with the boundary operator of
fractional-order.
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2 Properties of some integro-differential operators
Let u(x) be a sufficiently smooth function in Ω. Consider the following operators

Γc[u](x) =

(
r
∂

∂r
+ c

)
u(x), Γ−1

c [u](x) =

∫ 1

0

tc−1u(tx)dt, (2.1)

where r = |x| and c > 0 is a constant.
Note that in the class of harmonic functions in a ball the properties of operators Γc and Γ−1

c have
previously been studied in the paper [8].

Lemma 2.1. Let u(x) be a smooth function. Then for any x ∈ Ω one has

Γc[Γ
−1
c [u]](x) = Γ−1

c [Γc[u]](x) = u(x). (2.2)

Proof. We have∫ 1

0

d

dt
[tcu(tx)]dt =

∫ 1

0

tc−1[cu(tx) + t
d

dt
u(tx)

]
dt =

∫ 1

0

tc−1Γc[u](tx)dt.

Therefore,

u(x) =

∫ 1

0

tc−1Γc[u](tx)dt = Γ−1
c [Γc[u]](x),

Hence the second equality of (2.2) is proved.
Now apply to the function Γ−1

c [u](x) operator Γc. Then

Γc[Γ
−1
c [u]](x) =

∫ 1

0

tc−1Γc[u](tx)dt = u(x).

Hence the first equality in (2.2), and therefore the lemma is proved.

Corollary 2.2. Let c1and c2 be positive numbers and u(x) be a smooth function. Then for any x ∈ Ω
one has

Γ−1
c2 Γ−1

c1 [Γc1Γc2 [u]](x) = Γc1Γc2 [Γ−1
c2 Γ−1

c1 [u]](x) = u(x). (2.3)

The following statement can be proved by direct calculation.

Lemma 2.3. Let u(x) be a smooth function. Then for any x ∈ Ω one has

∆Γc[u](x) = Γc+2[∆u](x),

∆Γ−1
c [u](x) = Γ−1

c+2[∆u](x).

Corollary 2.4. Let u(x) be a smooth function. Then for any x ∈ Ω one has

∆2Γc[u](x) = Γc+4[∆2u](x), (2.4)

∆2Γ−1
c [u](x) = Γ−1

c+4[∆2u](x). (2.5)

Corollary 2.5. Let c1and c2 be positive numbers and u(x) be a smooth function. Then for any x ∈ Ω
one has

∆2Γc1 [Γc2 [u]](x) = Γc1+4[Γc2+4[∆2u]](x), x ∈ Ω, (2.6)

∆2Γ−1
c1 [Γ−1

c2 [u]](x) = Γ−1
c1 [Γ−1

c2 [∆2u]](x). (2.7)

Remark 2.1. It is not hard to show that the equality (2.6) is true for any real numbers c1 and c2.
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3 Some properties of the solutions of the Dirichlet problem
Let v(x) be a solution of the Dirichlet problem ∆2v(x) = g1(x), x ∈ Ω,

∂k−1v

∂νk−1
(x) = ϕk(x), k = 1, 2, x ∈ ∂Ω.

(3.1)

Let us first consider the case when ϕ1(x) ≡ ϕ2(x) ≡ 0. It is known (see, for example, [9, 10, 11]),
that if g1(x) is sufficiently smooth function, then the solution of problem (3.1) exists, it is unique and
has the form

v(x) =

∫
Ω

Gm,n(x, y)g1(y)dy, (3.2)

where Gm,n(x, y) is the Green function of the Dirichlet problem (3.1).
We note that the Green functions for many type of the Dirichlet and the Nuemann problems for

equation (1.5) were constructed by [6] (see also the references therein).
We make use the following explicit form of the Green function [9]:
if n is odd, or even and n > 4, then

G2,n(x, y) = d2,n

[
|x− y|4−n −

∣∣x|y| − y

|y|
∣∣4−n−

(
2− n

2

)∣∣x|y| − y

|y|
∣∣2−n(1− |x|2)(1− |y|2)

]
,

where

d2,n =
Γ(
n

2
− 2)

π
n
2 42

;

if n = 2 or n = 4, then

G2,n(x, y) = d2,n

[
|x− y|4−n

(
ln |x− y|2 − ln

∣∣∣∣x|y| − y

|y|

∣∣∣∣2
)

+

∣∣∣∣x|y| − y

|y|

∣∣∣∣2−n (1− |x|2)(1− |y|2)
]

where

d2,n =
(−1)2−n/2

2π
n
2 42(2− n/2)!

.

To use the explicit form of the Green function we shall deal only with the case n is odd or even
and n > 4, the other cases being exactly similar.

Lemma 3.1. Let g1(x) = Γ4[Γ3[g]](x) and ϕ1(x) ≡ ϕ2(x) ≡ 0 in the Dirichlet problem (3.1). Let v(x)
be the unique solution of this problem. Then

v(0) =
1

4ωn

∫
Ω

(1− |y|2)Γ3[g](y)dy, (3.3)

where ωn = 2πn/2

Γ(n/2)
- the measure of the unit sphere.

Proof. Let v(x) be the solution of problem (3.1). Then it has the form (3.2). Therefore,

v(0) = d2,n

∫
Ω

[
|y|4−n − 1 +

(
2− n

2

)
(1− |y|2)

]
g1(y)dy.
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If we denote ρ = |y| and ξ = y
|y| , then the last integral can be rewritten as

v(0) = d2,n

∫
|ξ|=1

∫ 1

0

ρn−1[ρ4−n − 1 +
4− n

2
(1− ρ2)

]
g1(ρ, ξ)dρdξ =

∫
|ξ|=1

I(ξ)dξ.

Now we consider the inner integral I(ξ). Noting that g1(ρ, ξ) = (ρ ∂
∂ρ

+ 4)Γ3[g](ρ, ξ), we introduce
the following two integrals:

I1(ξ) =

∫ 1

0

[
4ρ3 +

4 · (2− n)

2
ρn−1 − 4 · (4− n)

2
ρn+2]Γ3[g](ρ, ξ)dρ,

I2(ξ) =

∫ 1

0

[
ρ4 +

2− n
2

ρn − 4− n
2

ρn+2] ∂
∂ρ

Γ3[g](ρ, ξ)dρ.

Obviously, I(ξ) = I1(ξ) + I2(ξ).
Integrating by parts in the integral I2(ξ) we obtain

I2(ξ) =

∫ 1

0

[
− 4ρ3 − (2− n) · n

2
ρn−1 +

(4− n) · (n+ 2)

2
ρn+1]Γ3[g](ρ, ξ)dρ.

Therefore

I(ξ) = I1(ξ) + I2(ξ) =
(2− n) · (4− n)

2

∫ 1

0

ρn−1[1− ρ2]Γ3[g](ρ, ξ)dρ.

By virtue of the equality

d2,n =
1

ωn
· 1

2(n− 2)(n− 4)

we have for v(0) the following

v(0) =
1

4ωn

∫
|ξ|=1

∫ 1

0

ρn−1(1− ρ2)Γ3[g](ρ, ξ)dρdξ

and going back to the Cartesian coordinate system, we finally obtain

v(0) =
1

4ωn

∫
Ω

(1− |y|2)Γ3[g](y)dy.

Lemma 3.2. Let the conditions of Lemma 3.1 be satisfied. Then

∂v

∂xj
(0) =

n

4ωn

∫
Ω

yj(1− |y|2)Γ4[g](y)dy, j = 1, 2, ..., n. (3.4)

Proof. It is not hard to verify, that

∂

∂xj
|x− y|4−n =

4− n
2
|x− y|2−n2(xj − yj)

∣∣∣∣
x=0

= −(4− n)|y|2−nyj ,

∂

∂xj

∣∣∣∣x|y| − y

|y|

∣∣∣∣4−n =
4− n

2

∣∣∣∣x|y| − y

|y|

∣∣∣∣2−n2

(
xj |y| −

yj
|y|

)
|y|

∣∣∣∣∣
x=0

= −(4− n)yj ,

and
∂

∂xj

[∣∣∣∣x|y| − y

|y|

∣∣∣∣2−n (1− |x|2)
]

=
2− n

2

∣∣∣∣x|y| − y

|y|

∣∣∣∣−n2

(
xj |y| −

yj
|y|

)
|y|×
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(
1− |x|2

)
+

∣∣∣∣x|y| − y

|y|

∣∣∣∣2−n(−2xj)

∣∣∣∣∣
x=0

= −(2− n)yj .

Therefore
∂v(0)

∂xj
=

∫
Ω

∂

∂xj
G2,n (0, y) g1 (y) dy =

−(4− n)d2,n

∫
Ω

yj

[
|y|2−n − n

2
− 2− n

2
|y|2
]
g1 (y) dy.

Passing to the polar coordinate system ρ = |y|, ξ = y
|y| , we have

∂v(0)

∂xj
= −(4− n)d2,n

∫
|ξ|=1

ξj

1∫
0

ρn
[
ρ2−n − n

2
− 2− n

2
ρ2

]
g1 (ρ, ξ) dρdξ.

Now we consider the inner integral. Noting that g1(ρ, ξ) = Γ4[Γ3[g]](ρ, ξ), we introduce the
following two integrals:

J1 =

1∫
0

[
3ρ2 − 3n

2
ρn − 3(2− n)

2
ρn+2

]
Γ4[g] (ρ, ξ) dρ,

J2 =

1∫
0

[
ρ3 − n

2
ρn+1 − (2− n)

2
ρn+3

]
∂

∂ρ
Γ4[g] (ρ, ξ) dρ.

Integrating by parts in J2 gives

J2 =

1∫
0

[
−3ρ2 +

n(n+ 1)

2
ρn +

(2− n)(n+ 3)

2
ρn+2

]
Γ4[g] (ρ, ξ) dρ.

Therefore

J1 + J2 =

1∫
0

[
n(n− 2)

2
ρn +

n(2− n)

2
ρn+2

]
Γ4[g] (ρ, ξ) dρ =

n(n− 2)

2

1∫
0

[
ρn − ρn+2]Γ4[g] (ρ, ξ) dρ.

Hence

∂v(0)

∂xj
=
n(n− 2)(n− 4)

2
d2,n

∫
|ξ|=1

fj(ξ)

1∫
0

ρn
[
1− ρ2]Γ4[g] (ρ, ξ) dρdξ =

1

ωn

n

4

∫
|ξ|=1

1∫
0

ρn−1ρξj
[
1− ρ2]Γ4[g] (ρ, ξ) dρdξ.

Note ρξj = yj . Therefore going back to the Cartesian coordinate system, we finally obtain

∂v

∂xj
(0) =

n

4ωn

∫
Ω

yj(1− |y|2)Γ4 [g] (y)dy.
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Now we investigate the properties of the solution of problem (3.1) in case of g1(x) ≡ 0.

Lemma 3.3. Let g1(x) ≡ 0 and ϕ1(x), ϕ2(x) be sufficiently smooth functions. Then the solution v(x)
of problem (3.1) satisfies the following conditions:

v(0) =
1

2ωn

∫
∂Ω

[2ϕ1(y)− ϕ2(y)] dSy, (3.5)

∂v(0)

∂xj
=

n

2ωn

∫
∂Ω

yj [3ϕ1(y)− ϕ2(y)] dSy, j = 1, 2, ..., n. (3.6)

Proof. Let v(x) be the solution of problem (3.1) with the function g1(x) ≡ 0. Making use of the
Almansi formula (see, for example, [12], p.188) we write the solution of problem (3.1) as

v(x) = v0(x) + (1− |x|2)v1(x), (3.7)

where vj(x) are harmonic functions in the ball Ω.
Substituting the function (3.7) into the boundary condition of (3.1) we obtain two Dirichlet problems:{

∆v0(x) = 0, x ∈ Ω,
v0(x) = ϕ1(x), x ∈ ∂Ω,

(3.8)

{
∆v1(x) = 0, x ∈ Ω,

v1(x) = −1

2

[
ϕ2(x)− ∂v0

∂ν
(x)
]

x ∈ ∂Ω.
(3.9)

We represent the solutions of these problems as the Poisson integrals:

v0(x) =
1

ωn

∫
∂Ω

1− |x|2

|x− y|nϕ1(y)dSy,

v1(x) = − 1

2ωn

∫
∂Ω

1− |x|2

|x− y|n

[
ϕ2(y)− ∂v0(y)

∂ν

]
dSy.

Then, using the property ∫
∂Ω

∂v0(y)

∂ν
dSy = 0

of harmonic functions, we have

v(0) = v0(0) + v1(0) =
1

ωn

∫
∂Ω

ϕ1(y)dSy −
1

2ωn

∫
∂Ω

[
ϕ2(y)− ∂v0(y)

∂ν

]
dSy =

1

2ωn

∫
∂Ω

[
2ϕ1(y)− ϕ2(y) +

∂v0(y)

∂ν

]
dSy =

1

2ωn

∫
∂Ω

[2ϕ1(y)− ϕ2(y)] dSy.

Thus equality (3.5) is proved.
Now we turn to the proof of (3.6).
A direct calculation gives

∂v0(0)

∂xj
=

1

ωn

∫
∂Ω

[
−2xj
|x− y|n −

n

2

1− |x|2

|x− y|n+2
· 2(xj − yj)

]∣∣∣∣
x=0

ϕ1(y)dSy =
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n

ωn

∫
∂Ω

yjϕ1(y)dSy,

∂v1(0)

∂xj
= − 1

2ωn

∫
∂Ω

[
−2xj
|x− y|n −

n

2

1− |x|2

|x− y|n+2
· 2(xj − yj)

]∣∣∣∣
x=0

×

[
ϕ2(y)− ∂v0(y)

∂ν

]
dSy = − n

2ωn

∫
∂Ω

yj

[
ϕ2(y)− ∂v0(y)

∂ν

]
dSy.

If we denote z1(y) = yj , z2(y) = v0(x) and note that these are harmonic functions, then by the
Green formula we have∫

Ω

[z1(y)∆z2(y)− z2(y)∆z1(y)] dy =

∫
∂Ω

[
z1(y)

∂z2(y)

∂ν
− ∂z1(y)

∂ν
z2(y)

]
dSy. (3.10)

Now we substitute the equality

∂z1(y)

∂ν

∣∣∣∣
∂Ω

= ρ
∂yj
∂ρ

∣∣∣∣
∂Ω

=

n∑
i=1

yi
∂yj
∂yi

∣∣∣∣∣
∂Ω

= yj |∂Ω

to the Green formula (3.10). Then

0 =

∫
∂Ω

[
yj
∂v0(y)

∂ν
− yjv0(y)

]
dSy =

∫
∂Ω

[
yj
∂v0(y)

∂ν
− yjϕ1(y)

]
dSy,

or ∫
∂Ω

yj
∂v0(y)

∂ν
dSy =

∫
∂Ω

yjϕ1(y)dSy.

Therefore

∂v1(0)

∂xj
= − n

2ωn

∫
∂Ω

[
yjϕ2(y)− yj

∂v0(y)

∂ν

]
dSy =− n

2ωn

∫
∂Ω

yj [ϕ2(y)− ϕ1(y)] dSy.

Since

∂v(0)

∂xj
=
∂v0(0)

∂xj
+
∂v1(0)

∂xj
,

we finally have

∂v(0)

∂xj
=

n

ωn

∫
∂Ω

yjϕ1(y)dSy−
n

2ωn

∫
∂Ω

yj [ϕ2(y)− ϕ1(y)] dSy =

n

2ωn

∫
∂Ω

yj [3ϕ1(y)− ϕ2(y)] dSy.

Lemma 3.4. Let g(x), ϕ1(x) and ϕ2(x) be sufficiently smooth functions and g1(x) = Γ4[Γ3[g]](x). Let
v(x) be the solution of problem (3.1). Then

1) v(0) = 0 if and only if

1

2

∫
Ω

(
1− |y|2

)
Γ3[g(y)]dy +

∫
∂Ω

[2ϕ1(y)− ϕ2(y)] dSy = 0; (3.11)
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2)
∂v(0)

∂xj
= 0 for all j = 1, 2, ..., n, if and only if

1

2

∫
Ω

yj(1− |y|2)Γ4 [g] (y)dy +

∫
∂Ω

yj [3ϕ1(y)− ϕ2(y)] dSy = 0, j = 1, 2, ..., n. (3.12)

Proof. We represent the solution of problem (3.1) in the form

v(x) =

∫
Ω

G2,n (x, y) g1 (y) dy + v0(x) + (1− |x|2)v1(x),

where v0(x) and v1(x) are the solutions of problems (3.8) and (3.9) correspondingly.
If we make use of (3.3) and (3.5), then we obtain

v(0) =

∫
Ω

G2,n (0, y) g1 (y) dy + v0(0) + v1(0) =

1

4ωn

∫
Ω

(
1− |y|2

)
Γ3[g(y)]dy +

1

2ωn

∫
∂Ω

[2ϕ1(y)− ϕ2(y)] dSy = 0.

Thus (3.11) is proved.
Similarly, making use of (3.4) and (3.6) we have

∂v(0)

∂xj
=

∫
Ω

∂

∂xj
G2,n (0, y) g1 (y) dy +

∂v0(0)

∂xj
+
∂v1(0)

∂xj
=

n

4ωn

∫
Ω

yj(1− |y|2)Γ4 [g] (y)dy +
n

2ωn

∫
∂Ω

yj [3ϕ1(y)− ϕ2(y)] dSy = 0,

j = 1, 2, ..., n, which proves (3.12).

4 The Neumann Problem in the General Case
In this section we consider the Neumann problem (1.5), (1.6) and prove the following main result of
the present paper.

Theorem 4.1. Let ψk(x), k = 1, 2 and g(x) be sufficiently smooth. Then the necessary and sufficient
solvability conditions for the Neumann boundary value problem (1.5), (1.6) have the form

1

2

∫
Ω

(
1− |y|2

)
Γ3[g(y)]dy =

∫
∂Ω

ψ2(y)dSy, (4.1)

1

2

∫
Ω

yj(1− |y|2)Γ4 [g] (y)dy =

∫
∂Ω

yj [ψ2(y)− ψ1(y)] dSy, j = 1, 2, ..., n (4.2)

If a solution exists, then it is unique up to a first order polynomial and can be represented as

u(x) = c0 +
n∑
j=1

cjxj +

1∫
0

(1− s)s−2v(sx)ds, (4.3)

where cj , j = 0, 1, ..., n, are arbitrary constants, v(x) is the solution of Dirichlet problem (3.1) with the
functions g1(x) =

(
r ∂
∂r

+ 4
) (
r ∂
∂r

+ 3
)
g(x), ϕ1(x) = ψ1(x), ϕ2(x) = ψ2(x) + 2ψ1(x) and with the

additional conditions
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v(0) = 0,
∂v(0)

∂xj
= 0, j = 1, 2, ..., n. (4.4)

Proof. Let the solution of problem (1.5), (1.6) exist and let us denote it by u(x). We prove, that
1) conditions (4.1) and (4.2) are satisfied;
2) the solution u(x) has the form (4.3) and function v(x) has the properties (4.4).
We apply the operator r ∂

∂r

(
r ∂
∂r
− 1
)

to function u(x) and denote v(x) = r ∂
∂r

(
r ∂
∂r
− 1
)
u(x).

Now we define an equation and boundary conditions for the function v(x). By virtue of equality
(2.6) we have

∆2v(x) =

(
r
∂

∂r
+ 4

)(
r
∂

∂r
+ 3

)
∆2u(x) =(

r
∂

∂r
+ 4

)(
r
∂

∂r
+ 3

)
g(x) ≡ g1(x).

It is not hard to verify, that for any k = 1, 2, ... and all x ∈ ∂Ω one has [13]

∂ku(x)

∂νk
= r

∂

∂r

(
r
∂

∂r
− 1

)
...

(
r
∂

∂r
− (k − 1)

)
u(x).

Therefore

v(x)|∂Ω =
∂

∂r

(
r
∂

∂r
− 1

)
u(x)

∣∣∣∣
∂Ω

=
∂2u(x)

∂ν2

∣∣∣∣
∂Ω

= ψ1(x),

∂v(x)

∂ν

∣∣∣∣
∂Ω

= r
∂v(x)

∂r

∣∣∣∣
∂Ω

= r
∂

∂r

[
r
∂

∂r

(
r
∂

∂r
− 1

)]
u(x)

∣∣∣∣
∂Ω

=

r3 ∂
3u(x)

∂r3
+ 2r2 ∂

2u(x)

∂r2

∣∣∣∣
∂Ω

=

∂3u(x)

∂ν3
+ 2

∂2u(x)

∂ν2

∣∣∣∣
∂Ω

= ψ2(x) + 2ψ1(x).

Thus, if u(x) is a solution of problem (1.5), (1.6), then the function v(x) = r ∂
∂r

(
r ∂
∂r
− 1
)
u(x) will

be a solution of the Dirichlet problem (3.1) with the functions

g1(x) =

(
r
∂

∂r
+ 4

)(
r
∂

∂r
+ 3

)
g(x), (4.5)

and
ϕ1(x) = ψ1(x), ϕ2(x) = ψ2(x) + 2ψ1(x). (4.6)

Moreover, a direct calculations show, that the function v(x) satisfies the conditions (4.4).
According to Lemma 3.4, the conditions (4.4) are fulfilled if and only if the conditions (3.11) and

(3.12) are satisfied. Since ϕ1(x) = ψ1(x) and ϕ2(x) = ψ2(x) + 2ψ1(x), one has∫
∂Ω

[2ϕ1(y)− ϕ2(y)] dSy =−
∫
∂Ω

ψ2(y)dSy,∫
∂Ω

yj [3ϕ1(y)− ϕ2(y)] dSy =

∫
∂Ω

yj [ψ1(y)− ψ2(y)] dSy, j = 1, 2, ..., n.

Thus the statement 1) is proved.
Now consider the integral

J =

1∫
0

(1− s)d
2u(sx)

ds2
ds.
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We can rewrite it as

J =

1∫
0

(1− s)s−2s2 d
2u(sx)

ds2
ds =

1∫
0

(1− s)s−2s
d

ds

(
s
d

ds
− 1

)
u(sx)ds.

Integrating by parts gives

J =

1∫
0

(1− s)d
2u(sx)

ds2
ds = (1− s)du(sx)

ds

∣∣∣∣s=1

s=0

+

1∫
0

du(sx)

ds
ds =

−du(0)

ds
+ u(x)− u(0).

Due to equality s d
ds

(
s d
ds
− 1
)
u(sx) = v(sx) one has

u(x) = u(0) +
du(0)

ds
+

1∫
0

(1− s)s−2v(sx)ds. (4.7)

If we denote yj = sxj , j = 1, 2, ..., n, then

du(sx)

ds
=

n∑
j=1

∂u

∂yj

dyj
ds

=

n∑
j=1

xj
∂u

∂yj
,

or
du(0)

ds
=

n∑
j=1

xj
∂u(0)

∂yj
. (4.8)

Denoting u(0) = c0,
∂u(0)
∂yj

= cj and substituting (4.8) into (4.7), we obtain the statement 2).
Now we suppose that the statements 1) and 2) are satisfied and prove the existence of the

solution of problem (1.5), (1.6).
Let v(x) be the solution of the problem (3.1) with functions (4.5) and (4.6). From the statement

1) it follows that v(x) satisfies the conditions (4.4). Therefore the following function

u(x) = c0 +

n∑
j=1

cjxj +

1∫
0

(1− s)s−2v(sx)ds

is well defined.
Next we prove that this function is a solution of problem (1.5), (1.6).
Apply operator ∆2 to u(x). Then

∆2u(x) =

∫ 1

0

(1− s)s2g1(sx)ds =∫ 1

0

(1− s)s2

(
s
d

ds
+ 4

)(
s
d

ds
+ 3

)
g(sx)ds =

∫ 1

0

(1− s)s2Γ4 [Γ3 [g]] (sx)ds.

On the other hand

Γ−1
4

[
Γ−1

3 [g1]
]

(x) =

1∫
0

t31

1∫
0

t22g1(t1t2x)dt2dt1.
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By changing variables s = t1t2 one has

Γ−1
4

[
Γ−1

3 [g1]
]

(x) =

1∫
0

t1∫
0

s2g1(sx)dsdt1 =

1∫
0

s2g1(sx)

1∫
s

dt1ds =

1∫
0

(1− s)s2g1(sx)ds.

Thus
∆2u(x) = Γ−1

4

[
Γ−1

3 [g1]
]

(x) = Γ−1
4

[
Γ−1

3 [Γ3 [Γ4 [g]]]
]

(x),

and according to (2.3) we have ∆2u(x) = g(x).
Now we only have to prove that u(x) satisfies the boundary condition (1.6).
By changing variables sr = ξ, ds = r−1dξ we obtain

1∫
0

(1− s)s2v(sx)ds =

r∫
0

(
1− ξ

r

)
r2ξ−2v(ξθ)r−1dξ =

r∫
0

(r − ξ) ξ−2v(ξθ)dξ.

Therefore, using the equality r ∂u(x)
∂r

=
∑n
k=1 xk

∂u(x)
∂xk

, one has

r
∂u(x)

∂r
=

n∑
j=1

cjxj + r

r∫
0

ξ−2v(sx)ds,

(
r
∂

∂r
− 1

)
r
∂

∂r
u(x) =

(
r
∂

∂r
− 1

) n∑
j=1

cjxj + r

r∫
0

ξ−2v(sx)ds

 =

n∑
j=1

cjxj + r

r∫
0

ξ−2v(sx)ds+ r2 · r−2v(x)−
n∑
j=1

cjxj − r
r∫

0

ξ−2v(sx)ds = v(x).

Then
∂2u(x)

∂ν2

∣∣∣∣
∂Ω

=

(
r
∂

∂r
− 1

)
r
∂

∂r
u(x)

∣∣∣∣
∂Ω

= v(x)|∂Ω = ϕ1(x) ≡ ψ1(x).

In the same way(
r
∂

∂r
− 2

)(
r
∂

∂r
− 1

)
r
∂

∂r
u(x) =

(
r
∂

∂r
− 2

)
v(x) = r

∂v(x)

∂r
− 2v(x).

Hence

∂3u(x)

∂ν3

∣∣∣∣
∂Ω

=
∂v(x)

∂ν
− 2v(x)

∣∣∣∣
∂Ω

= ϕ2(x)− 2ϕ1(x) = ψ2(x),

i.e. function u(x) satisfies the boundary conditions (1.6).

Example 4.2. Consider the follwing Neumann problem

∆2u(x) = 1, x ∈ Ω

∂2u(x)

∂ν2
= a, x ∈ ∂Ω,

∂3u(x)

∂ν3
= b, x ∈ ∂Ω,

where a and b are given constants. Applying Theorem 4.1 we will find solvability conditions and the
solution of this problem.
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We have g(x) = 1, ψ1(x) = a and ψ2(x) = b. Therefore Γ3[g](x) = 3, Γ4[g](x) = 4 and
Γ3[Γ4[g]](x) = 12.

We first check whether or not the boundary functions of the considering problem satisfy the
conditions (4.1) and (4.2). It is not hard to verify, that∫

∂Ω

ψ2(y)dSy = b · ωn,
∫

Ω

1− |y|2

2
Γ3[g](y)dy =

3ωn
n(n+ 2)

.

Therefore condition (4.1) has the form b = 3
n(n+2)

.
Since the function yj is odd, then one obviously has∫

Ω

yj
1− |y|2

2
Γ4[g](y)dy = 0

and ∫
∂Ω

yj(b− 2a)dSy = 0.

Hence conditions (4.2) are satisfied for any j = 1, 2..., n.
Thus the considering Neumann problem has a solution if and only if

b =
3

n(n+ 2)
.

Noting this we may write the corresponding Dirichlet problem in the form

∆2v(x) = 12, x ∈ Ω,

v(x) = a and
∂v(x)

∂ν
= 2a+

3

n(n+ 2)
, x ∈ ∂Ω.

The solution of this problem can be written as (see [14]):

v(x) =
(
2a− 3

n(n+ 2)

)
|x|2 +

3

n(n+ 2)
|x|4.

It is easy to verify that this function satisfies conditions (4.4).
According to formula (4.3), after some routine calculation, we obtain the solution of the considering

Neumann problem in the form

u(x) = c0 +

n∑
j=1

cjxj +
(a

2
− 3

n(n+ 2)

)
|x|2 +

1

8n(n+ 2)
|x|4.

5 A Different Formulation of the Main Result
If we integrate by part in the integral (3.3) one more time, then we obtain

v(0) =
1

ωn
· n− 1

4

∫
Ω

|y|2g(y)dy − 1

ωn
· n− 3

4

∫
Ω

g(y)dy.

Integration one more time in the integral (3.4) gives

∂v(0)

∂xj
=

1

ωn
· n(n− 1)

4

∫
Ω

yj |y|2g(y)dy − 1

ωn
· n(n− 3)

4

∫
Ω

yjg(y)dy,

j = 1, 2, ..., n.
Having this done, if we repeat the other part of the proof of Theorem 4.1, then we have the

following formulation of the main result.
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Theorem 5.1. Let ψk(x), k = 1, 2 and g(x) be sufficiently smooth. Then the necessary and sufficient
solvability condition for the Neumann boundary value problem (1.5), (1.6) has the form

n− 1

2

∫
Ω

|y|2g(y)dy − n− 3

2

∫
Ω

g(y)dy =

∫
∂Ω

ψ2(x)dSy,

n− 1

2

∫
Ω

yj |y|2g(y)dy − n− 3

2

∫
Ω

yjg(y)dy =∫
∂Ω

yj [ψ2(y)− ψ1(y)] dSy, j = 1, 2, ..., n

If a solution exists, then it is unique up to a first order polynomial and can be represented as

u(x) = c0 +

n∑
j=1

cjxj +

1∫
0

(1− s)s−2v(sx)ds,

where cj , j = 0, 1, ..., n, are arbitrary constants, v(x) is the solution of Dirichlet problem (3.1) with the
functions g1(x) =

(
r ∂
∂r

+ 4
) (
r ∂
∂r

+ 3
)
g(x), ϕ1(x) = ψ1(x), ϕ2(x) = ψ2(x) + 2ψ1(x) and with the

additional conditions

v(0) = 0,
∂v(0)

∂xj
= 0, j = 1, 2, ..., n.

6 Conclusions
a In the section two we study properties of some integro-differential operators, which we then use

throughout the paper.

b In section 3 we investigate the Dirichlet problem for biharmonic equation, making use of the explicit
form of the Green function found in [9, 10, 11].

c Then in the following section 4, reducing the Neumann problem (1.5), (1.6) to the considered
Dirichlet problem, we give the necessary and sufficient solvability conditions for the Neumann
problem for the biharmonic equation. This is the main result of the paper. In these conditions
the right hand side of the equation g(x) participates under the operators Γ3 and Γ4.

d Finally, in section 5, slightly modifying the proof of the main result, we will give it in a different
formulation, where one does not have operators Γ3 and Γ4.
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