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Abstract 

 
Several approaches have been applied by different researchers to produce linear multistep methods (LMMs) 

for the solution of ordinary differential equations (ODEs). In this paper, some LMMs have been developed 

via the collocation and interpolation technique using the exponential function as the basis function. The 

continuous and discrete forms of the methods have been evaluated and tested on some first-order ordinary 

differential equations. Results are presented in terms of maximum absolute errors and have shown that the 

proposed methods produce more accurate approximations than the existing LMMs derived using some other 

polynomial functions. We therefore recommend that the proposed methods should be tested on ODEs of 

second and higher orders.   
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1 Introduction  
 
Many real-life phenomena are described mathematically in terms of differential equations. They are used to 

model problems in science, engineering, business, economics, astronomy, and environmental sciences. 

Differential equations can be used to describe virtually every system undergoing change. The problems often 

encountered are classified into initial value and boundary value problems depending on the conditions indicated 

at the endpoints of the domain, Saeed and Alotaibi [1]. In this paper, we will treat initial value problems (IVPs) 

of ordinary differential equations.  

 

Ordinary differential equations (ODEs) can be solved analytically or numerically. Numerical techniques for 

solving ODEs are often applied when the analytic methods fail due to the nonlinearity of the differential 

equations and/or the complex initial/boundary conditions associated with the differential equation, Fadugba [2]. 

 

Two common sets of numerical methods are used for approximating solutions to IVPs of ODEs. They are the 

single-step and the multistep methods. Single-step methods use information from only one previous step to 

compute the solution of the present step. They are also self-starting. The commonly applied single-step methods 

are the Euler’s method and the Runge-Kutta family of methods, Ogunrinde and Olubunmi [3]. Multistep 

methods use information from more than one previous step to obtain the solution of the present step. They are 

not self-starting hence, need starting values form the single-step methods, Iyorter et al. [4]. We shall be deriving 

single-step methods and multistep methods for the solution of IVPs of ODEs.  

 

The general  -step linear multistep method (LMM) as presented in Lambert [5] is  

 

       
 
            

 
                                                                                                                              

 

where     and    are to be determined and              . Discrete schemes are derived from Equation 

(1) and applied to solve first-order ODEs.  

 

Several techniques are applied to derive LMMs in discrete form. They include numerical integration, Taylor 

series expansion and interpolation method. Continuous collocation and interpolation technique is now widely 

used for the derivation of LMMs, block methods and hybrid methods, Aboiyar et al. [6]. The continuous 

collocation and interpolation technique is applied to derive LMMs of the form: 

 

               
 
               

 
                                                                                                   

 

where     and    are expressed as continuous functions of    and are at least one time differentiable. 

 

Many researchers have used collocation and interpolation approach to derive LMMs for the solution of first and 

higher-order ordinary differential equations. Okunuga and Ehigie [7] derived two-step continuous and discrete 

LMMs using power series as basis function for the solution of first-order ODEs, Mohammed [8] derived a 

LMM with continuous coefficients which he used to obtain multiple finite difference methods for the direct 

solution of first-order ODEs, Odekunle et al. [9] developed a continuous LMM with constant step size for the 

solution of first-order ODE, Akinfewa et al [10]. developed a four-step continuous block hybrid method with 

four off-step points for the direct solution of first-order ODEs, Aboiyar et al. [5] derived LMMs using Hermite 

polynomials as basis function for the solution of first-order ODEs, Iyorter et al. [4] used the Laguerre 

polynomial as basis function to derive LMMs for the solution of first-order ODEs.  

  

Ehigie et al. [11] proposed a two-step continuous multistep method of hybrid type for the direct integration of 

second order ODEs, Anake [12] developed a new class of continuous implicit hybrid one-step methods for 

solving IVPs of general second order ODEs, using the collocation and interpolation of power series approximate 

solution, James et al. [13] proposed a continuous block method for the solution of second order IVPs with 

constant step-size. In this paper, we will use the exponential function as basis function to develop continuous 
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explicit and implicit LMMs via the interpolation and collocation approach, for the solution of first-order ODEs. 

The corresponding discrete schemes shall also be obtained.  

 

2 Methods  

 
Awoyemi et al. [14] proposed a basis function of the type 

 

              
  

                                                                                                                                              

 

to develop LMM for the solution of third order IVPs. Adeniyi and Alabi [15] developed continuous LMM using 

the Chebyshev polynomial function of the form: 

 

           
    

 
  

                                                                                    

 

where        are some Chebyshev functions. 

 

Aboiyar et al. [3] developed continuous LMMs through the collocation and interpolation technique using the 

Hermite polynomial function of the form, Koornwinder, [16]: 

 

                
 
                                                                                         

 

where         are probabilists’ Hermite polynomials, as basis functions. 

 

In this paper, we propose the exponential polynomial functions of the form: 

 

                
 
             

 

where         are exponential functions, to develop continuous LMMs for the solution of IVPs of first-order 

ODEs of the form:  

 

                                                                                                                                                            
 

We will use the exponential function   

 

          
      

 

where  “ ” is the Euler’s number. The first six exponential functions are: 

 

                               
             

             
             

             
   

 

2.1 Derivation of the Exponential Linear Multistep Methods  

 
To derive the Exponential Linear Multistep Methods (e-LMMs) we shall consider the function,  

 

                
 
                                                                                                                         

 

We wish to approximate the exact solution        to Equation (4) by the function in Equation (5) which satisfies 

the equations,  
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2.1.1 The one-step explicit exponential linear multistep method  

 

To derive the one-step explicit e-LMM, we shall let     in Equation (5). This gives:  

 

            
                                                                                                                                                   

 

Obtaining the first derivative of Equation (7), we have    

 

         
                                                                                                                                                               

 

Interpolating Equation (7) at       and collocating Equation (8) at        gives the system of equations:  

 

 
  

  
  

  

  

   
  

  
    

 

Solution to the system of equations is: 

 

 
            

    

                            
                                                                                                                                                    

 

Substituting for            in Equation (7) yields the continuous form of the one-step explicit e-LMM:  

 

               
                                                                                                                                             

 

Evaluating Equation (10) at         gives the discrete form of the one-step explicit e-LMM: 

 

                                                                                                                                                              

 

2.1.2 Two-Step explicit exponential linear multistep method  

 

For the two-step explicit e-LMM, we shall let      in Equation (5). This produces:  

 

            
          

      
 

                                                                                                                    
 

Differentiating Equation (12) once yields    

 

         
                 

      
 

                                                                                                             

 

Interpolating Equation (12) at         and collocating Equation (13) at             gives the system of 

equations:  

 

 

     
 

   

       
 

  

  

  

  

   

    

  

    

                                                                                                                               

 

Solving the system of equations by the Gaussian elimination method, we get:  
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Substituting for              in Equation (12), we have the two-step continuous explicit e-LMM:   

 

             
 

  
             

 

  
                     

 

 
 

  
              

                       

 

Evaluating Equation (16) at        , we obtain the discrete form of the two-step explicit e-LMM: 

 

             
 

  
             

 

  
                

 

  
      

 

  
                                                   

 

2.1.3 Three-step explicit exponential linear multistep method  

 

To derive the three-step explicit e-LMM, we set      in Equation (5). This gives:  

 

            
          

      
 

    
      

 

                                                                                           
 

Differentiating Equation (18) once gives   

 

         
                 

      
 

        
 
   

      
 

                                                               

 

Interpolating Equation (18) at         and collocating Equation (19) at                  gives the system of 

equations:  

 

 
 
 
 
 
             

    

       
 

     
 

                   
 
 
 
 
 

 
 
 
 
 
  

  

  

   
 
 
 
 

 

 
 
 
 
 
    

  

    

     
 
 
 
 

                                                                                                       

 

Solving the system of equations using the Gaussian elimination method, we have: 

 

 

   
                       

            

                   
  

                             

        
 

  
   

 
     

 

  
      

      
  

 
       

        

                                                                                                              

         
      

 

  
                                                     

                    
 

  
            

  

 
                               

 
 
 
 
 

 
 
 
 
 

                                                         

Substitute for                in Equation (18). This yields the three-step continuous explicit e-LMM:  
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Evaluating Equation (22) at        , we obtain the discrete scheme of the three-step explicit e-LMM: 

 

             
 

  
                  

 

  
               

 

  
     

 

  
                   

 
             

          
       

     

             
      

  
   

  

 
               

 
  

 
                 

                                                                       

 

2.1.4 The two-step explicit optimal order exponential linear multistep method  

 

To derive the two-step explicit optimal order e-LMM, we shall consider the system of equations in Equation 

(14) except for the first row. Evaluating Equation (12) at     , we have:  

 

                                                                                                                                                              

 

The first row of Equation (14) is therefore replaced with Equation (24). The system of equations is solved, and 

the result is as obtained in Equation (15) except for    , which we have:  

 

        
      

    
 

  
            

           

 

Substituting for                in Equation (12), we have the two-step continuous explicit optimal order e-

LMM:   

 

            
 

  
            

                       
 

 
 

  
              

                          

 

Evaluating Equation (25) at        , we obtain the discrete scheme of the two-step explicit optimal order e-

LMM:  

 

            
 

  
              

  
 
             

 

  
                                                           

 

2.1.5 The three-step explicit optimal order exponential linear multistep method  

 

To derive the three-step explicit optimal order e-LMM, we shall consider the system of equations in Equation 

(20) except for the first row. Evaluating Equation (18) at       , we have 

   

      
 

  
                                                                                                                                         

 

The first row of Equation (20) is now replaced with Equation (27). The system of equations is solved, and the 

result is as obtained in Equation (21) except for    , which we have:    

 

         
      

 

  
                     

 

  
       

  

 
                        

 

Substituting for                in Equation (18), we have the three-step continuous explicit optimal order e-

LMM:    
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Evaluating Equation (28) at        , we obtain the discrete scheme of the three-step explicit optimal order e-

LMM:  

  

             
 

  
           

 

  
               

 

  
    

 
 

  
                                                    

 
             

   
       

            

        
             

   
  

 
    

    
 

  

 
                 

                                         

 
2.1.6 One-step implicit exponential linear multistep method  

 

To derive the one-step implicit e-LMM, consider the continuous equation, Equation (25): 

 

            
 

  
            

   
                    

 

 
 

  
              

   
               

  
Evaluating at         gives the discrete form of the one-step implicit e-LMM: 

 

            
  

 

  
    

 

  
                

 

  
 

 

  
    

                                                           

 

2.1.7 Two-step implicit exponential linear multistep method  

 

To derive the two-step implicit e-LMM, consider the continuous equation, Equation (28): 

 

             
 

  
             

 

  
                                                                                

             
  

 
    

    
   

             
   

       
            

        
             

                

        
 

 
 
 
 

 

  
    

      
 

  
          

  
  

 
           

             
   

       
            

        
             

  
 
 
 
 

  

        
 

 
             

   
       

            

        
             

                                                 

 

Evaluating at         gives the discrete form of the two-step implicit e-LMM: 

 

             
 

  
           

 

  
               

 

  
    

 
 

  
                                                  

 
             

   
       

            

        
             

   
  

 
    

    
 

  

 
                

                                            

 

2.1.8 Two-step implicit optimal order exponential linear multistep method  

 

To derive the two-step implicit optimal order e-LMM, we shall interpolate Equation (18) at       and 

collocate Equation (19) at                . This gives the system of equations:   
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Solving the system of equations using the Gaussian elimination method produces: 

 

        
 

  
    

     
 

  
            

  

 
                  

                                                                                                             

       
      

 

  
                     

 

  
            

  

 
                    

 

Substitute for                in Equation (18). This yields the two-step continuous implicit optimal order e-

LMM: 

 

        
 

  
                  

 

  
    

   
             

   
       

            

        
             

     

   
  

 
            

             
   

       
            

        
             

               

        
 

 
 
 
 

 

  
    

      
 

  
          

  
  

 
           

             
   

       
            

        
             

  
 
 
 
 

  

        
 

 
             

   
       

            

        
             

                                                                                                    

 

Evaluating Equation (32) at        , we obtain the discrete scheme of the two-step implicit optimal order e-

LMM: 

 

            
 

  
              

 

  
                 

 

  
    

 
 

  
    

                                      

 
             

   
       

            

        
             

   
  

 
          

  

 
                

                                           

 

3 Results  

 
Eight LMMs have been derived for the solution of ODEs – the explicit exponential linear multistep methods of 

step number         represented respectively by Equations (11), (17) and (23); the explicit optimal order e-

LMMs of step number       represented by Equations (26) and (28); the implicit e-LMMs of step number 

      represented by Equations (30) and (31), and the implicit optimal order e-LMMs of step number     

represented by Equation (33). Six of the developed methods are tested on two IVPs of ODEs. They are 

Equations (17), (23), (26), (28), (31), and (33). Since the methods are not self-starting, the Runge-Kutta methods 

are used to obtain the starting values. For the implicit schemes, the derived explicit methods of corresponding 

order of accuracy are used as predictor methods. Results by the proposed methods are compared with already 

existing methods like the Adams-Bashforth, Adams-Moulton and the optimal order methods developed using 

other polynomial functions. The maximum absolute errors associated with the methods are tabulated for easy 

understanding and comparison with the other existing methods.  

 

The maximum absolute error is defined as  

 

                                  
 

where      is the exact solution and       is the approximate solution.  



 

 
 

 

Iyorter and Aondoakaa; J. Adv. Math. Com. Sci., vol. 38, no. 8, pp. 131-142, 2023; Article no.JAMCS.100186 
 

 

 
139 

 

Example 1 

 

Consider the first-order stiff ordinary differential equation, 

 

   
      

    
            

 

 
              

 

whose exact solution is  

 

     
 

 
  

 

 
 

 

  
           

 

Table 1. Maximum absolute errors of some existing LMMs and the proposed methods for Example 1 

 

Stepsize 

  

Method Number of 

Steps  

Maximum Error 

 

     

2-Step Adams-Bashforth Method 10 5.3444576725 E-004 

2-Step explicit   e-LMM 10 5.7723348711 E-004 

2-Step explicit Optimal Order Method 10 3.8002546364 E-004 

2-Step explicit Optimal Order e-LMM 10 4.3928959548 E-004 

3-Step Adams-Bashforth Method 10 1.1304306662 E-004 

3-Step explicit e-LMM 10 2.1311968307 E-004 

3-Step explicit Optimal Order Method 10 1.0735253231 E-004 

3-Step explicit Optimal Order e-LMM 10 1.3825727024 E-004 

2-Step Adams-Moulton Method 10 4.6740289726 E-005 

2-Step implicit e-LMM 10 7.8530249726 E-005 

2-Step implicit Optimal Order Method 10 1.1075823148 E-005  

2-Step implicit Optimal Order e-LMM 10 1.5948970098 E-005 

     2-Step Adams-Bashforth Method 100 5.8284133604 E-006 

2-Step explicit   e-LMM 100 3.8802372648 E-006 

2-Step explicit Optimal Order Method 100 2.4790925597 E-006 

2-Step explicit Optimal Order e-LMM 100 1.6622102665 E-006 

3-Step Adams-Bashforth Method 100 1.5151706500 E-007 

3-Step explicit e-LMM 100 1.6111703327 E-007 

3-Step explicit Optimal Order Method 100 7.4785721393 E-008 

3-Step explicit Optimal Order e-LMM 100 7.1801623314 E-008 

2-Step Adams-Moulton Method 100 6.6061233372 E-008 

2-Step implicit e-LMM 100 6.0575596983 E-008 

2-Step implicit Optimal Order Method 100 1.6880070897 E-008  

2-Step implicit Optimal Order e-LMM 100 6.5316876352 E-009 

     2-Step Adams-Bashforth Method 1000 5.8797610225 E-008 

2-Step explicit   e-LMM 1000 3.7202811942 E-008 

2-Step explicit Optimal Order Method 1000 2.3665440940 E-008 

2-Step explicit Optimal Order e-LMM 1000 1.4987933561 E-008 

3-Step Adams-Bashforth Method 1000 1.5660250874 E-010 

3-Step explicit e-LMM 1000 1.5073498005 E-010 

3-Step explicit Optimal Order Method 1000 7.0337513591 E-011 

3-Step explicit Optimal Order e-LMM 1000 6.7731709130 E-011 

2-Step Adams-Moulton Method 1000 6.8476335713 E-011 

2-Step implicit e-LMM 1000 5.5000004551 E-011 

2-Step implicit Optimal Order Method 1000 1.7505996652 E-011 

2-Step implicit Optimal Order e-LMM 1000 3.0706548415 E-012 
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Example 2  

 

Solve the IVP 

 

                                     
 

with exact solution  

 

     
 

 
     

 

  
    

 

  
        

 
Table 2. Maximum absolute errors of some existing LMMs and the proposed methods for Example 2 

 

Stepsize 

  

Method Number of 

Steps  

Maximum Error 

 

 

 

 

 

     

2-Step Adams-Bashforth Method 10 1.1778198813 E-001 

2-Step explicit   e-LMM 10 1.0043721109 E-001 

2-Step explicit Optimal Order Method 10 5.9842389199 E-002 

2-Step explicit Optimal Order e-LMM 10 5.0808397909 E-002 

3-Step Adams-Bashforth Method 10 3.2428666318 E-002 

3-Step explicit e-LMM 10 2.1140401080 E-002 

3-Step explicit Optimal Order Method 10 1.47960778409 E-002 

3-Step explicit Optimal Order e-LMM 10 9.5157045396 E-003 

2-Step Adams-Moulton Method 10 1.2160744259 E-002 

2-Step implicit e-LMM 10 8.1167810802 E-003 

2-Step implicit Optimal Order Method 10 3.1257910269 E-003 

2-Step implicit Optimal Order e-LMM 10 9.7890082533 E-004 

     2-Step Adams-Bashforth Method 100 1.4097396721 E-003 

2-Step explicit   e-LMM 100 1.3060522381 E-003 

2-Step explicit Optimal Order Method 100 5.7868338326 E-004 

2-Step explicit Optimal Order e-LMM 100 5.3562629225 E-004 

3-Step Adams-Bashforth Method 100 4.5307998120 E-005 

3-Step explicit e-LMM 100 3.0238026843 E-005 

3-Step explicit Optimal Order Method 100 2.0185635016 E-005 

3-Step explicit Optimal Order e-LMM 100 1.3489489944 E-005 

2-Step Adams-Moulton Method 100 1.3936187653 E-005 

2-Step implicit e-LMM 100 9.3816802451 E-006 

2-Step implicit Optimal Order Method 100 2.9537732478 E-006 

2-Step implicit Optimal Order e-LMM 100 9.2314098810 E-007 

     2-Step Adams-Bashforth Method 1000 1.4375467650 E-005 

2-Step explicit   e-LMM 1000 1.34315803049 E-005 

2-Step explicit Optimal Order Method 1000 5.7652170473 E-006 

2-Step explicit Optimal Order e-LMM 1000 5.3862592946 E-006 

3-Step Adams-Bashforth Method 1000 4.6881527105 E-008 

3-Step explicit e-LMM 1000 3.0406068774 E-008 

3-Step explicit Optimal Order Method 1000 2.0843756943 E-008 

3-Step explicit Optimal Order e-LMM 1000 1.3537275301 E-008 

2-Step Adams-Moulton Method 1000 1.4130341341 E-008 

2-Step implicit e-LMM 1000 9.2376506444 E-009 

2-Step implicit Optimal Order Method 1000 2.9325022410 E-009 

2-Step implicit Optimal Order e-LMM 1000 7.7494544115 E-010 

 

4 Discussion  

 
Six of the eight derived e-LMMs have been applied to solve two IVPs of first-order ODEs using three different 

stepsizes. Table 1 and Table 2 show the maximum absolute errors associated with these methods as compared to 
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similar methods already in existence but derived using some basis functions aside the exponential function. 

Particularly, results by the two-step and three-step Adams-Bashforth methods are compared with those of the 

two-step and three-step explicit e-LMMs. This has also been done for the results of the corresponding optimal 

methods and those of the implicit schemes. It has been observed generally that, the smaller the stepsize, the 

smaller the error hence, the more accurate the approximations. 

 

The proposed methods have performed better than the existing ones for the explicit, optimal order and implicit 

schemes. The implicit optimal order schemes have performed better than the rest of the methods. We therefore 

recommend that the proposed methods be used as preferred methods for the solution of first-order ODEs and 

should be tested for higher order ODEs. This shows that LMMs can be derived using many different functions.  

 

5 Conclusion  

 
Solution of differential equations is in turn, solution to some world problems as differential equations represent 

real world phenomena. In this paper, some methods have been developed for solving first-order ordinary 

differential equations using the approach of collocation and interpolation of functions. The exponential function 

has been used as the basis function. The proposed methods have been tested on some randomly selected ODEs 

and the results were compared with similar existing methods. The proposed methods performed wonderfully 

well, even better than the existing methods. We therefore conclude that the proposed e-LMMs be used for the 

solution of first-order ODEs. 
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