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Abstract

The global diversity of Bacteria and Archaea, the most ancient and most widespread forms

of life on Earth, is a subject of intense controversy. This controversy stems largely from the

fact that existing estimates are entirely based on theoretical models or extrapolations from

small and biased data sets. Here, in an attempt to census the bulk of Earth’s bacterial and

archaeal ("prokaryotic") clades and to estimate their overall global richness, we analyzed

over 1.7 billion 16S ribosomal RNA amplicon sequences in the V4 hypervariable region

obtained from 492 studies worldwide, covering a multitude of environments and using multi-

ple alternative primers. From this data set, we recovered 739,880 prokaryotic operational

taxonomic units (OTUs, 16S-V4 gene clusters at 97% similarity), a commonly used measure

of microbial richness. Using several statistical approaches, we estimate that there exist

globally about 0.8–1.6 million prokaryotic OTUs, of which we recovered somewhere

between 47%–96%, representing >99.98% of prokaryotic cells. Consistent with this conclu-

sion, our data set independently "recaptured" 91%–93% of 16S sequences from multiple

previous global surveys, including PCR-independent metagenomic surveys. The distribu-

tion of relative OTU abundances is consistent with a log-normal model commonly observed

in larger organisms; the total number of OTUs predicted by this model is also consistent with

our global richness estimates. By combining our estimates with the ratio of full-length versus

partial-length (V4) sequence diversity in the SILVA sequence database, we further estimate

that there exist about 2.2–4.3 million full-length OTUs worldwide. When restricting our analy-

sis to the Americas, while controlling for the number of studies, we obtain similar richness

estimates as for the global data set, suggesting that most OTUs are globally distributed.

Qualitatively similar results are also obtained for other 16S similarity thresholds (90%, 95%,

and 99%). Our estimates constrain the extent of a poorly quantified rare microbial biosphere

and refute recent predictions that there exist trillions of prokaryotic OTUs.
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Author summary

The global diversity of Bacteria and Archaea ("prokaryotes"), the most ancient and most

widespread forms of life on Earth, is subject to high uncertainty. Here, to estimate the

global diversity of prokaryotes, we analyzed a large number of 16S ribosomal RNA gene

sequences, found in all prokaryotes and commonly used to catalogue prokaryotic diver-

sity. Sequences were obtained from a multitude of environments across thousands of geo-

graphic locations worldwide. From this data set, we recovered 739,880 prokaryotic

operational taxonomic units (OTUs), i.e., 16S gene clusters sharing 97% similarity,

roughly corresponding to prokaryotic species. Using several statistical approaches and

through comparison with existing databases and previous independent surveys, we esti-

mate that there exist globally between 0.8 and 1.6 million prokaryotic OTUs. When

restricting our analysis to the Americas, while controlling for the number of studies, we

obtain similar estimates as for the global data set, suggesting that most OTUs are not

restricted to a single continent but are instead globally distributed. Our estimates con-

strain the extent of a commonly hypothesized but poorly quantified rare prokaryotic bio-

sphere and refute recent predictions that there exists trillions of prokaryotic OTUs. Our

findings also indicate that, contrary to common speculation, extinctions may strongly

influence global prokaryotic diversity.

Introduction

Microorganisms are the most ancient and the most widespread form of life on Earth, inhabit-

ing virtually every ecosystem and driving the bulk of global biogeochemical cycles. Culture-

independent methods such as amplicon sequencing of 16S ribosomal RNA genes revealed the

existence of a potentially vast undescribed microbial diversity, the full extent of which, how-

ever, remains highly controversial [1–9]. Determining the extent of this diversity remains an

important but challenging task in our overall understanding of life, with major implications

for ecological and evolutionary theory, environmental sciences and industry. Notably, a global

census of microbial phylogenetic diversity, or at least knowledge of its full extent, is essential

for reconstructing microbial evolution over geological time [10]. Estimates of global microbial

diversity are also needed for scrutinizing proposed biodiversity scaling laws and macroecologi-

cal theories [2,6,11]. Finally, undiscovered microorganisms may exhibit a large breadth of met-

abolic capabilities of particular interest to industry and medicine. An efficient exploration of

this potential and realistic assessment of the feasibility of such an endeavor requires knowledge

of the gaps in existing diversity databases [12–14].

The extent of global microbial diversity remains subject to intense controversy and widely

diverging speculations [1–9]. This controversy stems largely from the fact that existing esti-

mates are either based on extrapolations of empirical scaling laws [6], on theoretical biodiver-

sity models [2], on data sets covering only a small fraction of global diversity [1,9], or on

taxonomically biased databases, including mostly organisms that have been cultured or are of

particular medical/industrial interest [3–5]. For example, Mora and colleagues [3] used the

subset of currently named prokaryotic species to estimate that there exist approximately

10,000 bacterial species worldwide; this is clearly a strong underestimate, given that the SILVA

sequence database [14] alone now contains hundreds of thousands of bacterial operational tax-

onomic units (OTUs), i.e., clusters of the 16S gene at 97% similarity—a traditional microbial

species analog. Yarza and colleagues [4] and Schloss and colleagues [5] estimated that there

exist a few million bacterial and archaeal ("prokaryotic") OTUs based on sequence discovery
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statistics in SILVA; however, environmental and taxonomic biases in SILVA [15] compromise

the reliability of these estimates [16]. Larsen and colleagues [9] estimated that there exist bil-

lions of host-associated bacterial OTUs based on a heuristic and mathematically flawed extrap-

olation of bacterial OTU counts in typical insect species to all animal species (see the

"Implications" section below for a detailed discussion). Locey and colleagues [6] even predicted

that there exist trillions of microbial OTUs (at 97% similarity) based on an extrapolation of

empirical scaling laws of local diversity in individual communities to global scales. Locey’s esti-

mate has fueled discussions about a potentially immense undiscovered microbial diversity and

its uncertain ecological roles [16–20]. Locey’s extrapolation of empirical scaling laws from

local to global scales and across several orders of magnitude has been criticized and remains

controversial [8,21].

Here, to address the above shortcomings, we attempted to explicitly census a large fraction

of extant prokaryotic clades and used our census to estimate and chart total global prokaryotic

OTU richness. For this census, we compiled massive publicly available raw Illumina 16S ampli-

con sequencing data from 34,368 samples across 492 studies, covering a wide range of environ-

ments from over 2,800 distinct geographical locations worldwide (S1 Fig). Environments

covered include the surface and deep ocean, oxygen minimum zones, freshwater and hypersa-

line lakes, rivers, groundwater, marine surface and deep subsurface sediments, agricultural and

forest soils, peats, permafrost, deserts, animal hosts and feces, plant leafs and rhizospheres, salt

marshes, bioreactors, processed food, methane seeps, mine drainages, sewages, hydrothermal

vents, and hot springs (overview in S1 Data). Particular effort was put into representing soils

(14,242 samples across 100 studies), sediments (3,198 samples across 37 studies), and animal

guts (8,646 samples across 52 studies), which likely harbor a large fraction of Earth’s prokaryotic

diversity [22]. Sequences in this composite data set cover at least 200 basepairs in the V4 hyper-

variable region of the 16S gene, a commonly targeted region in microbial ecology [22–24]. By

clustering the pooled sequences at 97% similarity, a commonly used threshold in microbial

ecology [2,5,6,9], we recovered hundreds of thousands of OTUs. Based on the recovered OTUs,

henceforth referred to as Global Prokaryotic Census (GPC), and through comparisons to previ-

ous surveys and existing databases, we estimate global prokaryotic OTU richness and highlight

major implications for microbial ecology and evolution. We emphasize that our main objective

was to estimate global prokaryotic richness using as deep of a census and covering as many

environments and geographic locations as possible; as a trade off, our data set does not offer the

same level of experimental standardization across samples nor the amount of metadata included

in projects such as the Earth Microbiome Project (EMP) [22].

Here, we focus on OTUs clustered using the conventional 97% similarity threshold so as to

facilitate comparison with existing prokaryotic richness estimates [2,5,6,9]. Recent work, how-

ever, suggests that a greater similarity threshold (approximately 99%) is often required for dis-

tinguishing ecologically differentiated organisms [25–28]. We thus also repeated our analyses

using a 99% clustering threshold, which yielded qualitatively comparable results. That said, we

point out that clusters of the 16S gene—regardless of similarity threshold and even if

completely free of sequencing errors—only provide an approximate "species" analog to sexu-

ally reproducing organisms. Indeed, even strains with identical 16S sequences may exhibit dif-

ferent genomic content and ecological strategies; hence, the 16S gene is not always sufficient

for distinguishing ecologically differentiated organisms, even when considering exact sequence

variants [29–30]. Whether and how prokaryotic "species" can—or even need to—ever be rea-

sonably defined remains highly debated [30–33]. To date, the 16S gene remains an important

and the most popular marker for cataloguing prokaryotic diversity and for describing evolu-

tionary relationships in a well-defined and reproducible manner [4,27]. We stress that pro-

karyotic 16S diversity detected and estimated based on amplicon sequences, as in this and
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most previous studies, is limited to clades detectable by the PCR primers used. As discussed

below, the GPC partly resolves the issue of limited primer scope by using multiple alternative

primers; however, it is in principle still possible that some clades are completely missed.

Results and discussion

The GPC covers the bulk of global 16S diversity

To ensure maximal phylogenetic coverage, the raw sequencing data from each study was con-

sidered as input to our analyses. After stringent quality- and chimera-filtering, the data set

comprised 1,734,042,763 high-quality reads, which were pooled and clustered into OTUs at

97% similarity. To avoid spurious (i.e., nonbiological) OTUs generated by sequencing errors

or PCR chimeras, only OTUs found in at least two samples of the same study were kept. While

this additional quality filter may also remove some biological OTUs, aggressive filtering is nec-

essary for eliminating spurious OTUs, a common and serious problem in amplicon sequenc-

ing studies [34–37]. The resulting GPC comprises 739,880 prokaryotic OTUs (690,474

bacterial and 49,406 archaeal), accounting for 1,349,766,275 reads. Accumulation curves of

bacterial and archaeal OTUs discovered by the GPC, as a function of studies included, clearly

show a deceleration with increasing number of studies (Fig 1A and 1B) and provide an esti-

mate of how many novel OTUs would be discovered in subsequent studies. Specifically, on

average, about 93% of bacterial OTUs and 83% of archaeal OTUs found in any additional

study are expected to be already included in the GPC. As we show below, this estimate is con-

sistent with the fractions of other independent data sets and databases covered (rediscovered)

by the GPC. Most OTUs were matched by at least three reads (88%) and most were found in at

least three samples (81%, S2 Fig). Based on the fraction of reads matched to the rarest OTUs

(i.e., with only two reads), we estimate that any new random 16S amplicon sequence (i.e., from

a randomly chosen prokaryotic cell) would hit an OTU in the GPC at 97% similarity with a

probability�99.98% (using the Good–Turing frequency formula [38]; see Methods for

details). This probability is sometimes referred to as "Good’s coverage" and corresponds to the

proportion of living or recently deceased prokaryotic cells, detectable by current 16S amplicon

sequencing techniques, which is represented by OTUs in the GPC. We emphasize that Good’s

coverage should not be interpreted as the fraction of global OTU richness represented by the

GPC; indeed, estimation of the latter requires additional statistical reasoning, as presented

below.

To estimate the total number of extant prokaryotic OTUs globally (discovered plus undis-

covered), we used statistical approaches based on the number of OTUs that have been discov-

ered in exactly one study (Q1), the number of OTUs discovered in exactly two studies (Q2),

and so on. Indeed, the recommended (and only statistically admissible) way to estimate OTU

richness is by modeling the incidence frequency counts Qi in order to predict the number of

unobserved OTUs Q0 [21,39–41]. These methods date back to mathematical theorems for

cryptographic analyses during World War II and have been used for microbial as well as

macrobial richness estimates [40, 42–44]. Intuitively, widely distributed and abundant OTUs

—which are almost certain to be detected—contain very little information about undetected

OTUs, while rarely detected OTUs (e.g., detected only once or twice) carry the most informa-

tion about undetected OTUs; hence, estimators typically rely on the low-frequency counts Q1,

Q2, etc. [40]. To ensure the robustness of our estimations, we considered several alternative

estimation methods, each of which is based on a different frequency model and relies on differ-

ent assumptions: the improved-Chao2 ("iChao2") richness estimator [45], based on the fre-

quency counts Q1–Q4; the incidence coverage-based estimator (ICE) [41], based on the

frequency counts Q1–Q10; the CatchAll estimator [46], based on frequency counts Q1–Qτ, in
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which τ is chosen adaptively based on internal quality criteria; the transformed weighted linear

regression model (tWLRM), which uses a linear regression model for the ratios of consecutive

log-transformed frequency counts to predict Q0 [46,47]; and the breakaway estimator [48],

based on a nonlinear regression model for the ratios of consecutive frequency counts. All of

the above estimators have been designed to account for heterogeneities in detection frequen-

cies among OTUs (i.e., the presence of rare and frequent OTUs), and breakaway is particularly

optimized for efficiently dealing with high fractions of undiscovered diversity. We note that

the majority of existing richness estimators, including the ones described above, are based on

models in which individual sampling units are assumed to be equivalent (e.g., of the same

"effort"); however, studies included in the GPC differ in terms of the environment sampled

and the techniques used. To check whether our estimates are sensitive to this caveat, we also

deployed an estimation approach whereby we randomly assigned studies to four complemen-

tary and equally sized groups (representing four statistically equivalent global "sampling

units") and used the iChao2 estimator based on the number of OTUs found in exactly one,

Fig 1. Estimating global prokaryotic OTU richness. (A, B) Accumulation curves showing the number of bacterial (A) and archaeal (B) OTUs discovered, depending

on the number of distinct studies included. Curves are averaged over 100 random subsamplings, and whiskers show corresponding standard deviations. Continuous

curves were calculated using all studies (worldwide), while blue dashed curves were calculated using solely studies performed in the Americas or near American coasts.

(C, D) Global OTU richness of Bacteria (C) and Archaea (D), estimated using the iChao2, iChao2split, ICE, CatchAll, breakaway, and tWLRM estimators. The number

of OTUs discovered by the GPC is included for comparison (last bar). Whiskers indicate standard errors, estimated from the underlying models; most standard errors

are likely underestimated by the models, so the variability between models is probably a more honest assessment of uncertainty. (E, F) Illustration of two methods used

to estimate global bacterial OTU richness (dashed circle). (E) The iChao2split richness estimator is based on the numbers of OTUs discovered once, twice, thrice, or

four times when studies are randomly split into four complementary "sampling units" (shaded circles). Average estimates were obtained by repeating the random split

multiple times. (F) Based on the fraction of bacterial nonredundant (NR99) sequences in SILVA (right shaded circle) that could be matched to the GPC (left shaded

circle), we estimated the fraction of global bacterial OTU richness represented in the GPC and, given the total number of bacterial OTUs in the GPC, the total number

of extant bacterial OTUs. For analogous results at 99% clustering similarity, see S4 Fig. GPC, Global Prokaryotic Census; ICE, incidence coverage-based estimator; NR,

nonredundant; OTU, operational taxonomic unit; tWLRM, transformed weighted linear regression model.

https://doi.org/10.1371/journal.pbio.3000106.g001
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two, three of four sampling units ("iChao2split," illustration in Fig 1E). All of the above meth-

ods yielded comparable estimates for global prokaryotic OTU richness, with the lowest esti-

mate obtained using tWLRM (901,902 OTUs), and the highest estimate obtained using

breakaway (1,588,567 OTUs). The majority of prokaryotic OTUs are estimated to be bacterial,

with bacterial richness (Fig 1C) being roughly 10 times greater than archaeal richness (Fig

1D). Importantly, all of the above estimates suggest that there only exist in the order of approx-

imately 1–2 million prokaryotic OTUs, a substantial portion of which is represented by the

GPC (47%–82%). We point out that even at a finer phylogenetic resolution (99% clustering

similarity), we estimate that there exist only approximately 3–9 million prokaryotic clusters

worldwide (S4 Fig and S1 Table), which is six orders of magnitude lower than estimated previ-

ously via extrapolation of empirical scaling laws [6].

To further scrutinize our estimates of global OTU richness and to verify whether a substan-

tial fraction of that richness is indeed covered by the GPC, we determined the fraction of 16S

sequences from previous global surveys or existing databases that was rediscovered ("recap-

tured") by the GPC. We found that at 97% similarity, the GPC recaptured 96% of prokaryotic

sequences in the SILVA database (nonredundant set, release 132) [14], 89% of prokaryotic

sequences in the Ribosomal Database Project (RDP release 11) [12], and 93% of prokaryotic

sequences in the Genome Taxonomic Database (GTDB release 86.1) [49] (domain-specific

coverages in S2 and S3 Tables). Using these coverages as a proxy for the fraction of global

OTU richness covered by the GPC and combining this coverage fraction with the total number

of OTUs in the GPC yields additional independent estimates of global prokaryotic OTU rich-

ness (771,234–832,420 OTUs, Fig 1F), roughly consistent with our previous estimates. We also

found that at 97% similarity, the GPC recaptured 92% of unique noise-filtered ("deblurred")

16S amplicon sequences from another recent independent massive global survey, the EMP

[22]. The high fraction of EMP sequences recaptured by the GPC further supports our conclu-

sion that the GPC covers a substantial portion of extant prokaryotic OTUs.

Eliminating potential caveats

While our statistical richness estimators (Fig 1C and 1D) were designed to account for variable

detection probabilities among OTUs, the potential risk of neglecting a large number of

extremely rare OTUs cannot be overemphasized. To further assess this risk, we also explicitly

investigated the global distribution of relative OTU abundances. Specifically, for each OTU,

we estimated its relative abundance in each sample (using the Good–Turing formula) [38] and

then took the average across all samples to obtain its mean relative abundance (MRA). We

then created a frequency histogram of MRAs by grouping OTUs into equally sized MRA inter-

vals on a logarithmic axis. We note that this empirical histogram only includes OTUs discov-

ered by the GPC and may thus be skewed toward more abundant OTUs. We therefore

reconstructed the total number of extant OTUs in each MRA interval (blue continuous curve

in Fig 2A) using a probabilistic model of OTU discovery. This model accounted for our quality

filtering and finite sequencing depths and was calibrated by comparing OTU discovery rates

in the GPC with those in a rarefied variant of the GPC (i.e., using only half of the original

sequences). Following recommendations by Shoemaker and colleagues [11], we then fitted a

log-normal model to the reconstructed distribution of MRAs of extant OTUs. We found that

the latter was well described by the log-normal model (blue dashed curve in Fig 2A), resem-

bling analogous observations commonly made for larger organisms. We point out that the log-

normal model is largely phenomenological, although it is sometimes derived from certain sto-

chastic population models [50]. Hence, we make no assertion as to which mechanisms could

possibly lead to the observed log-normal–like distribution of MRAs and as to whether other
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(potentially yet to be discovered) models may be even more suitable. Based on the recon-

structed distribution of MRAs, as well as based on the fitted log-normal model, we estimate

that the majority of extant OTUs exhibit an MRA across samples between 5 ×10-10 and 5 ×10-8

(mode approximately 5 ×10-9). For lower MRAs, the number of OTUs declines rapidly toward

zero. The rapid decline of the number of OTUs for lower MRAs suggests that the number of

much more rare OTUs (specifically, with an MRA lower than the OTUs detected by the GPC)

is relatively small and that the GPC did not miss vast numbers of extremely rare OTUs. This

conclusion contrasts previous speculations that there exists a vast number of extremely rare

and largely undetected OTUs, sometimes referred to as "rare microbial biosphere" [6,17,51].

According to the fitted log-normal model, there exist only approximately 886,291 prokaryotic

OTUs across the entire range of MRAs, further supporting our other estimates.

Since OTUs are inevitably taxonomically identified through comparison with reference

databases (here, SILVA was used to identify OTUs at the kingdom level), censuses such as the

GPC may in principle miss clades lacking a close relative in the databases. To investigate this

potential caveat, we calculated the phylogenetic distance of each OTU to its closest match in

SILVA in terms of 16S sequence divergence and created a frequency histogram of these dis-

tances that shows the overall distribution of OTUs in comparison to SILVA (Fig 2B). We

found that the vast majority of OTUs in the GPC has a distance to SILVA that is far below the

threshold allowed for taxonomic identification (maximum 40%) and that the frequency of

OTUs drops rapidly toward that threshold. This suggests that our taxonomic identification

algorithm did not miss a substantial number of biological sequences at larger phylogenetic dis-

tances (omitted sequences at greater distances are likely spurious, see Methods for details).

Primer "blind spots," i.e., clades not captured by PCR primers, could in principle lead to an

underestimation or a phylogenetically biased assessment of prokaryotic diversity by the GPC.

For example, recent studies suggest that roughly 10% of prokaryotic 16S sequences may be

missed by any given existing primer pair [52–54]. To investigate this caveat and to check

whether a large fraction of diversity may have been missed by the GPC due to primer blind

spots, we calculated the fraction of 16S sequences recovered from a multitude of environments

using primer-independent (metagenomics-based) methods that were rediscovered by the

Fig 2. Mean relative OTU abundances and OTU distances to SILVA. (A) Frequency histogram of MRAs of prokaryotic OTUs discovered

by the GPC (grey continuous line), of OTUs discovered by the rGPC (grey dashed lines), and of all extant OTUs as estimated using a

probabilistic model of OTU discovery (blue continuous curve). The probabilistic model was fitted separately for each MRA interval by

comparing the discovery rates of the GPC and the rGPC. The blue dashed curve shows a log-normal distribution model [11] fitted to the

estimated MRA distribution of extant OTUs. For analogous results at other phylogenetic resolutions (99%, 95%, and 90% similarity), see S3

Fig. (B) Frequency histogram of the phylogenetic distances of GPC’s prokaryotic OTUs (97% similarity in the 16S-V4 region) to SILVA

(release 132, set NR99). The distance of an OTU to SILVA was defined as the minimum difference (fraction of nucleotide mismatches over

the aligned 16S region) of the OTU to any entry in SILVA. Observe how almost all OTUs have a distance to SILVA below 20%. GPC, Global

Prokaryotic Census; MRA, mean relative abundance; NR, nonredundant; OTU, operational taxonomic unit; rGPC, rarefied variant of the

GPC.

https://doi.org/10.1371/journal.pbio.3000106.g002
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GPC. We found that, at 97% similarity, the GPC recaptured 91% of 16S sequences in prokary-

otic genomes previously assembled from metagenomes (Uncultivated Bacteria or Archaea

[UBA]) [55] and 93% of bacterial 16S sequences extracted from thousands of public metagen-

omes [56]. These recapture fractions are comparable to the fraction recovered from the EMP,

suggesting that the fraction of OTUs missed by the GPC due to primer blind spots is small.

One reason may be that the GPC comprises sequences obtained using a multitude of alterna-

tive primers optimized for different clades, therefore partly alleviating the problem of primer

nonuniversality. In particular, 16S sequences currently not detectable by any primers may only

represent a minority of prokaryotic diversity, even if any given primer set has limited sensitiv-

ity scope. It is thus improbable that primer-independent methods will reveal a prokaryotic

richness much (i.e., orders of magnitude) higher than composite multiprimer-based surveys

such as the GPC.

Most prokaryotic OTUs are globally distributed

When we repeated our analyses using only studies from the Americas or near American coasts

(165 studies across 14 countries, see map in S1 Fig) instead of the full GPC, OTU discovery

rates for any given number of studies remained almost unchanged (Fig 1A and 1B). Hence, for

the same "sampling effort," the same OTU richness is recovered from the Americas as from the

full GPC, and importantly, the restriction to the Americas does not cause a stronger decelera-

tion of OTU discovery rates. This suggests that the majority of global prokaryotic OTUs could

have been censused from a single hemisphere, if sufficient samples had been available. Consis-

tent with this conclusion, when controlling for the number of studies included and using the

same methods as above, we found that prokaryotic OTU richness estimated for the Americas

was very similar to estimates based on an equal number of studies randomly chosen from

across the world (0.7–1.3 million OTUs, S5A Fig). Similar results were also obtained at a

higher 16S similarity threshold of 99% (S4A and S4B and S5B Figs). Our findings extend previ-

ous observations that for any given number of samples, similar prokaryotic OTU richness is

recovered from soil in New York Central Park as from distinct soil samples worldwide [57].

Most prokaryotic OTUs thus appear to exhibit low geographic endemism and global dispersal

ranges at geological time scales, i.e., at time scales needed for 16S to diverge by more than 1%

[58,59]. A global distribution of prokaryotic OTUs has long been a central but controversial

hypothesis [60,61]. Our finding provides strong support for this hypothesis and is also consis-

tent with previous findings that most marine bacterial OTUs can be recovered from a single

location in the ocean with sufficiently deep sequencing [62,63] and with findings that salt-

marsh Nitrosomonadales OTUs are globally distributed [64]. That said, we point out that a

global distribution of OTUs does not rule out geographic endemism at finer phylogenetic reso-

lutions since younger clades, e.g., recently differentiated ecotypes with identical 16S, may not

have had time to overcome dispersal barriers at global scales [65,66].

Taxon-specific diversities and coverages in databases

Our census allows an unprecedentedly precise assessment of the diversity covered by existing

16S databases such as SILVA [14] or the RDP [12]. Based on the fraction of GPC OTUs

matched to entries in SILVA (release 132, nonredundant set) at 97% similarity, we estimate

that SILVA represents about 29% of bacterial and 14% of archaeal OTUs globally. Similarly,

we find that the RDP (release 11) represents about 42% of bacterial and 20% of archaeal OTUs.

Our findings confirm recent estimates that SILVA covers about 30%–40% of global prokary-

otic OTU richness [5,67]. We point out that Bacteria are currently overrepresented in SILVA

and the RDP relative to Archaea. The uneven representation of various taxonomic groups is
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generally more pronounced at lower taxonomic levels, with some phyla being strongly over-

represented compared to others (Fig 3B). In addition, about 7% of prokaryotic OTUs in the

GPC could not be reliably assigned to any phylum listed in SILVA. This indicates that some

phyla are not represented in SILVA at all, consistent with conclusions from metagenomic

studies [56,68].

Our estimates also highlight strong differences in the OTU richness specific to different

phyla, with Proteobacteria (mostly Gammaproteobacteria and Deltaproteobacteria) clearly

dominating global richness, followed by the Firmicutes (mostly Clostridia), Bacteroidetes

(mostly Bacteroidia), Nanoarchaeota (mostly Woesearchaeia), Patescibacteria, and Planctomy-

cetes (mostly Planctomycetacia) (Figs 3A and S11A). Hence, the large representation of Pro-

teobacteria in reference databases and among cultured species [69] is not just the result of a

biased discovery rate (e.g., due to ease of culturing) but also partly reflects their general ability

to expand and persist in a multitude of ecological niches [70]. Similarly, the large richness of

Firmicutes may be explained by their ability to colonize a wide range of animal hosts [56].

Interestingly, the Nanoarchaeota are known as a deeply branching and poorly characterized

ancient clade [71], which has been suggested to comprise a largely underestimated diversity

[72]. The few isolated Nanoarchaeota indicate that they share a common history of adaptation

to ectosymbiosis [73], and this may have contributed to the difficulty of isolating representa-

tives. In contrast, while the Actinobacteria phylum contains the second largest number of cul-

tured strains [69,74], it only ranks eigth in terms of estimated total OTU richness (Fig 3A),

suggesting a strong culturing bias for this phylum, consistent with previous findings [69]. We

point out that extant prokaryotic diversity is the result of diversification and extinction pro-

cesses operating over billions of years and throughout geological transitions [15]. It is thus pos-

sible that the relative richness of various taxa varied strongly over time.

Implications

Our work suggests that global prokaryotic OTU richness is about six orders of magnitude

lower than previously predicted via extrapolation of diversity scaling laws and OTU abun-

dance distributions fitted to individual microbial communities [6,8]. While we find support

for a log-normal distribution of mean relative OTU abundances consistent with assumptions

made by Locey and colleagues [6], at least two aspects differentiate our approach from Locey

and colleagues. First, we fitted the log-normal model to a global data set comprising thousands

of samples across hundreds of environments rather than to individual local communities, thus

obtaining a description of relative abundances that is more suitable for global richness esti-

mates. Second, we did not assume or extrapolate any phenomenological scaling relationships

between different parameters of the model, thus relying on fewer questionable assumptions.

The discrepancy between our estimates and those by Locey and colleagues [6] suggests that

phenomenological scaling relationships of microbial diversity cannot be extrapolated to global

scales when these relationships were fitted solely to individual communities. This conclusion

also supports arguments by [21] that the extrapolations performed by Locey and colleagues [6]

have no predictive power and are statistically unsound. Our estimates also contrast extrapola-

tions by Larsen and colleagues [9], who argued that there exist billions of animal-associated

bacterial OTUs based on the number of OTUs typically found in individual insect species and

the estimated total number of animal species. One reason for this discrepancy may be that Lar-

sen’s extrapolation did not properly account for the overlap of microbiomes between animal

taxa (detailed discussion in S1 Text). Our much lower bacterial richness estimates suggest that

many symbiotic OTUs are found in multiple host species that may or may not be closely

related, potentially due to host trait convergences, consistent with recent observations [75–77].
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Fig 3. Richness of phyla and coverage by SILVA and the GPC. (A) Estimated number of OTUs (97% similarity in the 16S-V4 region) globally,

within various prokaryotic phyla. Estimated based on the coverage of SILVA by the GPC (subfigure C) and the number of OTUs in the GPC.

Only phyla including at least 10 entries in SILVA (release 132, set NR99) [14] and estimated to contain at least 10 extant OTUs are considered.

Phyla are sorted in decreasing estimated OTU richness; only the 25 richest phyla are shown. (B) Fraction of GPC OTUs that could be mapped

to SILVA NR99 at similarity�97%, as a proxy for global OTU richness covered by SILVA, within the same phyla as in A. (C) Fraction of SILVA

NR99 sequences that could be mapped to the GPC at similarity�97%, as a proxy for global OTU richness covered by the GPC, within the same

phyla as in A. For additional phyla not shown here, see S6 Fig. For analogous results at other phylogenetic resolutions, see S7 Fig (99%), S8 Fig
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Since the microbiome of only a minuscule fraction of animal species has been examined so far,

it is quite possible that many allegedly "host-specific" bacteria are shared by a broader spectrum

of host species than currently known. This could explain why overall bacterial richness (at the

OTU level) appears to have been largely unaffected by past mass animal extinctions, as recently

suggested based on phylogenetic analyses [15].

Given the long evolutionary history and ubiquity of prokaryotes, a richness of only approxi-

mately 0.8–1.6 million OTUs may seem surprisingly low. To put this finding into perspective,

we considered a steady state null model, in which global prokaryotic cell counts (N) are con-

stant over time, in which cells are replaced randomly and regardless of phylogenetic relation-

ships via births and deaths, and in which the 16S-V4 region evolves neutrally [59] at some

constant drift rate (r, measured in mutations per site per generation) and independently at

each site. Note that one important and potentially wrong assumption of this model is that cell

turnover is statistically independent of phylogeny. A similar model was recently proposed by

Straub and colleagues [78] as a null model for 16S phylogenies. Based on our model, we predict

that there should exist about 2rN=0:03 � 1022 � 1023 OTUs (assuming N = 1030 [79] and r ¼
4� 10� 9 � 5� 10� 10 [80,81], details in S2 Text). This extreme discrepancy between the model

and our global richness estimates persists regardless of the similarity threshold used (97% or

99%). The discrepancy also persists even if currently estimated 16S mutation rates (r) or global

cell counts (N) were off by 10 orders of magnitude or even if global cell counts varied drasti-

cally (e.g., by 1–10 orders of magnitude) over recent time. One explanation for this discrep-

ancy could be that the evolution of the 16S-V4 region along a lineage is subject to strong

constraints that favor some mutations or sequence variants more than others, thus effectively

reducing the "permissible" sequence space [82–84]. This would suggest that only about 10−14%

of the theoretically possible 16S variants are actually biologically viable and attainable over the

course of approximately 4 billion years [85]. Alternatively, some processes not captured by the

model may eliminate all but just a small fraction of 16S sequence variants emerging over time.

Phylogenetically correlated turnover, i.e., closely related organisms experiencing birth or death

simultaneously more frequently than expected by chance (e.g., due to their greater ecological

similarity), would lead to increased removal of sequence variants from the pool compared to

the above null model and may also be an explanation for the relatively sparse filling of 16S

sequence space found here. This would imply that extinction plays a central role in prokaryotic

diversification, as recently suggested by [15] and contrasting common speculations that pro-

karyotic OTUs are unlikely to go extinct [1,86–88].

We emphasize that our results are specific to the similarity threshold used (97% similarity

in 16S) and the gene region targeted (V4), although these choices are a popular combination

in microbial ecology [22]. For example, at coarser phylogenetic resolutions (e.g., 95% and 90%

similarity, roughly corresponding to genera and families [89,90]), we estimate that there exist

substantially fewer 16S clusters and that the GPC covers a greater fraction of those clusters

(50%–98% and 51%–99.5% of extant clusters, respectively, S1 Table). Consistent with these

estimates, we found that at these coarser resolutions the GPC recaptured 95%–96% and 98%,

respectively, of previous global 16S surveys (S3B, S3C, S8 and S9 Figs and S4 and S5 Tables).

Reciprocally, when we analyzed a subset of our data (approximately 0.2 billion reads across

111 studies) at the finest possible phylogenetic resolution (100% identity) using the recent

Divisive Amplicon Denoising Algorithm (DADA2) software [91], we obtained about 3.4 times

as many exact amplicon sequence variants (ASVs) as 97%-OTUs and about 1.5 times as many

(95%), and S9 Fig (90%). For analogous results at the class level, see S10 Fig (99%), S11 Fig (97%), and S12 Fig (95%). GPC, Global Prokaryotic

Census; NR, nonredundant; OTU, operational taxonomic unit.

https://doi.org/10.1371/journal.pbio.3000106.g003
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ASVs as 99%-OTUs (S13 Fig). This suggests that the global richness of exact sequence variants

is at most an order of magnitude larger than the number of OTUs. The sequence length con-

sidered may also affect global richness measures. For example, full-length 16S diversity (cur-

rently much harder to census) is expected to be greater than partial-length (V4) 16S diversity

[4] because short gene regions may cluster as one OTU due to the stochasticity of mutations

even if the full genes differ by more than 3%. For example, when restricted to the V4 region or

when considering the full 16S gene, at 97% similarity, 16S sequences in SILVA cluster into

102,416 or 270,788 OTUs, respectively, suggesting that the number of extant full-length OTUs

may exceed the number of V4 OTUs by a factor of approximately 2.7. When combined with

our V4-based richness estimates, this suggests that there exist 2.2–4.3 million full-length OTUs

worldwide. A similar ratio between full-length and partial-length clusters is also obtained at

99% similarity (S6 Table). Unfortunately, while full-length sequencing undoubtedly improves

phylogenetic resolution, technical complications and a higher cost currently prevent the wide

adoption of full-length 16S sequencing in microbial community surveys. Finally, we stress that

16S diversity only provides a coarse surrogate for prokaryotic genomic and phenotypic diver-

sity [29,30], and it is probable that the global number of prokaryote ecotypes greatly exceeds

the number of OTUs. Cataloguing the phenotypic and genomic diversity of prokaryotes will

undoubtedly be an important but much more challenging future task.

Conclusions

In 2002, Curtis and colleagues [2] hypothesized that experimental approaches to directly enu-

merating extant prokaryotic diversity will remain fruitless due to logistical challenges. Almost

two decades later, we demonstrated that publicly available sequencing data from 492 studies

around the world are sufficient to recover a substantial fraction (47%–96%) of global prokary-

otic diversity in the 16S-V4 region, the very extent of which has long been a topic of specula-

tion [1,2,4–7]. Our composite data set, covering a multitude of environments worldwide,

enabled us to strongly constrain global prokaryotic OTU richness. Indeed, our global richness

estimates are similar across a multitude of statistical estimators (Fig 1C and 1D), all of which

are based on different models of OTU detection probabilities and, in most cases, use a different

set of OTU incidence frequency counts. The high fraction of 16S sequences from other ampli-

con- and metagenomic-sequencing surveys (e.g., the EMP [22] or UBA [55]) and large data-

bases (e.g., SILVA [14] and RDP [12]), recaptured independently by the GPC (91%–93%),

further supports our global prokaryotic richness estimates and our assessment that the GPC

covers a substantial portion of that richness.

While no particular 16S similarity threshold provides an ideal species analog, OTUs provide

an operational and clearly defined measure of richness that can be compared across studies,

environments, and geological time [15]. For example, our work revealed that global prokary-

otic OTU richness is orders of magnitude lower than often predicted [1,6,9], regardless of the

considered similarity threshold (97% and 99%). Further, the fact that our global richness esti-

mates are approximately 16–17 orders of magnitude lower than predicted by a null model for

neutral OTU emergence, regardless of the similarity threshold used, suggests that extinction

played a major role in prokaryotic evolution [15] and/or that the attainable 16S-V4 sequence

space is extremely constrained. Our work also showed that at the phylogenetic resolutions con-

sidered here (�1% divergence in 16S), most prokaryotic OTUs are globally distributed, yield-

ing insight into the time scales involved in global-scale microbial dispersal.

We reiterate that the goal of the GPC was to enable a more robust estimate of total extant

prokaryotic richness than previous studies. Indeed, our estimates are based on an unprece-

dentedly large and environmentally broad composite sequencing data set, assembled from
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hundreds of studies utilizing alternative primers and alternative sampling techniques, and

using a wide array of alternative statistical estimation methods for increased robustness. The

GPC can thus facilitate future efforts to catalogue and phenotypically describe Earth’s extant

prokaryotes. The GPC also opens up new avenues for reconstructing prokaryotic evolution

over geological time using massive phylogenetic trees and for refining macroecological theo-

ries. While long considered an unseen majority [79], thanks to ongoing technological revolu-

tions, prokaryotes could one day become one of the most exhaustively characterized and best

understood forms of life.

Methods

Retrieval of GPC amplicon sequences

Publicly available 16S rRNA amplicon sequences (V4 region) from various environmental and

clinical studies were downloaded from the European Nucleotide Archive (https://www.ebi.ac.

uk/ena). Only Illumina sequences were downloaded to ensure sequence qualities en par with

current standards and because Illumina-based studies typically achieve much deeper sequenc-

ing than studies using previous-generation (e.g., 454) technology. We only considered

sequences covering the V4 hypervariable region for three reasons. First, use of the same gene

region in all samples is necessary for clustering sequences into nonredundant OTUs. Second,

the V4 region is one of the most popular regions targeted in microbial surveys, including the

EMP [22], making it easier to find publicly available data sets and allowing for comparison

with the EMP. Third, the V4 region was shown to be the most suitable single hypervariable

region for reconstructing bacterial phylogenetic relationships [24]. Studies were chosen to rep-

resent as wide of an environmental spectrum as possible. A total of 34,368 samples from 492

studies were downloaded (description and accession numbers in S1 Data). Geographical sam-

ple locations (where available) are shown in S1 Fig.

We mention that sequencing data from the EMP [22] were omitted from the GPC because

this allowed us to use the EMP as an independent reference data set for assessing the fraction

of OTUs rediscovered by the GPC and because the much shorter read lengths in the EMP (122

bp on average) compared to the GPC (246 bp on average) would reduce the available phyloge-

netic resolution [92–96]. Indeed, as we expected the EMP to be less phylogenetically biased

than reference databases such as SILVA and RDP, the EMP provided a valuable means to fur-

ther evaluate the overall coverage of extant prokaryotic diversity by the GPC (see main text

and Methods below).

Amplicon sequence clustering

Paired-end reads with sufficient overlap were merged using flash v1.2.11 [97] (options—min-
overlap = 10—max-mismatch-density 0.01—phred-offset 33—allow-
outies). Of the nonsufficiently overlapping pairs, forward reads were kept and reverse reads

discarded. Single-end reads, merged paired-end reads, and nonmerged forward reads were

subsequently processed in the same way, as follows. Reads were trimmed and quality filtered

using vsearch v2.6.2 [98], keeping only reads that were at least 200 bp long after trim-

ming (options—fastq_ascii 33—fastq_minlen 200—fastq_qmin 0—fas-
tq_maxee 0.5—fastq_truncee 0.5—fastq_maxee_rate 0.002—
fastq_stripleft 7—fastq_trunclen_keep 250—fastq_qmax 64). Any sam-

ples with more than 106 quality-filtered reads were subsampled down to 106 randomly chosen

reads to reduce computational requirements; samples with fewer quality-filtered reads were

not subsampled. The 1,988,445,238 kept reads were then chimera-filtered de novo using

vsearch (options—abskew 1.9 –mindiv 0.5 –minh 0.1) separately for each
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sample. About 10% of reads were identified as chimeric (on average, 8.6% of reads per sample),

yielding in total 1,734,042,763 quality-filtered and chimera-filtered reads with a mean length

of 246 bp. Reads from all samples were pooled and subsequently clustered de novo at 97% sim-

ilarity using cd-hit-otu v0.0.1 [99]. We chose cd-hit-otu because—in contrast to

most other OTU-clustering algorithms—it scales relatively well to massive data sets such as

ours. For a comparison between cd-hit-otu and other clustering algorithms, we refer to

[99–102]. For consistency with our own downstream error filters (removal of spurious OTUs),

we set the minimum size for a cluster of duplicates in the cd-hit-otu algorithm to 2 (step

clstr_sort_trim_rep) and the primary cluster size cutoff to 1 (disabling cd-hit-
otu's noise removal algorithm). De novo clustering yielded 1,545,602 clusters. Because

primers of the various studies included did not all cover exactly the same regions and due to

the clustering algorithm implemented by cd-hit-otu, a small number of clusters was

redundant, i.e., the representative sequences of some clusters were slightly shifted versions of

others. To remove this redundancy, we further clustered representative sequences using

vsearch (command—cluster_fast—usersort–id 1.0—iddef 2—strand
plus), thereby obtaining 1,386,686 nonredundant OTUs. To further avoid spurious (i.e.,

nonbiological) OTUs, we only kept OTUs that were found in at least two samples of the same

study (944,863 OTUs). While we cannot completely rule out the inclusion of some spurious

OTUs in the GPC, we point out that a hypothetical removal of these OTUs would only further

decrease our estimates of global prokaryotic OTU richness. Representative sequences for the

final set of prokaryotic GPC OTUs (at 97% and 99% clustering threshold) and OTU tables are

available online at www.loucalab.com/archive/GPC.

Taxonomic identification of OTUs

The taxonomic identity of each OTU was determined based on its similarity to entries in the

SILVA database [14] and by using a consensus approach, as follows. Each OTU was mapped

to SILVA’s nonredundant (NR99) SSU sequences using vsearch [98], at a similarity thresh-

old of 60% and keeping only the top 10 hits (options "—id 0.6—strand both—iddef 2
—maxaccepts 20—maxhits 10"). If at least one hit had a similarity 100%, then all hits

with similarity 100% were used to form a consensus taxonomy. Otherwise, if the best hit had a

similarity s�60%, then all hits with similarity�(s-5%) were used to form a consensus taxon-

omy. In either case, the consensus taxonomy of a set of hits was defined as the taxon at the low-

est taxonomic possible level (e.g., domain, phylum, etc.) containing all of the hits. If an OTU

did not have any hit in SILVA at or above a threshold of 60% similarity or did not have a con-

sensus taxonomy even at the domain level, it was considered unidentified and was subse-

quently omitted (see justification in the next paragraph). The overwhelming majority (87%) of

OTUs had at least one hit in SILVA at similarity�60%, and almost all of these OTUs

(>99.9%) could be identified at some taxonomic level. Any OTUs identified as eukaryotes,

chloroplasts, and mitochondria were omitted from subsequent analyses.

We note that our imposed similarity threshold of 60% to SILVA is much lower than the

thresholds commonly suggested for delineating phyla (e.g., 75% similarity according to [4]),

thus the bulk of biological (i.e., nonspurious) sequences is expected to pass this threshold.

While the 75% similarity threshold by [4] referred to the full-length 16S gene, the same study

also showed that partial gene regions (e.g., "R3" in that paper, roughly corresponding to V4)

exhibit less richness than the full-length gene for any given clustering threshold. Hence, organ-

isms that are >75% similar to a SILVA entry in the full 16S are even more likely to be>75%

similar in the V4 region; consequently, a similarity threshold of 60% in V4 is probably more

permissive than a similarity threshold of 75% in the full gene. OTUs with a similarity to SILVA
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below 60% (or equivalently, a distance above 40%) are likely largely spurious. To confirm this

expectation and to further investigate the nature of these omitted OTUs, we calculated the dis-

tribution of distances of OTUs to SILVA as well as the fraction of OTUs that could be matched

to SILVA, as the similarity threshold decreased below 60% all the way to zero (S14A and S14B

Fig). We found that as one approaches the 60% similarity threshold, the fraction of OTUs

matched to SILVA levels off; that is, very few OTUs lie in the 60%–65% range, while the major-

ity of OTUs lies in the 80%–100% range (as discussed in the main article). Strikingly, for

slightly lower similarity thresholds, there exists a sharp peak of OTUs within the 50%–60%

similarity range and virtually no OTUs below that range. This agglomeration of a small frac-

tion of OTUs in the 50%–60% range is likely mostly spurious, specifically consisting of bichi-

meras (the most common type of chimeras). Indeed, bichimeras inevitably include a biological

segment that makes up at least 50% of their length, and that biological segment will likely

match SILVA at considerable similarity. Thus, most bichimeras are expected to aggregate

within the 50%–60% similarity interval, as observed in our case. When we repeated the above

analysis for clusters at 99% identity, we observed that the peak within the 50%–60% similarity

range decreased substantially (S14C and S14D Fig). This is consistent with the expectation that

chimeric sequences clustered at 99% identity are easier to detect than when clustered at 97%

identity, since the variance around representative sequences hinders a reliable identification of

parent sequences by chimera detectors. In fact, when we considered exact ASVs generated and

chimera-filtered with DADA2 [91] for a subset of our data (subset "AG," see below), the peak

in the 50%–60% similarity interval disappeared nearly completely (S15C Fig). In other words,

almost all ASVs had a similarity to SILVA above 60%. This is consistent with the expectation

that chimeric ASVs are easier to detect than chimeric OTUs [91] and further supports our con-

clusion that most of the removed OTUs (all falling within the 50%–60% similarity interval) are

likely bichimeras that have escaped our previous chimera filters. The alternative explanation

that this agglomerate at 50%–60% similarity represents biological sequences is much less prob-

able, since this would beg the question as to why these sequences aggregate within the similar-

ity interval 50%–60% and why they disappear at higher clustering identities.

Comparison with the EMP

To calculate the fraction of prokaryotic 16S diversity recovered by the EMP [22] that was

recaptured by the GPC, we proceeded as follows. We dowloaded the EMP’s set of unique

quality- and chimera-filtered 16S sequences (202,540 "deblurred" sequences, covering 150

bp of the V4 region) from the EMP FTP repository (ftp://ftp.microbio.me/emp/release1/

otu_info/deblur/emp.150.min25.deblur.seq.fa). EMP sequences were taxonomically identi-

fied using the same methods as for the GPC, and any sequences identified as eukaryotes,

chloroplasts, or mitochondria were omitted. EMP sequences were then mapped to GPC

OTUs using vsearch at a similarity threshold of 97% whenever possible (options "—id
0.97—iddef 2—strand both"). For any given taxon, the fraction of recaptured EMP

sequences was calculated as Nm/NEMP, in which NEMP is the number of EMP sequences

identified to be within the focal taxon and Nm is the number of EMP sequences in the focal

taxon matched to a GPC OTU. An overview of recapture fractions is provided in S2 Table.

Comparison with the RDP

To calculate the fraction of prokaryotic 16S diversity in the RDP (release 11) [12] that was

recaptured by the GPC, we proceeded as follows. Nonaligned bacterial and archaeal 16S

sequences were downloaded as fasta files from the RDP website (https://rdp.cme.msu.edu/

misc/resources.jsp). The RDP’s original taxonomic annotations were assumed for each RDP
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sequence. The fraction of RDP sequences recaptured by the GPC was calculated for various

taxa, as described above for the EMP (overview in S2 Table).

Comparison with the GTDB

To calculate the fraction of prokaryotic 16S diversity in the GTDB (release 86.1) [49] that was

recaptured by the GPC, we proceeded as follows. Bacterial and archaeal 16S sequences,

extracted from the GTDB genomes, were downloaded as fasta files from the GTDB website

(http://gtdb.ecogenomic.org/downloads). Only sequences at least 1,000 bp long were kept. The

fraction of GTDB sequences recaptured by the GPC was calculated for various taxa, as

described above for the EMP (overview in S2 Table).

Comparison with UBA

To calculate the fraction of 16S sequences from metagenome-assembled UBA genomes [55]

that was recaptured by our GPC data set, we proceeded as follows. Fully or partly assembled

16S sequences for 2,853 metagenome-assembled genomes were downloaded from https://data.

ace.uq.edu.au/public/misc_downloads/uba_genomes/ on October 25, 2017. Only UBA

sequences longer than 1,000 bp were considered to increase the probability of adequate overlap

with the V4 region, leaving us with 620 sequences. UBA sequences were taxonomically identi-

fied using the same methods as for the GPC, and any sequences identified as eukaryotes, chlo-

roplasts, or mitochondria were omitted. The fraction of UBA sequences recaptured by the

GPC was calculated for various taxa, as described above for the EMP (overview in S2 Table).

Comparison with IMG/M

To calculate the fraction of bacterial 16S sequences previously extracted from metagenomes in

the Integrated Microbial Genomes and Microbiomes (IMG/M) database [56] that was recap-

tured by the GPC, we proceeded as follows. Aligned SSU sequences (�1,200 bp long) extracted

from IMG/M were downloaded as a fasta file from https://bitbucket.org/berkeleylab/

bacterialdiversity/downloads on February 13, 2018 (file IMGG_SSU1200.fasta). Only

sequences obtained from metagenomes were kept (tag "MTGBAC," 63,367 sequences).

Aligned sequences were dealigned (gaps removed); taxonomically identified, as described

above for the GPC; and any sequences identified as eukaryotes, chloroplasts, or mitochondria

were omitted. The fraction of IMG/M sequences recaptured by the GPC was calculated for var-

ious taxa, as described above for the EMP (overview in S2 Table).

Comparison with SILVA

Unless otherwise mentioned, sequences in SILVA classified as eukaryotes, mitochondria, or

chloroplasts were omitted from all analyses. To calculate the fraction of 16S diversity in the

SILVA database [14] that was covered ("recaptured") by the GPC (Figs 3C and S11C), we pro-

ceeded as follows. Nonredundant (NR99) SSU alignments in SILVA release 132 were down-

loaded from the SILVA website (https://www.arb-silva.de/fileadmin/silva_databases/release_

132/Exports/SILVA_132_SSURef_Nr99_tax_silva_full_align_trunc.fasta.gz) and subsequently

dealigned (gap characters removed). Dealigned SILVA NR99 sequences were then mapped to

GPC OTUs via global alignment using vsearch, at a similarity threshold of 97% (options "—
id 0.97—iddef 2—strand both"). For any given taxon (domain, phylum, or class), we

calculated the coverage by the GPC (Figs 3C and S11C) as the ratio (ρ) of mapped SILVA

sequences in that taxon divided by the total number of SILVA sequences in that taxon. The
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total number of extant OTUs within the taxon (Figs 3A and S11A) was estimated as NGPC/ρ, in

which NGPC is the number of GPC OTUs in the taxon.

To estimate the coverage of various prokaryotic taxa (domains, phyla, or classes) by SILVA

(Figs 3B and S11B), we proceeded as follows. For any given taxon, we mapped GPC OTUs

within that taxon to the dealigned SILVA NR99 sequences via global alignment using

vsearch at a similarity threshold of 97% (options "—id 0.97—iddef 2—strand
both"). The fraction of OTU richness covered by SILVA was estimated as the ratio of mapped

GPC OTUs within that taxon divided by the total number of GPC OTUs in that taxon.

To calculate the 16S diversity in SILVA, in terms of OTUs comparable to the GPC (clusters

at 97% identity in the V4 region), we proceeded as follows. We downloaded the full set of SSU

alignments from the SILVA website (https://www.arb-silva.de/fileadmin/silva_databases/

release_132/Exports/SILVA_132_SSURef_tax_silva_full_align_trunc.fasta.gz). We then

aligned GPC OTUs to SILVA using the QIIME script parallel_align_seqs_pynast.py [103] and

using a random subset (1%) of the SILVA alignments as a template. We identified the first

nucleotide position in the GPC alignments that had a gap fraction below 0.9 (Escherichia coli
position 516) and extracted the part starting at that nucleotide position and extending 200 bp

in the 5’!3’ direction (excluding gaps) from the SILVA alignments. Extracted partial SILVA

alignments were then dealigned (gaps removed) and clustered at 97% similarity using uclust

v1.2.22 [104], yielding 102,416 prokaryotic OTUs ("SILVA V4-OTUs"). To calculate the 16S

diversity in SILVA in terms of full-length OTUs, we also clustered the full-length dealigned

SILVA sequences using uclust at 97% similarity, obtaining 270,788 prokaryotic OTUs.

To calculate the distances between GPC’s OTUs and SILVA (Fig 2B), we proceeded as fol-

lows. OTUs were globally aligned against SILVA NR99 sequences using vsearch, keeping

only the top hit (options "—id 0.6—iddef 2—strand both—maxaccepts 1000—
maxhits 1—top_hits_only"). For any OTU, its distance to SILVA was defined as 100

−I, in which I is the percentage identity to the top hit. The histogram in Fig 2B was obtained

after binning distances into intervals of 2%.

Comparing OTUs to ASVs

In order to obtain a rough estimate of the global richness expected in terms of ASVs (which, in

the absence of errors, are equivalent to sequence clusters at 100% similarity) when compared

to OTU richness—the standard richness measure considered in previous studies—we investi-

gated the density of exact ASVs in the GPC. ASVs were determined using DADA2 v1.10.0

[91], a tool that fits a stochastic error model to the available sequencing data in order to then

distinguish between likely sequencing errors and true biological sequence variants. To limit

computational requirements, we only considered a pseudo-randomly chosen subset of GPC

studies (111 studies with paired-end reads and whose names started with the letter "A" through

"G"), henceforth referred to as "AG" subset. (This subset was chosen for convenience of file

handling, and an alphabetical choice of projects is practically random for our purposes.) Any

samples with more than 106 raw reads were subsampled down to 106 randomly chosen reads

to reduce computational requirements. Reads were quality-filtered and trimmed using the

DADA2 function filterAndTrim, with options maxEE = 0.5, minLen = 160, truncQ = 0, trim-

Left = 7, truncLen = 167 for forward reads and options maxEE = 1, minLen = 140, truncQ = 0,

trimLeft = 7, truncLen = 147 for reverse reads. This yielded 357,738,981 quality-filtered non-

merged paired-end reads. Error rate models were fitted using the DADA2 function learnEr-

rors, separately for each study and separately for forward and reverse reads. ASVs were then

inferred for each sample using the DADA2 functions derepFastq and dada (with options

pool = FALSE, selfConsist = FALSE), and paired-end denoised reads were subsequently
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merged using the DADA2 function mergePairs (with options minOverlap = 10, maxMis-

match = 0). A preliminary ASV table was created using the DADA2 function makeSequence-

Table, yielding an ASV table comprising 258,448,458 reads across 2,319,542 ASVs. Chimeric

sequences (specifically, bichimeras) were subsequently removed using the DADA2 function

removeBimeraDenovo (with options method = "concensus"), separately for each study. The

resulting chimera-filtered ASV table comprised 206,982,673 reads across 725,682 ASVs. Only

ASVs matched by at least two reads (across all samples) were kept for downstream analyses in

order to eliminate spurious sequences. Because we were mainly interested to check if the num-

ber of detected ASVs would be substantially (i.e., orders of magnitude) higher than the number

of detected OTUs and because the DADA2 pipeline includes an algorithm for removing

sequencing errors, we did not filter out ASVs found only in a single sample so as not risk

underestimating the number of exact sequence variants. ASVs were taxonomically identified

using SILVA and a consensus approach, as described above for OTUs, resulting in 580,965

prokaryotic ASVs, accounting for 181,673,137 reads across 5,584 samples. (Note that some

samples did not pass the various filtering/merging steps.) A summary of AG samples, includ-

ing sequence accession numbers, is provided as S3 Data.

To compare the number of ASVs and OTUs detected, we also analyzed the same set of qual-

ity-filtered reads as used for the above DADA2 analysis using our OTU-clustering approach

utilized for the full GPC. Specifically, quality-filtered nonmerged paired-end reads, produced

by the first step in the DADA2 pipeline, were used as input to the GPC clustering pipeline

described above. This yielded 390,893 prokaryotic sequence clusters at 99% similarity account-

ing for 190,247,727 reads or 173,166 prokaryotic sequence clusters at 97% similarity account-

ing for 192,718,873 reads. For a comparison of ASVs and sequence clusters obtained for

various numbers of studies included, see S13 Fig.

Accumulation curves

Accumulation curves of OTUs discovered, as a function of studies included, were calculated as

follows. For any given number of studies N, we randomly chose N studies in the GPC and

counted the number of OTUs detected in at least one of the chosen studies. We repeated this

step 100 independent times and averaged the number of OTUs counted each time. By per-

forming this process for various N (from 1 to 492), we obtained the accumulation curves

shown in Fig 1A and 1B.

Estimating global OTU richness based on incidence frequencies

To estimate the total number of OTUs globally using the statistical estimators described in the

main text (iChao2, ICE, CatchAll, breakaway, tWLRM), we considered each study as an inde-

pendent sampling unit and counted the number of OTUs found in exactly one sampling unit

(Q1), in exactly two sampling units (Q2), and so on. Note that since our last quality filter, by

which we only kept OTUs found in at least two samples of the same study, was applied sepa-

rately for each study, every study can indeed be considered as an independent sampling unit.

Estimates and standard errors were either calculated using the R package breakaway (break-

away and tWLRM [48]), the R package SpadeR (iChao2 and ICE [105]), or the CatchAll soft-

ware (CatchAll with 3-mixed exponential model [46]).

The assumption of the above estimators that sampling units are equivalent (e.g., of similar

effort) is potentially violated by the GPC, since each included study was performed in a differ-

ent environment and by using different techniques. To check whether our estimates are

affected by this caveat, we also used a variant of iChao2 ("iChao2split"), whereby we randomly

assigned studies to four complementary and equally sized groups and considered each group
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as a single independent global sampling unit. Hence, iChao2split considered the number of

OTUs found in only one study group (Q1), in exactly two study groups (Q2), in three study

groups (Q3), and in all four study groups (Q4). The splitting was randomly repeated 100 times,

and the obtained estimates were averaged (Fig 1E); the standard error was set to the standard

deviation of estimates across repeated splittings.

We mention that analogous estimators exist (e.g., "iChao1") for estimating richness in a

community based on the observed OTU abundances (such as sequencing read counts) in a sin-

gle reference sample [41]. Such abundance-based estimators are not suited for our data set for

two reasons: first, to obtain a single globally ranging reference sample, we would need to pool

all GPC samples so as to obtain a measure of abundance for the various OTUs. However, read

counts from separate amplicon-sequencing samples cannot be combined to obtain a measure

of global OTU abundances since the total number of cells that was present in each sample is

unknown and sequencing depths varied between samples. Second, typical abundance-based

estimators such as iChao1 rely on knowing the number of singleton OTUs (i.e., comprising

only one read); however, singleton OTUs have a high probability of being spurious and can

thus not be reliably used to estimate OTU richness [37]. In fact, singleton OTUs, as well as

OTUs found in at most one sample, were omitted from the GPC to minimize spurious OTUs.

Note that this filter corresponds to increasing the OTU detection threshold in each study, just

as sequencing depth affects detection thresholds. Since the incidence-based richness estimators

used in this study all account for finite (a priori unknown and potentially variable) detection

probabilities, their applicability is not expected to be substantially compromised by a system-

atic application of this filter. This is roughly analogous to performing a mark-recapture–based

assessment of wildlife population size; a systematic decrease of capturing effort may increase

the variance of the resulting estimate, but it will not affect the expected value of that estimate.

Estimating the fraction of cells represented by the GPC

To estimate the fraction of prokaryotic cells currently detectable by 16S amplicon sequencing

that is represented by GPC OTUs (i.e., at 97% similarity in 16S), we calculated the probability

(P) that a single additional read would hit a GPC OTU, as follows. Based on the number of

OTUs with exactly two reads (N2 = 87,940) as well as the total number of reads

(N = 1,734,042,763) and using the Good–Turing frequency formula [38], we estimate the total

probability of hitting an OTU with one read in the GPC to be P1 ¼ 2N2=N ¼ 0:000101. (Note

that OTUs with one hit were omitted from the final GPC.) Using the fact that the total esti-

mated probability of hitting an OTU with zero reads in the GPC (P0) is not greater than P1 (it

is more probable to rehit some OTU with one read than to hit some OTU with zero reads) and

the fact that P � 1 � ðP0 þ P1Þ, we obtain the lower bound P � 1 � 2P1 ¼ 99:98%. Hence,

the probability of a single additional amplicon sequence hitting an OTU with�2 reads in the

GPC is estimated to be P � 99:98%. An overview of computed probabilities for various clus-

tering thresholds is given in S7 Table.

Distribution of relative OTU abundances

To estimate the distribution of relative OTU abundances in the GPC, we proceeded as follows.

First, for each OTU in the GPC, we estimated its relative abundance (α) in each sample based

on the number of assigned reads and using the Good–Turing frequency estimator [38,106]:

a ¼
ðr þ 1Þ

N
Nrþ1

Nr
; ð1Þ

in which r is the number of reads assigned to the OTU, Nr is the number of OTUs in the
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sample with exactly r reads, and N is the total number of reads in the sample. We note that the

Good–Turing frequency estimator is widely used in biological statistics and has been repeat-

edly shown to be more robust than simply using the fraction of assigned reads [106,107]. Next,

we averaged the relative abundances of each OTU across all samples to obtain its MRA in the

GPC. We emphasize that we calculated MRAs separately for each sample, even though MRAs

from shallower sequenced samples may be less accurate. This approach was preferred over the

alternative of simply calculating the fraction of reads assigned to an OTU when all samples are

pooled because samples differ drastically in sequencing depth; thus, OTUs that happen to

occur in deeply sequenced samples would appear to be more abundant than OTUs in shallowly

sequenced samples. Similarly, pooling within studies was also avoided because sequencing

depth varied widely even among samples of the same study, and samples were usually not tech-

nical replicates; hence, MRAs calculated for a given study (after pooling) would be biased

toward organisms that happened to be present in deeply sequenced samples. By calculating

MRAs separately for each sample prior to averaging, we avoid biases toward OTUs in more

deeply sequenced samples.

Next, we grouped OTUs into small, equally sized MRA intervals (on a logarithmic scale) to

calculate a frequency histogram of MRAs in the GPC. We note that the resulting frequency

histogram should not be interpreted as a true OTU abundance distribution because it only

includes OTUs discovered by the GPC and may thus be artificially positively skewed [108]. To

estimate the probability that an extant OTU in an MRA interval was included in the GPC (P
(α), in which α is the center of the MRA interval) and, from that, the total number of extant

OTUs in each MRA interval, we proceeded as follows. We randomly removed half of the qual-

ity- and chimera-filtered reads and repeated the OTU clustering and analyses described above,

thus obtaining a rarefied variant of the GPC (rGPC). A total of 514,432 high-fidelity prokary-

otic OTUs were retrieved from the rGPC. We then calculated the frequency histogram of

MRAs for the rGPC and compared it to the one obtained from the GPC to estimate P(α) for

each MRA interval. Specifically, we assumed that the number of reads assigned to an OTU in

any given MRA interval was Poisson-distributed and that the probability of being discovered

was given by the probability of being matched by at least two reads, i.e.,

PðaÞ ¼ 1 � e� lðaÞ � lðaÞe� lðaÞ; ð2Þ

in which λ(α) is the unknown rate of the Poisson distribution for that MRA interval. Since the

rGPC includes half the reads of the GPC, the probability of OTU discovery by the rGPC is

PrðaÞ ¼ 1 � e� lrðaÞ � lrðaÞe� lrðaÞ, in which λr = λ/2. For each MRA interval, we estimated λ(α)

by numerically solving the equation

f ðaÞ
frðaÞ

¼
1 � e� lðaÞ � lðaÞe� lðaÞ

1 � e� 1
2
lðaÞ � 1

2
lðaÞe� 1

2
lðaÞ
; ð3Þ

in which f(α) and fr(α) is the number of OTUs in the focal MRA interval, discovered by the

GPC and the rGPC, respectively. From the estimated λ(α), we thus obtained P(α) via Eq 2 and

the total number of extant OTUs in the MRA interval as FðaÞ ¼ f ðaÞ=PðaÞ.
Following suggestions by Shoemaker and colleagues [11], who concluded that microbial

communities are often well described by log-normal species abundance distributions, a log-

normal model was fitted to the reconstructed OTU MRA distribution F:

FðaÞ �
S
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

ðlogðaÞ � mÞ2

2s2

� �

; ð4Þ

in which μ, σ, and S are fitted parameters. Fitting was performed via least-squares. The fitted
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log-normal model was integrated over the entire real axis to obtain an estimate for the total

number of extant prokaryotic OTUs.
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S1 Fig. Sample locations. Geographical locations of GPC samples (A) and the subset of GPC

samples included in the DADA2 comparison (B). Only samples with publicly accessioned lati-

tude and longitude information are shown (25,796 samples in A; 4,860 samples in B). DADA2;

GPC, Global Prokaryotic Census.

(JPG)

S2 Fig. Samples and studies per OTU. Frequency histograms of the number of samples (top

row) and the number of studies (bottom row) in which each GPC OTU was found in for bacte-

ria (left column) and archaea (right column). Only OTUs found in at least two samples of the

same study are included in the GPC so as to avoid spurious OTUs. In A and B, the left-most

bar refers to a number of samples equal to two. GPC, Global Prokaryotic Census; OTU, opera-

tional taxonomic unit.

(PDF)

S3 Fig. Distribution of mean relative cluster abundances (99%, 95%, and 90% similarities).

Frequency histogram of MRAs of prokaryotic 16S clusters (A: 99% similarity, B: 95% similar-

ity, C: 90% similarity) discovered by the GPC (grey continuous line), of clusters discovered by

the rGPC (grey dashed lines), and of all extant clusters as estimated using a probabilistic model

of OTU discovery (blue continuous curve). The probabilistic model was fitted separately for

each MRA interval by comparing the discovery rates of the GPC and the rGPC. The blue

dashed curve shows a log-normal distribution model fitted to the estimated MRA distribution

of extant clusters (R2 > 0.96 in all cases). GPC, Global Prokaryotic Census; MRA, mean rela-

tive abundance; OTU, operational taxonomic unit; rGPC, rarefied variant of the GPC.

(PDF)

S4 Fig. Collector’s curves of clusters versus studies (at 99% similarity). Accumulation

curves, showing the number of bacterial (A) and archaeal (B) clusters (99% similarity in the

16S-V4 region) discovered, depending on the number of distinct studies included. Curves are

averaged over 100 random subsamplings, and whiskers show corresponding standard devia-

tions. Continuous curves were calculated using all studies (worldwide), while blue dashed

curves were calculated using solely studies performed in the Americas or near American

coasts.

(PDF)
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S5 Fig. Prokaryotic richness estimates (Americas versus globally). Prokaryotic 16S cluster

richness at 97% (A) and 99% (B) clustering similarity, estimated using various statistical esti-

mators and based on studies from the Americas (blue bars) or an equal number of studies cho-

sen randomly from the global data set (grey bars). The number of OTUs discovered by the

GPC is included for comparison (last bar). Error bars indicate standard errors, estimated from

the underlying models; most standard errors are likely underestimated by the models, so the

variability between models is probably a more honest assessment of uncertainty. GPC, Global

Prokaryotic Census; OTU, operational taxonomic unit.

(PDF)

S6 Fig. Richness of phyla and coverage by SILVA and the GPC (at 97% similarity). (A) Esti-

mated number of OTUs (97% similarity in the 16S-V4 region) globally, within various pro-

karyotic phyla. Estimated based on the coverage of SILVA by the GPC (subfigure C) and the

number of OTUs in the GPC. Only phyla including at least 10 entries in SILVA (release 132,

set NR99) [14] and estimated to contain at least 10 extant OTUs are considered. (B) Fraction

of GPC OTUs that could be mapped to SILVA NR99 at similarity�97%, as a proxy for global

OTU richness covered by SILVA, within the same phyla as in A. (C) Fraction of SILVA NR99

sequences that could be mapped to the GPC at similarity�97%, as a proxy for global OTU

richness covered by the GPC, within the same phyla as in A. GPC, Global Prokaryotic Census;

NR, nonredundant; OTU, operational taxonomic unit; SILVA.

(PDF)

S7 Fig. Richness of phyla and coverage by SILVA and the GPC (at 99% similarity). (A) Esti-

mated number of 16S sequence clusters (99% similarity in the 16S-V4 region) globally, within

various prokaryotic phyla. Estimated based on the coverage of SILVA by the GPC (subfigure

C) and the number of clusters in the GPC. Only phyla including at least 10 entries in SILVA

(release 132, set NR99) and estimated to contain at least 10 extant clusters are shown. (B) Frac-

tion of GPC clusters that could be mapped to SILVA NR99 at similarity�99%, as a proxy for

global OTU richness covered by SILVA, within the same phyla as in A. (C) Fraction of SILVA

NR99 sequences that could be mapped to GPC clusters at similarity�99%, as a proxy for

global cluster richness covered by the GPC, within the same phyla as in A. GPC, Global Pro-

karyotic Census; NR, nonredundant; OTU, operational taxonomic unit; SILVA.

(PDF)

S8 Fig. Richness of phyla and coverage by SILVA and the GPC (at 95% similarity). (A) Esti-

mated number of 16S sequence clusters (95% similarity in the 16S-V4 region) globally, within

various prokaryotic phyla. Estimated based on the coverage of SILVA by the GPC (subfigure

C) and the number of clusters in the GPC. Only phyla including at least 10 entries in SILVA

(release 132, set NR99) and estimated to contain at least 10 extant clusters are shown. (B) Frac-

tion of GPC clusters that could be mapped to SILVA NR99 at similarity�95%, as a proxy for

global cluster richness covered by SILVA, within the same phyla as in A. (C) Fraction of

SILVA NR99 sequences that could be mapped to GPC clusters at similarity�95%, as a proxy

for global cluster richness covered by the GPC, within the same phyla as in A. GPC, Global

Prokaryotic Census; NR, nonredundant; SILVA.

(PDF)

S9 Fig. Richness of phyla and coverage by SILVA and the GPC (at 90% similarity). (A) Esti-

mated number of 16S sequence clusters (90% similarity in the 16S-V4 region) globally, within

various prokaryotic phyla. Estimated based on the coverage of SILVA by the GPC (subfigure

C) and the number of clusters in the GPC. Only phyla including at least 10 entries in SILVA
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(release 132, set NR99) and estimated to contain at least 10 extant clusters are shown. (B) Frac-

tion of GPC clusters that could be mapped to SILVA NR99 at similarity�90%, as a proxy for

global cluster richness covered by SILVA, within the same phyla as in A. (C) Fraction of

SILVA NR99 sequences that could be mapped to GPC clusters at similarity�90%, as a proxy

for global cluster richness covered by the GPC, within the same phyla as in A. GPC, Global

Prokaryotic Census; NR, nonredundant; SILVA.

(PDF)

S10 Fig. Richness of classes and coverage by SILVA and the GPC (at 99% similarity). (A)

Estimated number of 16S sequence clusters (99% similarity in the 16S-V4 region) globally,

within various prokaryotic classes. Estimated based on the coverage of SILVA by the GPC

(subfigure C) and the number of clusters in the GPC. Only classes including at least 10 entries

in SILVA (release 132, set NR99) and estimated to contain at least 10 extant clusters are

shown. (B) Fraction of GPC clusters that could be mapped to SILVA NR99 at similarity�99%,

as a proxy for global cluster richness covered by SILVA, within the same classes as in A. (C)

Fraction of SILVA NR99 sequences that could be mapped to GPC clusters at similarity�99%,

as a proxy for global cluster richness covered by the GPC, within the same classes as in A.

GPC, Global Prokaryotic Census; NR, nonredundant; SILVA.

(PDF)

S11 Fig. Richness of classes and coverage by SILVA and the GPC (at 97% similarity). (A)

Estimated number of 16S sequence clusters (97% similarity in the 16S-V4 region) globally,

within various prokaryotic classes. Estimated based on the coverage of SILVA by the GPC

(subfigure C) and the number of clusters in the GPC. Only classes including at least 10 entries

in SILVA (release 132, set NR99) and estimated to contain at least 10 extant clusters are

shown. (B) Fraction of GPC clusters that could be mapped to SILVA NR99 at similarity�97%,

as a proxy for global OTU richness covered by SILVA, within the same classes as in A. (C)

Fraction of SILVA NR99 sequences that could be mapped to GPC clusters at similarity�97%,

as a proxy for global cluster richness covered by the GPC, within the same classes as in A.

GPC, Global Prokaryotic Census; NR, nonredundant; OTU, operational taxonomic unit;

SILVA.

(PDF)

S12 Fig. Richness of classes and coverage by SILVA and the GPC (at 95% similarity). (A)

Estimated number of 16S sequence clusters (95% similarity in the 16S-V4 region) globally,

within various prokaryotic classes. Estimated based on the coverage of SILVA by the GPC

(subfigure C) and the number of clusters in the GPC. Only classes including at least 10 entries

in SILVA (release 132, set NR99) and estimated to contain at least 10 extant clusters are

shown. (B) Fraction of GPC clusters that could be mapped to SILVA NR99 at similarity�95%,

as a proxy for global cluster richness covered by SILVA, within the same classes as in A. (C)

Fraction of SILVA NR99 sequences that could be mapped to GPC clusters at similarity�95%,

as a proxy for global cluster richness covered by the GPC, within the same classes as in A.

GPC, Global Prokaryotic Census; NR, nonredundant; SILVA.

(PDF)

S13 Fig. Sequence clusters discovered at 97%, 99%, and 100% similarities (GPC subset

AG). Number of prokaryotic 16S-V4 sequence clusters discovered at various similarity thresh-

olds (97%, 99%, and 100%) and for various numbers of studies included. Only a subset of 111

studies were used in this analysis (subset "AG"). Clusters at 97% and 99% were generated using

cd-hit-otu, as described in the main article; clusters at 100% correspond to exact ASVs,

generated using DADA2. ASV, amplicon sequence variant; DADA2; GPC, Global Prokaryotic
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Census.

(PDF)

S14 Fig. Distances of GPC sequence clusters to SILVA. (A) Fraction of GPC 16S-V4

sequences clusters (clustered at 97% identity) that could be matched to a SILVA entry at vari-

ous similarity thresholds (fraction of nucleotide mismatches). Note the jump at around 50%

similarity. (B) Distribution of distances between GPC 16S-V4 sequence clusters (clustered at

97% identity) and SILVA (measured as percent of nucleotide mismatches to the closest match

in SILVA). Note the sharp peak within the distance interval of 40%–50%. Figures A and B con-

tain the same information, shown in alternative ways. Note that the horizontal axis shows simi-

larities in A and distances in B. (C, D) Same as A and B but for GPC sequence clusters at 99%

identity. Observe that the peak in the 40%–50% distance interval is much smaller for 99%-clus-

ters than for 97%-clusters. Also see S15 Fig for a comparison with exact amplicon sequence

variants. GPC, Global Prokaryotic Census; SILVA.

(PDF)

S15 Fig. Distances of GPC sequence clusters and ASVs to SILVA (GPC subset AG). (A)

Distribution of distances between 16S-V4 sequence clusters (clustered at 97% identity) and

SILVA (measured as percent of nucleotide mismatches to the closest match in SILVA). Clus-

ters were generated from a subset of 111 studies (subset "AG"). Note the peak within the dis-

tance interval 40%–50% and the absence of any OTUs to the right of that peak. (B) Similar to

A but for sequence clusters at 99% identity. (C) Similar to A but for exact ASVs generated

using DADA2. Observe that the peak in the 40%–50% distance interval is much smaller for

99%-clusters than for 97%-clusters and almost disappears in the case of ASVs. ASV, amplicon

sequence variant; DADA2; GPC, Global Prokaryotic Census; OTU, operational taxonomic

unit; SILVA.

(PDF)

S1 Table. Estimated numbers of extant prokaryotic 16S clusters worldwide. Number of

extant prokaryotic 16S sequence clusters (at 90%, 95%, 97%, or 99% similarities in the 16S-V4

region), estimated using various methods, including iChao2, iChao2split, ICE, CatchAll,

breakaway, tWLRM, based on the coverage of SILVA, or the RDP (see main text for details),

and based on a log-normal model fitted to OTU MRAs. Uncertainties (±) correspond to stan-

dard errors, wherever applicable. The last row lists the number of clusters discovered by the

GPC. NA indicates that the estimator did not converge. GPC, Global Prokaryotic Census; ICE,

incidence coverage-based estimator; MRA, mean relative abundance; NA, not available; OTU,

operational taxonomic unit; RDP, Ribosomal Database Project; SILVA; tWLRM, transformed

weighted linear regression model.

(PDF)

S2 Table. Recapture fractions of other data sets by the GPC (at 97% similarity). Fraction of

recaptured (at 97% similarity) prokaryotic 16S sequences in third party data sets, including the

EMP, the SILVA (NR99) database release 132, 16S sequences assembled from metagenomes

(UBA), bacterial 16S sequences extracted from IMG/M metagenomes, the RDP release 11, and

the Genome Taxonomic Database release 86.1, by GPC OTUs. In cases in which the number

of OTUs in the third party data set was low (<1,000), the numbers of OTUs compared are

indicated in brackets. EMP, Earth Microbiome Project; GPC, Global Prokaryotic Census;

IMG/M, Integrated Microbial Genomes and Microbiomes; NR, nonredundant; OTU, opera-

tional taxonomic unit; RDP, Ribosomal Database Project; SILVA; UBA, Uncultivated Bacteria

and Archaea.

(PDF)
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S3 Table. Recapture fractions of other data sets by the GPC (at 99% similarity). Fraction of

recaptured (at�99% similarity) prokaryotic 16S sequences in third party data sets, including

the EMP, the SILVA (NR99) database release 132, 16S sequences assembled from metagen-

omes (UBA), bacterial 16S sequences extracted from IMG/M metagenomes, and the RDP

release 11, by 16S sequence clusters (99% similarity) in the GPC. EMP, Earth Microbiome

Project; GPC, Global Prokaryotic Census; IMG/M, Integrated Microbial Genomes and Micro-

biomes; NR, nonredundant; RDP, Ribosomal Database Project; SILVA; UBA, Uncultivated

Bacteria and Archaea.

(PDF)

S4 Table. Recapture fractions of other data sets by the GPC (at 95% similarity). Fraction of

recaptured (at�95% similarity) prokaryotic 16S sequences in third party data sets, including

the EMP, the SILVA (NR99) database release 132, 16S sequences assembled from metagen-

omes (UBA), bacterial 16S sequences extracted from IMG/M metagenomes, and the RDP

release 11, by 16S sequence clusters (95% similarity) in the GPC. EMP, Earth Microbiome

Project; GPC, Global Prokaryotic Census; IMG/M, Integrated Microbial Genomes and Micro-

biomes; NR, nonredundant; RDP, Ribosomal Database Project; SILVA; UBA, Uncultivated

Bacteria and Archaea.

(PDF)

S5 Table. Recapture fractions of other data sets by the GPC (at 90% similarity). Fraction of

recaptured (at�90% similarity) prokaryotic 16S sequences in third party data sets, including

the EMP, the SILVA (NR99) database release 132, 16S sequences assembled from metagen-

omes (UBA), bacterial 16S sequences extracted from IMG/M metagenomes, and the RDP

release 11, by 16S sequence clusters (90% similarity) in the GPC. EMP, Earth Microbiome

Project; GPC, Global Prokaryotic Census; IMG/M, Integrated Microbial Genomes and Micro-

biomes; NR, nonredundant; RDP, Ribosomal Database Project; SILVA; UBA, Uncultivated

Bacteria and Archaea.

(PDF)

S6 Table. Prokaryotic richness contained in SILVA. Number of 16S clusters in SILVA release

132 within various taxa, obtained when clustering only the V4 region (200 bp, starting at E.

coli position 516) or the full 16S gene (approximately 1,500 bp) at 97% or 99% similarity.

SILVA.

(PDF)

S7 Table. Estimated numbers of living prokaryotic cells represented by the GPC (at 90%,

95%, 97%, or 99% similarities). Number of 16S sequence clusters in the GPC with exactly two

reads (N2) and probability that a single additional amplicon sequence would hit a GPC cluster

(P, estimated using the Good–Turing frequency formula, see Methods for details) for various

clustering similarities. GPC, Global Prokaryotic Census.

(PDF)
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