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Abstract 
 
The fractional sub-equation method is proposed to construct analytical solutions of nonlinear 
fractional partial differential equations (FPDEs), involving Jumarie’s modified Riemann-
Liouville derivative. The fractional sub-equation method is applied to the space-time fractional 
generalized Hirota-Satsuma coupled KdV equation and coupled mKdV equation. The analytical 
solutions show that the fractional sub-equation method is very effective for the fractional 
coupled KdV and mKdV equations. The solutions are compared with that of the extended tanh-
function method. New exact solutions are found for the coupled mKdV equation. 

Keywords: Fractional sub-equation method; Analytical solutions; Nonlinear KdV and mKdV 
fractional equations. 
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1 Introduction 
 
Fractional differential equations are generalizations of classical differential equations of integer 
order. In recent years, nonlinear fractional differential equations (FDEs) have gained considerable 
interest. It is caused by the development of the theory of fractional calculus itself but also by the 
applications of such constructions in various sciences such as physics, engineering, biology and 
others areas [1–7]. Among the investigations for fractional differential equations, research for 
seeking exact solutions is an important topic as well as applying them to practical problems [8–
13]. Many powerful and efficient methods have been proposed to obtain numerical solutions and 
exact solutions of FDEs. For example, the finite difference method [14], the finite element method 
[15, 16], the differential transform method [17,18], the adomian decomposition method (ADM) 
[19–21], the variational iteration method [22–24], the homotopy perturbation method [25], the 
Jacobi elliptic-function method, the modified trigonometric function series method, the modified 
(G´/G) expansion method and other methods, have been applied to construct analytical traveling 
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wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity [26–
30]. Several important aspects of FPDEs have been investigated in recent years; such as the 
existence and uniqueness of solutions to Cauchy type problems, the methods for explicit and 
numerical solutions, and the stability of solutions [31,32]. 
 
By taking into account the results obtained by [33], Zhang and Zhang [34] proposed a new 
algebraic method named the fractional sub-equation method to look for traveling wave solutions 
of nonlinear FPDEs. The method is based on the homogeneous balance principle [35] and the 
Jumarie’s modified Riemann-Liouville derivative of fractional order [36, 37]. With the help of this 
method, Zhang et al. successfully obtained traveling wave solutions of nonlinear time fractional 
biological population model and (4+1)-dimensional space-time fractional Fokas equation [34]. 
Also the validity and advantages of the method have been applied to the space-time fractional 
mBBM equation and the space-time fractional ZKBBM equation [38]. The sub-equation method 
also has been applied to the space–time fractional potential Kadomtsev–Petviashvili (PKP) 
equation and the space–time fractional symmetric regularized long wave (SRLW) equation [39]. 
The coupled KdV and mKdV equations, which were introduced by Wu et al. [40], have been 
analyzed applying the sub-equation method in the integer order limit case, called the extended 
tanh-function method [41–44]. Also the improved fractional sub-equation method has been 
applied to solve the nonlinear FPDE KdV coupled equation in fluid mechanics [45]. 
 
The coupled KdV and mKdV systems are very complicated and not easy to solve by direct 
integration method. Fan [41] has provided a suggestion to construct soliton solutions for these 
equations by using an extended tanh-function method and symbolic computation. 
 
The aim of this work is to obtain analytical solutions, by applying the sub-equation method [34], 
for the space-time fractional Hirota-Satsuma coupled KdV equation, 
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and the space-time fractional coupled mKdV equation, 
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where Dα

x  and Dα
t  are the Jumarie’s modified Riemann-Liouville derivatives. λ is a constant and 

α is the parameter describing the order of the fractional derivatives of u(x,t), v(x,t) and w(x,t). The 
obtained solutions would be important for previous works where approximated methods [46–49] 
have been applied to solve the coupled equations (1) and (2). The Hirota-Satsuma coupled KdV 
equation describes the interaction between two long waves with different dispersion relations. It is 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(4), 572-589, 2014 
 
 

574 
 

a non-linear equation that exhibits special solutions, known as solitons, which are stable and do 
not disperse with time [50]. In Ref. [40] the authors have been introduced a 4x4 matrix spectral 
problem with three potentials, by which the coupled mKdV equation was obtained as a new 
integrable generalization of the Hirota-Satsuma coupled KdV equation. 
 
The outline of this work is as follows: in section 2, the sub-equation method is presented. Section 
3 contains the application of the method to solve the coupled KdV and mKdV FPDEs. In section 
4, we discuss the reliability of the proposed method and the exact solutions are compared with the 
results reported in the literature [41]. Finally in section 5 some conclusions are presented. 
 

2.  Description of the Fractional Sub-equation Method and Its 
Applications to the Space-Time Fractional Differential 
Equations 

 
In this section we present the main ideas of the fractional sub-equation method. This method 
considers the Jumarie’s modified Riemann-Liouville fractional derivative of order α [36,37]: 
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Some properties for the proposed modified Riemann–Liouville derivative are [36,37]: 
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The above properties play an important role in the fractional sub-equation method. The main steps 
of this method are described as follows [34,38,39]: 
 
Step 1: Suppose that a nonlinear FPDE, say in two independent variables, is given by: 
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where Dα

x u and Dα
t u are the Jumarie’s modified Riemann-Liouville derivatives of u, u = u(x,t) is 
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an unknown function, P is a polynomial in u and its various partial derivatives in which the 
highest order derivatives and nonlinear terms are involved. 
 
Step 2: By using the traveling wave transformation 
 
 ( , ) ( ),    ,u x t u kx ctξ ξ= = +  (6) 

 
where k and c are constants to be determined later, the FPDE (5) is reduced to the following 
nonlinear fractional ordinary differential equation for u(x,t) = u(ξ): 
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Step 3: We suppose that Eq. (7) has the following solution: 
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where ai (i=0,1,2,…,n) are constants to be determined later, n is a positive integer determined by 
balancing the highest order derivatives and nonlinear terms in Eq. (7), and φ =φ(ξ)

 
satisfies the 

following fractional Riccati equation: 
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where σ is a constant. By using the generalized exp-function method via Mittag-Leffler function, 
Zhang et al. [33], obtained the following solutions of fractional Riccati equation (9): 
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where the generalized hyperbolic and trigonometric functions are defined as: 
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where Eα(z) is the Mittag-Leffler function, given as: 
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Step 4: Substituting Eq. (8) into Eq. (7) taking into account Eq. (9) and the properties of the 
Jumarie’s modified Riemann-Liouville derivative, Eq. (7) is converted to a polynomial in φ i (ξ) 
(i= 0,1,2,…). Equating each coefficient of this polynomial to zero, yields a set of algebraic 
equations for ai (i= 0,1,2,…), k and c. 
 
Step 5: Solving the equations system in Step 4, and by using the solutions Eq. (10), we can 
construct a variety of exact solutions of Eq. (7). 
 
Remark: If α→1, the Riccati equation becomes φ´ (ξ)=σ+φ 2 (ξ). The method can be used to 
solve integer order differential equations. In this sense the sub-equation method includes the 
existing tanh-function method as special case. 
 

3.  Fractional Sub-equation Method Applied to the Kdv and 
MKDV Coupled Equations 

 
In this section we apply the fractional sub-equation method to construct the exact solutions for 
space-time fractional Hirota-Satsuma coupled KdV equation (1) and the coupled mKdV equation 
(2). 
 
3.1 The Nonlinear Hirota-Satsuma Coupled KdV Equation  
 
To look for the travelling wave solution of Eq. (1), we make the transformation u(x,t)=u(ξ), 
v(x,t)=v(ξ), w(x,t)=w(ξ), where ξ=kx+ct and Eq. (1) can be reduced to the following nonlinear 
fractional ordinary differential equations (ODEs): 
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We suppose that Eq. (13) has the following formal solution:  
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where φ(ξ) satisfies Eq. (9). Balancing the highest order linear terms and nonlinear terms in Eq.  
(13), it is possible to determine the value of mmax, nmax and lmax. Putting together Eq. (14) along 
with Eq. (9) into Eq. (13), we obtain the following two ansätze [41]:  
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where mmax= nmax= lmax =2 and the second ansätz is given by: 
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with mmax = 2, nmax = lmax = 1. Now for the case where mmax= nmax= lmax =2, substituting Eq. (15) 
into Eq. (13) we obtain the following algebraic system equations: 
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Now by setting the coefficients of φ i (i=0,1,2,3) to zero, we obtain a set of algebraic equations for 
ui, vi, wi (i=0,1,2), k and c:  
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obtained from equation Eq. (17), 
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obtained from equation Eq. (18), 
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obtained from equation Eq. (19). From these algebraic equations we notice that:  
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and the tanh-type solution of the coupled space-time fractional KdV equation is given by:   
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Now if we consider the second ansätz (Eq. (16)), setting v2 =w2 =0 into Eq. (20)-(22), the value of 
the parameters ui (i=0,1,2 ), vj , wj ( j=0,1 ), k and c, are given by:  
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and the tanh-type solution of the coupled space-time fractional KdV equation is given by:  
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We note that the solutions (24) and (26) in the limit case α→1 with σ =-1 are the same solutions previously 
obtained in Ref. [41]. 
 
3.2 The Nonlinear Coupled mKdV Equation  
 
Now to look for the travelling wave solutions for the space-time fractional coupled mKdV 
equation, we make the transformation u(x,t)=u(ξ), v(x,t)=v(ξ) where ξ=kx+ct and Eq. (2) can be 
reduced to the following nonlinear fractional ODEs:  
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Balancing the highest order linear terms and nonlinear terms in Eq. (27) it is possible to determine 
the value of mmax and nmax. Putting together Eq. (28) along with Eq. (9) into Eq.    (27), we obtain 
the following two ansätze [41]: 
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with mmax =1, nmax =1. Now for the case where mmax =1 and nmax =2, substituting Eq. (29) into Eq. 
(27) we obtain the following algebraic system equations: 
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obtained from equation Eq. (32). From these algebraic equations we notice that:  
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0 1

1

2
2

2
0

3

0    ,

   ,

2    ,

2    ,

  .

u v

u k

v k

v k

c k

α

α

α

α α

λ σ
σ

= =

= −

= −

= −

=

 (35) 

 
As we know the equation (27) have the kink-type soliton solution:  
 

 
  
u x,t( ) = kα tanhα kx+ ct( ) ,  v x,t( ) = v

0
− 2k 2α tanh2

α kx+ ct( ) , (36) 

 
constructed by Fan [41], for the ansätz proposed in Eq. (29). We can compare this solution with 
Eq. (10) for the tanh-type solution and obtain the following values for the coefficients ui and vj , 
the parameters k, c and the constant σ: 

 

  

u
0

= v
1

= 0  ,

u
1

= −kα    ,

v2 = −2k2α    ,

v0 = λ + 2k2α    ,

cα = −k3α    ,

σ = −1  ,

 (37) 

 
and the solution of the coupled space-time fractional mKdV equation is given by: 
 

  
u x,t( ) = kα tanhα kx+ ct( ) ,  v x,t( ) = λ + 2k2α( ) − 2k2α tanh2

α kx+ ct( ) , (38) 

with: 

 3    .c kα α= −  (39) 
 
For the second anzätz (Eq. (30)), setting v2 =0 into Eq. (33) and (34), the value of the parameters 
ui , vi (i=0,1), k and c, are given by: 
 

 

  

u1 = −kα    ,

u
0

= −
v

1

2kα    ,

v0 = λ    ,

cα = k3ασ + 3kαu
0
2    .

 (40) 

 
We also know that the equation (27) have the kink-type soliton solution [41]: 
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( ) ( ) ( ) ( )0 1 0, tanh ,   , tanh ,u x t u u kx ct v x t v b kx ctα
α α= + + = + +  (41) 

 
for the ansätz proposed in Eq. (30), where b is some constant parameter. We can compare this 
solution with Eq. (10) for the tanh-type solution and obtain the following values for the 
coefficients ui and vj , the parameters k, c and the constant σ: 
 

 

1

1 0 1 0

1

0

2

3

0

,

2 2 ,

,

,
2

3
,

4

1,

,

u k

v k u u u

v b

b
u

k

b
c k k

k

v

α

α

α

α

α

α
α α α

α

σ
λ

= −

= − =

= −

=

 
= − +  

 

= −
=

 (42) 

 
and the solution to the coupled space-time fractional mKdV equation is given by:  
 

 ( ) ( ) ( ) ( ), tanh , , tanh ,
2

b
u x t k kx ct v x t b kx ct

k

α
α α

α αα λ= + + = + +    (43) 

with: 

 

2

3 3
   .

4

b
c k k

k

α
α α α

α

 
= − +  

 
 (44) 

 
It should be noted that these results are in good agreement with previous results obtained by Zhao 
et al. [51], where they have applied the extended fractional sub-equation method to the mKdV 
fractional non-linear equation. 
 

4. Discussion 
 
The reliability of the sub-equation method to solve FPDEs has been demonstrated by applying this 
method to the space-time fractional Hirota-Satsuma coupled KdV equation. For the special case 
α=1 and σ=-1, we have successfully recovered the previously known solutions, equations (24) 
and (26), that have been found in Ref. [41]. 
 
However, we note that for the special case where α=1 the solutions (38) and (43) for the space-
time fractional coupled mKdV equation show some differences with the solutions previously 
introduced by Fan [41]:  
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u% x,t( ) = k tanh kx+ c%t( ) ,   v% x,t( ) = λ

2
+ 2k2





− 2k2 tanh2 kx+ c%t( ) ,      (45) 

 
   
c% = k

2
−2k2 − 3λ( )  (46) 

 

 

   
u% x,t( ) = b

2k
+ k tanh kx+ c%t( ) ,v% x,t( ) = λ

2
1+ k

b







+ btanh kx+ c%t( ) , (47) 

 

 

   
c% = −k3 + 3

4
k

b

k








2

+ 6

4
kλ k

b
−1







   .  (48) 

 
The differences observed are important for the parameter c and the coefficient v0, and we need to 
be sure that the solutions (38) and (43) here obtained are correct. For the case α=1 the solutions of 
the present work can be compared with the results obtained with the aid of some symbolic 
mathematical software, like Mathematica. The results obtained with Mathematica show that the 
solutions (38) and (43) are correct. The Mathematica code is given by: 
 
In[1]:= u[x, t] := k Tanh[k x + c*t]; 
v[x, t] = (L+2.0*k^2) - 2.0*(k^2)*(Tanh[k x + c*t])^2; 
In[2]:= FullSimplify[(1/2)*D[u[x, t], x, 3] - 3*(u[x, t])^2*D[u[x, t], x, 1] 
+ (3/2)*D[v[x, t],x, 2] + 3*D[(u[x, t]*v[x, t]), x, 1] 
- 3*L*D[u[x, t], x, 1]] 
Out[2]= -1. k^4 Sech[c t + k x]^2 
In[3]:= FullSimplify[D[u[x, t], t, 1]] 
Out[3]= c k Sech[c t + k x]^2 
In[4]:=FullSimplify[-D[v[x, t], x, 3] - 3*v[x, t]*D[(v[ x, t]), x, 1] 
-3*D[v[x, t], x, 1] * D[u[x, t], x, 1] 
+ 3*(u[x, t])^2*D[v[x, t], x, 1] + 3*L*D[v[x, t], x, 1]]]  
Out[4]= 4. k^5 Sech[c t + k x]^2 Tanh[c t + k x] 
In[5]:=FullSimplify[D[v[x, t], t,1]]; 
Out[5]= -4. c k^2 Sech[c t + k x]^2 Tanh[c t + k x] 
In[6]:=Solve[Out[4]/Out[5] == 1, c] 
Out[6]={{c -> - k^3}} 
In[7]:=u[x, t] := (b/(2*k)) + k Tanh[k x + c t]; 
v[x, t] = L + b*(Tanh[k x + c*t]); 
In[8]:=FullSimplify[(1/2)*D[u[x, t], x, 3] - 3*(u[x, t])^2*D[u[ x, t], x, 1] 
+ (3/2)*D[v[x, t],x, 2] + 3*D[(u[x, t]*v[x, t]), x, 1] 
- 3*L*D[u[x, t], x, 1]] 
Out[8]= 1/4 (3 b^2 - 4 k^4) Sech[c t + k x]^2 
In[9]:=FullSimplify[D[u[x, t], t, 1]] 
Out[9]= c k Sech[c t + k x]^2 
In[10]:=FullSimplify[-D[v[x, t], x, 3] - 3*v[x, t]*D[(v[x, t ]), x, 1] 
-3*D[v[x, t], x, 1] * D[u[x, t], x, 1] 
+ 3*(u[x, t])^2*D[v[x, t], x, 1] + 3*L*D[v[x, t], x, 1]]]  
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Out[10]= (b (3 b^2 - 4 k^4) Sech[c t + k x]^2)/(4 k) 
In[11]:=FullSimplify[D[v[x, t], t, 1]] 
Out[11]= b c Sech[c t + k x]^2 
In[12]:=Solve[Out[10]/Out[11] == 1, c] 
Out[12]={{c -> (3 b^2 - 4 k^4)/(4 k)}} 
 
5. Conclusion 
 
In this paper we have investigated the exact travelling wave solutions to the space-time fractional 
Hirota–Satsuma KdV and the mKdV equations to illustrate the validity of the sub-equation 
method. For the KdV system, we have obtained the same solutions previously known. However, 
for the mKdV system, we found new exact solutions with important differences compared with 
the solutions obtained before [41]. We have confirmed the accuracy of the mKdV solutions here 
presented by using a symbolic code in Mathematica, for the special case when the fractional-order 
parameter for the mKdV coupled FPDE reaches its integer limit. These new exact solutions can be 
very useful as a starting point of comparison when some approximated methods are applied to the 
mKdV equation [46–49]. The present work demonstrates the wider applicability of the sub-
equation method to nonlinear fractional coupled partial differential equations in mathematical 
physics. 
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