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Abstract

The fractional su-equation method is proposed to construct analytical solutibmerdinear
fractional partial differential equations (FPDEs), involvidgmarie’s modified Riemanr
Liouville derivative. The fractional sub-equation methedpplied to the space-time fractional
generalized Hirota-Satsuma coupled KdV equation and coupled nelfdation. The analytical
solutions show that the fractional sub-equation methodery effective for the fractional
coupled KdV and mKdV equations. The solutions are comparedthathof the extended tanh
function method. New exact solutions are found for the coupled nd€pidtion.
Keywords: Fractional sub-equation method; Analytical sohg; Nonlinear KdV and mKdV
fractional equations.
2010 Mathematics Subject Classification: 26A33; 35R11; 35G20

1 Introduction

Fractional differential equations are generalizationslagsical differential equations of integer
order. In recent years, nonlinear fractional differerg@ations (FDESs) have gained considerable
interest. It is caused by the development of the thebfyactional calculus itself but also by the
applications of such constructions in various sciences suphyascs, engineering, biology and
others areas [1-7]. Among the investigations for fractiondérential equations, research for
seeking exact solutions is an important topic as wedpsying them to practical problems [8—
13]. Many powerful and efficient methods have been proposetitton numerical solutions and
exact solutions of FDEs. For example, the finite défeee method [14], the finite element method
[15, 16], the differential transform method [17,18], the adomdecomposition method (ADM)
[19-21], the variational iteration method [22-24], the htwpy perturbation method [25], the
Jacobi elliptic-function method, the modified trigonometricction series method, the modified
(G’IG) expansion method and other methods, have been applied toucbamalytical traveling
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wave solutions for the perturbed nonlinear Schrodingertsation with Kerr law nonlinearity [26—
30]. Several important aspects of FPDEs have been inastign recent years; such as the
existence and uniqueness of solutions to Cauchy type prgbteensnethods for explicit and
numerical solutions, and the stability of solutions [31,32].

By taking into account the results obtained by [33], Zhand Zhang [34] proposed a new
algebraic method named the fractional sub-equation methtwbk for traveling wave solutions

of nonlinear FPDEs. The method is based on the homogenatarcé principle [35] and the

Jumarie’s modified Riemann-Liouville derivative of friactal order [36, 37]. With the help of this
method, Zhang et al. successfully obtained traveling vealations of nonlinear time fractional
biological population model and (4+1)-dimensional space-timeidradt Fokas equation [34].

Also the validity and advantages of the method have bpplied to the space-time fractional
mBBM equation and the space-time fractional ZKBBM equat&8].[The sub-equation method
also has been applied to the space-time fractional potdfgidbmtsev—Petviashvili (PKP)

equation and the space-time fractional symmetric regeldliong wave (SRLW) equation [39].
The coupled KdV and mKdV equations, which were introduced lyétval. [40], have been

analyzed applying the sub-equation method in the integer trdércase, called the extended
tanh-function method [41-44]. Also the improved fractional sgbation method has been
applied to solve the nonlinear FPDE KdV coupled equation in fhgdhanics [45].

The coupled KdV and mKdV systems are very complicated rastdeasy to solve by direct
integration method. Fan [41] has provided a suggestion to oohstoliton solutions for these
equations by using an extended tanh-function method and syroboijgutation.

The aim of this work is to obtain analytical solutiohg,applying the sub-equation method [34],
for the space-time fractional Hirota-Satsuma coupled Kdyaggn,

Du= % D u-3uDfu+3D7 (W) |,

Dv=-D*v+3uD!v, @
D'w=-D*¥w+3uDfw , t>0,0<a <1,

and the space-time fractional coupled mKdV equation,

Dfu:%Df"u—Buszwg D"w30(uw-31gu,

D{’v:—Df"v—3vD;’v—3( Dx’u)( DX’\)+36 Ow3 gv, @

t>0, O<a<1,

whereD? andD? are the Jumarie’'s modified Riemann-Liouville derivativess a constant and
a is the parameter describing the order of the fractionavateres ofu(x,t), v(x,t) andw(x,t). The

obtained solutions would be important for previous works whpproximated methods [46—49]
have been applied to solve the coupled equations (1) andh@)Hifota-Satsuma coupled KdV
equation describes the interaction between two long wavbdifferent dispersion relations. It is
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a non-linear equation that exhibits special solutions, knowsokt®ns, which are stable and do
not disperse with time [50]. In Ref. [40] the authors havenbe&oduced a 4x4 matrix spectral
problem with three potentials, by which the coupled mKdV #gnawas obtained as a new
integrable generalization of the Hirota-Satsuma coupled Kd\iegqua

The outline of this work is as follows: in section 2, the-equation method is presented. Section
3 contains the application of the method to solve the cduftB/ and mKdV FPDEs. In section
4, we discuss the reliability of the proposed method and thé sadacions are compared with the
results reported in the literature [41]. Finally in secosome conclusions are presented.

2. Description of the Fractional Sub-equation Metbd and Its
Applications to the Space-Time Fractional Differenial
Equations

In this section we present the main ideas of the fractisnblequation method. This method
considers the Jumarie’s modified Riemann-Liouvitkctional derivative of ordex [36,37]:

r(lia)fs(x—a‘“‘l[fw)— f(0)]as, a<o
Df f (%) = may & lo(x=¢€) [ f(£)- f(0)]d¢ O<a<1 3)
[f(”’")(x)](n) n<a<n+l n>1.

Some properties for the proposed modified Riemann—Lileudérivative are [36,37]:

Dfxyz—r(y-'-l) X
r(y+1-a)
D/ c=0, a=0 c=const
D¢ (cf ()= Of (%), a=0 c= const (4)

D¢ (f(x)a(¥)=a(A(F f()+ (I T d ¥
Dy f[a(¥]=f,[a(N] Do A=( T f o ¥])( & ¥°

The above properties play an important role in the fractismalequation method. The main steps
of this method are described as follows [34,38,39]:

Step 1: Suppose that a nonlinear FPDE, say in two independent variabtgven by:
a a —_
P(u,ux,ut,Dxu,Dt u,...)—O O<a<l, (5)

whereD“% u andD¢ u are the Jumarie’s modified Riemann-Liouville derivagivdu, u = u(x,t) is
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an unknown functionP is a polynomial inu and its various partial derivatives in which the
highest order derivatives and nonlinear terms are involved.

Step 2:By using the traveling wave transformation
u(x,t)=u(é), ¢=kx+ ct, (6)

wherek andc are constants to be determined later, the FPDE (5) izeddio the following
nonlinear fractional ordinary differential equation &gx,t) = u(4):

P(u,cu',ku',k”Dgu,c”Dgu,...) =0 . (7)

Step 3:We suppose that Eqg. (7) has the following solution:
u(é)=>ag , ®)

whereg; (i=0,1,2,...n) are constants to be determined lateis a positive integer determined by

balancing the highest order derivatives and nonlinear terms.if7l;, andg = ¢(¢) satisfies the
following fractional Riccati equation:

Dip=0+¢ , ©)

whereois a constant. By using the generalized exp-functiethod via Mittag-Leffler function,
Zhang et al. [33], obtained the following solutions of fractidtiacati equation (9):

—\/;tanhg(\/zé) <0
—\/;cotha (\/;{) o<0

p(&)= Jo tan, (JEE) o>0 (10)
\/Ecota (\/E{) g>0
@+a) © =const o=0,

Frw !

where the generalized hyperbolic and trigonometric fanstare defined as:
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sin, (x) = B0V TBEX) o - BT BER)

2 2
_ sinh, (x) costy ()
tanh, () —m , coth (x) _W(X) , .
sin, ()= EODZECH) | oo - BOO* ECX)
tan (x):Sin"’—(X) cof, (x) = cos, (X)
! cos, (x) ' sin (%)’
whereE(2) is the Mittag-Leffler function, given as:
Y Zk
Ea(z):Zm- (12)

Step 4: Substituting Eqg. (8) into Eq. (7) taking into account E). gnd the properties of the
Jumarie’s modified Riemann-Liouville derivative, Eq. (7)c@nverted to a polynomial ig' (&)
(i=0,1,2..). Equating each coefficient of this polynomial tor@eyields a set of algebraic
equations fog (i=0,1,2..), k andc.

Step 5: Solving the equations system in Step 4, and by usingdhgions Eq. (10), we can
construct a variety of exact solutions of Eq. (7).

Remark: If a-1, the Riccati equation becomes(d=0+@? (d). The method can be used to
solve integer order differential equations. In this sethge sub-equation method includes the
existing tanh-function method as special case.

3. Fractional Sub-equation Method Applied to the Klv and
MKDV Coupled Equations

In this section we apply the fractional sub-equation oetto construct the exact solutions for
space-time fractional Hirota-Satsuma coupled KdV equatiparfd the coupled mKdV equation

2).
3.1 The Nonlinear Hirota-Satsuma Coupled KdV Equaibn
To look for the travelling wave solution of Eq. (1), weaka the transformation(x,t)=u(g),

v(x,H=v (&), w(x,t)=w(g), where &kx+ct and Eq. (1) can be reduced to the following nonlinear
fractional ordinary differential equations (ODES):
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3a

¢"Dfu="" DFu-3K utf ue 3K T ( Wy
c’Dfv=-K*D¥ v+3K uly v (13)
¢’ Dfw=-K*D¥ w+3K ul¥ w .

We suppose that Eq. (13) has the following formal solution:
%m ) nmax ) lmax
=dud, V(&)=Y ve, W) =D we, 9
i=0 i=0 k=0

where¢() satisfies Eq. (9). Balancing the highest order lineangeand nonlinear terms in Eq.
(13), it is possible to determine the valuamgf,,, Nmax @andlmay. Putting together Eq. (14) along
with Eqg. (9) into Eqg. (13), we obtain the following two amsd41]:

u(é) = u, +u@+ug
V(&) =V, +ve+vg (15)
W(E) = W, + W@+ W,
wheremnya= Nmax= Imax =2 and the second anséatz is given by:
u(é) = U, +ug+u,¢
V(&) =V, +ve , (16)
Wé) =w,+we ,

With Mpax = 2, Nmax = Imax = 1. Now for the case whema= Nma= lmax =2, substituting Eqg. (15)
into Eqg. (13) we obtain the following algebraic system dquoat

c”(ul+2uz¢))(a+¢2): k3"(0+¢72)( yo +80 yp+ 3y’ + 12%3)
—3k"(a+(a2)(uo+ul¢+ u2¢2)(q+2Lgo)
3k (o + ¢ ) (v + 2v,9) (W + W+ W) 17)
+3k"(a+¢2) (W + 2wg) (v + g+ \gg?)
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c"(v1+2v2¢7)(a+¢2) =-K (0'+¢72)(2\{0'+ 160 yp+ 6w’ + 24\503)
+3K (g + ) (U + ug + u) (¥ +2 )

(18)

o (w +2wg)(o+ ) =-k* (o + ) (2wo +160w,p+ 6w + 24w,¢7)
+3k"(a+qf)(u0+u1¢+uzqf)(vvl+2wzfp) : (19)

Now by setting the coefficients @f' (i=0,1,2,3) to zero, we obtain a set of algebraic equatior
u, vi, w; (i=0,1,2),kandc:
. a — |30 a a
g cu =k¥ou -3kuu, +3k (vlw0 +v0wl)

¢ : 2c7u,=8k*ogu, -3k’ (ul2 + 2u0u2) +6k” (vzw0 +V,W, + vowz)

(20)
¢ 0=3k*u -9kuu, +9k” (V2W1 + vlwz)
¢ 1 0=12k*u,-6kU; -12kv,w, ,
obtained from equation Eq. (17),
@ v, =-2k¥ov, +3kuy,
¢ 1 2cv, =-16k"ov, + Kk’ (6u0v2 + 3u1v1)
@ 0=—-6k*v, +3K* (2u1v2 + uzvl) ey
@ 0=-24>v,+6kuy, |,
obtained from equation Eq. (18),
g c’w =-2k*ow, +3K7u,w,
¢ 1 2c'w, =-16k“ow, +k” (6uow2 + 3"|1W1) -

& 1 0=-6k™w, +3k” (20w, +u,w)
@ 1 0=-24k*w, +6ku,w, |,

obtained from equation Eq. (19). From these algebraiateans we notice that:
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u1 = Vl = Wl = O

u, = 4k
_ 4k
2 W2
o 4+ 8k (23)
l’IO = a
3k

. 4(2k"c"w2 +40k* W, - 3k4"w0)

° 3w,

2
W, =W, =const ,

and the tanh-type solution of the coupled space-time frattiaha equation is given by:

u(x,t) = %+4k2" tanhfz[x/;(kﬁ ct) J :

4 2K cow, + 4:\A|,<24”W2 - 3w, AL tantf [\/; (ko ct) } (24)

2 W2

w(x.t) = w,+w, tanhfz[x/;(kw ct) J

Now if we consider the second ansétz (Eq. (16)),neptsi =w, =0 into Eq. (20)-(22), the value of
the parameters; (i=0,1,2 )v; ,w; (j=0,1),kandc, are given by:

v(xt)=

v,=w, =0

ul =
u, = 2k*
U= c” +20k* 25)

0 Ska

4(k"c" - Jk“")
vy=———+
3w,
4W0(k"c” - Uk“")

BT e

1
W, =w, =const ,
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and the tanh-type solution of the coupled space-time frattiaiaequation is given by:

u(x,t) = c+32+k3" + 2k*” tanff [«/;(kx+ ct)} ,

v(x,t) _ _4w0(k“§\‘l’\lz— Uk““) .

1 1

w(x,t) =w, +w, tanh, [x/;(kx+ ct)}

We note that the solutions (24) and (26) in thdtltasea - 1 with o =-1 are the same solutions previously
obtained in Ref. [41].

4(k“c” - Uk“")

tanh, [x/;(kx+ ct)} . (26)

3.2 The Nonlinear Coupled mKdV Equation

Now to look for the travelling wave solutions for the spéime fractional coupled mKdV
equation, we make the transformatia(m,t)=u(§), v(x,t)=v(§) where &kx+ct and Eq. (2) can be
reduced to the following nonlinear fractional ODES'

cD"u-k?D&’u 3k"uz[§’u+ D w3K O(uy-31 &k P u
¢’ Dfv=-KD¥ v-3K v[J V—SIE" Dup w3kt Pp¥3al kPv (27)

where
Moo Moo
=Yud, V(&)= vy . (28)
i=0 i=0

Balancing the highest order linear terms and nonlinearster&aq. (27) it is possible to determine
the value ofm,,x andnna,. Putting together Eq. (28) along with Eq. (9) into Eq27), we obtain
the following two ansétze [41]:

u(é)=u+ug,
(29)
V(&) =y + vpt+ v
With Myayx =1, Nmax =2 and
u =u, + ,
(€)=w+up o)
V(€)=v+ve ,

with Myax =1, Nax =1. Now for the case wherm,, =1 andn,a, =2, substituting Eq. (29) into Eq.
(27) we obtain the following algebraic system equations:
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c ul(a+qf): k3"u1(a+¢)(a+3(f)—3k”ul(a+(f)(u0+ul(p)2
+3k2"(a+ )[vlgo+2v2¢72 +v2(a+gfﬂ
+3k”(a+ )[uovl+uv +2(uv +u1vl)(p+3ulv2(f]
-34ku (o + )
c"(vl+2v2(p)(a+qf)=—k3”(0+(f)(2va+160\/2¢+6vqf+24v (f)
—3k”’(c7+gf)(vl+2v )(v +vgo+vgf)
—3k2"(a+qf)2 v +2v,9 (32)
+3k”(a+gf)(v +2v,0)(u, +uqo)
+3Ak” (0’ + (f)(vl + 2v2(0)

(1)

Now by setting the coefficients @ (i=0,1,2,3) to zero, we obtain a set of algebraic equatans f
u; (i=0,1),v; (j=0,1,2) k andc:

@ 1 cu =k¥ou, - 3K UL + 3k (uy, +uy, ) -3k Y, + K> ov,
¢ 0=-6k7uu’ +3Kk*v, +6k” (ulvl + uovz) (33)
¢ 0=3k¥u, -3k’ +9k*v, +9k Uy, ,

obtained from equation Eq. (31), and

@ v, ==2k*ov, -3k, - 3k* ouy, + 3kTulv, + 34k,
¢ : 2cv, =-16k*¥ov, - 3K” (vl2 + 2v0v2) -6k* guy,
+6k” (ugv2 + uoulvl) +6AKk?V, (34)
@ 0=-6k*v,—9kV,v, - 3k*uy, +3k7uv, +12k“uu,v,
@ 0=-24k>v,-6kV: +6k7ud, —6k* Uy,

obtained from equation Eq. (32). From these algebraiateans we notice that:
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Uu=v=0 ,

u =-k*

v, =-2Kk* (35)
v, =A-2K0

¢ =k¥o .

As we know the equation (27) have the kink-type soliton solution:
u(x,t) =k“tanh, (kx+ ct) : v(x,t) =v, - 2k*"tanif (kx+ ct) , (36)

constructed by Fan [41], for the anséatz proposed in E{. {28 can compare this solution with
Eqg. (10) for the tanh-type solution and obtain the followiatues for the coefficients; andy;,
the parameters ¢ and the constamt:

(37)

and the solution of the coupled space-time fractional mKd\atemuis given by:

u(x,t)= k? tanha(kx+ ct) ,v(x,t)=()| +2k2”)—2k2" tanhz(kx+ ct) , (38)
ith:
N ¢’ =-k¥ . (39)

For the second anzétz (Eq. (30)), settimg0 into Eq. (33) and (34), the value of the parameters
U,V (i=0,1),kandc, are given by:

u=-k",
u, = - Yy ,
2k” (40)

v, =A
¢’ =k¥o +3kW

We also know that the equation (27) have the kink-type solitarticol[41]:
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u(xt)=w+utanh, (kx ¢} , { x}= y+ Btanp( kx gt (41)

for the ansatz proposed in Eq. (30), wheris some constant parameter. We can compare this
solution with Eq. (10) for the tanh-type solution and obttie following values for the
coefficientsy; andy;, the parameteits ¢ and the constamt:

u, =-k7,
v = =2k = 2u L,
v, =-b",
u, = b” (42)
o 2k’
3 (b)Y
=K+ K| — |,
4 | k°
o=-1,
v, = A,

and the solution to the coupled space-time fractional mKdVtienuis given by:

u(xt)= i;4-WianQ(kx+c§,( x}=A+ Btanh( ke gt  (43)
with:
a 2
= _k3z7l +§ ke (b_J . (44)
4 Kk”

It should be noted that these results are in good agreemérpreitious results obtained by Zhao
et al. [51], where they have applied the extended fractismalequation method to the mKdV
fractional non-linear equation.

4. Discussion

The reliability of the sub-equation method to solve FPDEsble@n demonstrated by applying this
method to the space-time fractional Hirota-Satsuma coupled é€plMtion. For the special case
o=1 ando=-1, we have successfully recovered the previously known soluggpustions (24)
and (26), that have been found in Ref. [41].

However, we note that for the special case wloerg the solutions (38) and (43) for the space-

time fractional coupled mKdV equation show some differensgh the solutions previously
introduced by Fan [41]:
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o) =ktant{iocrd) . v{xt) = 226t -2ttt (o) e

E:g(—Zkz —3/1) (46)

u(xt) =2+ ktant{loce ) (x4 g[lg] +btant{kca) @

2

<~::—k3+gk[8 +§k/](%—1} . (48)

The differences observed are important for the parameted the coefficient,, and we need to
be sure that the solutions (38) and (43) here obtained aextd-or the case=1 the solutions of
the present work can be compared with the results obtaiitbdthe aid of some symbolic
mathematical software, likeathematica The results obtained witllathematicashow that the
solutions (38) and (43) are correct. TWathematicacode is given by:

In[1]:= u[x, t] := k Tanh[k x + c*t];

V[X, t] = (L+2.0*k"2) - 2.0*(k"2)*(Tanh[k x + c*t])"2;

In[2]:= FullSimplify[(1/2)*D[u[x, ], X, 3] - 3*(u[x, t)"2*D[u[x, t], X, 1]
+ (3/2)*D|V[x, t],x, 2] + 3*D[(u[x, t]*V[x, t]), X, 1]

- 3*L*D[u[x, t], x, 1]]

Out[2]=-1. k™ Sech[c t + k x]"2

In[3]:= FullSimplify[D[u[x, t], t, 1]]

Out[3]=c k Sech[c t + k x]"2

In[4]:=FullSimplify[-D[Vv[X, t], X, 3] - 3*V[x, t]*D[(V[ X, t]), X, 1]
-3*D[V[X, t], X, 1] * D[u[x, t], X, 1]

+ 3*(u[x, th 2*D[v[x, 1], X, 1] + 3*L*D[v[X, t], X, 1]]]

Out[4]= 4. k"5 Sech[c t + k x]*2 Tanh[c t + k X]
In[5]:=FullSimplify[D[v[x, 1], t,1]];

Out[5]= -4. c k"2 Sech[c t + k x]"2 Tanh[c t + k X]
In[6]:=Solve[Out[4]/Out[5] == 1, ]

Oout[6]={{c -> - k*3}}

In[7]:=u[X, 1] := (b/(2*k)) + k Tanh[k x + ¢ t];

V[X, t] = L + b*(Tanh[k x + c*t]);
In[8]:=FullSimplify[(1/2)*D[u[x, t], X, 3] - 3*(u[x, t])*2*D[u[ X, ], X, 1]
+ (3/2)*D[V[X, t],X, 2] + 3*D[(u[X, t]*V[x, t]), X, 1]

- 3*L*D[u[x, t], x, 1]]

Out[8]= 1/4 (3 b"2 - 4 kM) Sech[c t + k x]"2
In[9]:=FullSimplify[D[u[x, t], t, 1]]

Out[9]= c k Sech[c t + k x]"2

In[10]:=FullSimplify[-D[V[x, t], X, 3] - 3*V[x, t]*D[(V[x, t]), X, 1]
-3*D[V[X, t], X, 1] * D[u[x, t], X, 1]

+ 3*(u[x, ) 2*D[v[X, t], X, 1] + 3*L*D[v[X, t], X, 1]]]
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Out[10]= (b (3 b2 - 4 k™4) Sech[c t + k x]*2)/(4 k)
In[11]:=FullSimplify[D[Vv[x, t], t, 1]]

Out[11]=b ¢ Sech[c t + k x]*2
In[12]:=Solve[Out[10]/0ut[11] == 1, ]
Out[12]={{c -> (3 b"2 - 4 k™4)/(4 K)}}

5. Conclusion

In this paper we have investigated the exact travelling wakegions to the space-time fractional
Hirota—Satsuma KdV and the mKdV equations to illustrdie validity of the sub-equation
method. For the KdV system, we have obtained the sameosslydreviously known. However,
for the mKdV system, we found new exact solutions with impordifferences compared with
the solutions obtained before [41]. We have confirmed ticeracy of the mKdV solutions here
presented by using a symbolic codéMathematicafor the special case when the fractional-order
parameter for the mKdV coupled FPDE reaches its intégér These new exact solutions can be
very useful as a starting point of comparison when some appeited methods are applied to the
mKdV equation [46-49]. The present work demonstrates tiderwapplicability of the sub-
equation method to nonlinear fractional coupled partial difféal equations in mathematical
physics.
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