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Abstract
The stability of a dynamic system of a differential equations in state variable form describes how it responds
to significantly small perturbations. This qualitative behavior a of system of differential equations is studied
using Lyapunov or Hurwitz polynomials. The latter reduces the problem of stability of equilibrium points of
nonlinear systems to an algebraic linearized system, providing necessary and sufficient criteria in terms of
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Hurwitz determinant or Routh - Hurwitz Array for which the system is stable. In this paper, the stability
analysis of the chaotic reverse butterfly-shaped dynamical system is presented using Hurwitz polynomials. The
proposed procedure has been illustrated lucidly and validated with numerical simulations in MAPLE software.

Keywords: Differential equations; dynamical systems; Hurwitz polynomial; stability; Routh-Hurwitz criterion;
bifurcation; chaos; lyapunov exponents; reverse butterfly-shaped system.
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1 Introduction
In the study of systems of differential equations, stability analysis aims at establishing necessary and sufficient
conditions for which trajectories close to the system’s initial condition remain so at all future times or tend
to stationary solutions. Stability theory concerns the qualitative behavior of a dynamic system’s response
to significantly small perturbation to initial condition [1]. This notion of proximity of variation in the initial
conditions of systems began in the early days of the study of mechanics. Initially studied by famous physicists and
mathematicians such as Lagrange and Dirichlet, Aleksandr Mikhailovich Lyapunov, a Russian mathematician
is known to have laid the foundation of stability theory in his Ph.D. dissertation titled ‘The General Problem
of Motion Stability’ in the year 1892 [2, 3]. Lyapunov established two methods for analyzing the stability of a
system of ordinary differential equations, of which one is the based on the use of Hurwitz polynomials.

Chaotic systems are fundamentally sensitive to initial conditions. Henri Poincare had a first glimpse of the
complexity chaos in his quest to find a solution to Newton’s three body problem during a competition in honor
of King Oscar II [4]. Edward Lorenz, a meteorologist and professor at MIT reintroduced the theory of chaos in
the year 1960 during his research to simulate and predict the weather condition. Lorenz developed a deterministic
model which he would simulate, yet he could not predict the outcome. He observed in his study a significant
variation in his climatological results with a slight variation (decimal difference) in the initial condition he entered
mistakenly. Lorenz’ experience awakened research into stability, chaos, bifurcation among others [5, 6, 7]. The
reverse butterfly-shaped dynamical system is a chaotic system similar to the Lorenz system but with different
topological structure which was first propsed by [8].

To determine the stability of the nonlinear system expressed in the form ẋ = Ax, it is relevant to observe
the nature of the roots of the characteristic polynomial associated with the corresponding eigenvalues of A.
Thus, the problem of stability analysis of equlibrium points of the nonlinear system is reduced to an algebraic
linearized system. The system is considered asymptotically stable if all the roots of the characteristics polynomial
associated with A lie in the left half of the complex plane. In other words, the roots must have negative real
parts. Such a characteristic polynomial is called a Hurwitz polynomial [9].

This paper presents stability analysis of the chaotic reverse butterfly-shaped system using the standard Routh-
Hurwitz stability criteria. Some fundamental properties such as senstivity to initial conditions, computation
of Lyapunov Exponents are reported. The paper is structured as follows; section one introduces the subject,
section two reviews Hurwitz polynomials and Routh-Hurwitz stability criteria. Section three presents a stability
analysis of the reverse butterfly-shaped system. Finally, we perform simulation of numerical results using Maple
Software in section four.

2 Hurwitz Polynomial
Let

ẋ = Ax (2.1)
be the linearised system of the nonlinear system

ẋ = f(x) (2.2)
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where x is a vector and A is a square matrix. The nature of stability of the equilibrium points of the nonlinear
system (2.2) can be determined from the nature of eigenvalues of the associated matrix A of (2.1). If all the
eigenvalues of A are negative, then we conclude that (2.2) is asymptotically stable. Thus, the problem of
determining stability of the system simply means finding necessary and sufficient conditions for which all roots
of the characteristic polynomial lie in the left half of the complex plane.

2.1 Routh – Hurwitz criterion
Suppose that

p(λ) = a0λ
n + a1λ

n−1 + . . .+ an−2λ
2 + an−1λ+ an (2.3)

is the characteristic polynomial corresponding to the matrix A of the linear system (2.1). To present the Routh-
Hurwitz criterion, we first construct a matrix H from the coefficients of the characteristic polynomial (2.3).

H =



a1 a3 a5 a7 · · · 0
a0 a2 a4 a6 · · · 0
0 a1 a3 a5 · · · 0
0 a2 a4 a6 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · an


(2.4)

The matrix is constructed as follows; write the coefficients of the polynomial (2.3) with odd positions starting
with a1 on the first row of H. In the second row are the coefficients of the polynomial (2.3) with even location
starting with a0. Subsequent row and column entries are formed by;

hij =


a2j−i, 0 < 2j − i ≤ 0

0, otherwise

As a result of the construction, with the exception of the last element on the leading diagonal of H, which has
the coefficient an - the last coefficient of the polynomial (2.3), all other entries of the last column of H are null.
The matrix H is called Hurwitz matrix.

Theorem 2.1. The polynomial in equation (2.3), with its positive leading coefficient (a0) is a Hurwitz polynomial
if and only if all the diagonal principal minors of the Hurwitz matrix are positive [10].

The principal diagonal minors of the matrix H are;

∆1 = |a1| , ∆2 =

∣∣∣∣ a1 a3
a0 a2

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣
a1 a3 a5
a0 a2 a4
0 a1 a3

∣∣∣∣∣∣ , ∆4 =

∣∣∣∣∣∣∣∣
a1 a3 a5 a7
a0 a2 a4 a6
0 a1 a3 a5
0 a0 a2 a4

∣∣∣∣∣∣∣∣
∆n = an ·∆n−1.

Also, from the polynomial in equation (2.3), the Routh array is constructed as follows;

λn a0 a2 a4 · · ·

λn−1 a1 a3 a5 · · ·

λn−2 b0 b1 b2 · · ·

λn−3 c0 c1 c2 · · ·

λn−4 d0 d1 d2 · · ·

...
...

...
...

. . .

(2.5)
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Again, notice that the first row of the array in equation (2.5) begins with a0 which is the first coefficient of the
polynomial in equation (2.3), followed by coefficients with even locations. In the second row are the coefficients
of the polynomial in equation (2.3) with odd locations starting with a1. Subsequent array entries are obtained
as follows;

b0 = a2 − a0
a1
a3, b1 = a4 − a2

a3
a5, · · ·

c0 = a3 − a1
b0
b3, c1 = a5 − a3

b1
b2, · · ·

d0 = b1 − b0
c0
c1, d1 = b2 − b1

c1
c2, · · ·

(2.6)

The number of roots of the polynomial (2.3) in the right half plane of the complex plane is equal to the number of
sign variations in the first column of the Routh array in equation (2.5). Moreover, the characteristic polynomial
in equation (2.3) is Hurwitz if and only if when performing Routh’s array in (2.5), all the values in the first
column are nonzero of the same sign [11].

3 Reverse Butterfly-Shaped System
The reverse butterfly-shaped system is given by

ẋ = a(y − x)

ẏ = bx+ kxz

ż = −cz − hxy
(3.1)

where x, y, z are the state variables and a, b, c, h, k are positive parameters. Having just two nonlinear terms xy
and xz, the deterministic system exhibits complicated dynamics such as randomness yet without any stochastic
input as shown in Fig. 1. There is a trend in the timeseries solution for a very short time after which it is thrown
into a state of uncertainty or unpredictability. To demonstrate the system’s sensitivity to initial conditions which

Fig. 1. Timeseries Solution of the System (3.1)

is a fundamental property of chaotic systems, we construct a time series plot for the flow of x for the initial
conditions x(0) = y(0) = 1, z(t) = 0 captured in blue color and x(0) = 1.001, y(0) = 1, z(0) = 1 also captured in
green color. The Fig. 2. shows a significant difference in the solution with just a 0.1 percentage change in the
initial condition of the variable x. It is easy to observe that the solutions for the two set of initial conditions are
same for only a short while. At t = 10, the two solutions are on different sides of the graph as seen in Fig. 2.
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Fig. 2. Sensitivity to Initial Conditions

3.1 Lyapunov Exponents
Lyapunov Exponents (LE) is the average rate of convergence or divergence of trajectories in phase space. It is a
measure of the sensitivity of the dynamic system to variation in initial conditions. Fundamentaly, if we take x0
as initial condition with a nearby point x0 + δ0 and let δn be the separation of orbit from x0 and that of x0 + δn.
If |δn| ≈ |δ0|enλ, then λ is the Lyapunov Exponent. A positive value of the Lyapunov Exponent confirms the
system’s sensitivity, indicating that the system is chaotic. A negative value indicates the stability of the dynamic
system under consideration. The numerical value of the Lyapunov Exponent indicates the degree of sensitivity
of the dynamic system under study. There are as many Lyapunov Exponents as dimensions in the underlying
dynamical equations ([12, 13, 14]).

Using Danca’s algorithm in [15] for computing Lyapunov Exponents, we obtain the Lyapunov Exponents of the
system (3.1) as LE1 = 1.2674, LE2 = −0.0089 and LE3 = −13.3502. LE1 being positive confirms the chaotic
behavior of the system (3.1). Thus, close orbits grow exponentially, separating from each other as seen in Fig.
2. Table 1. shows the data for the construction of Fig. 3. generated from Matlab.

3.2 Equilibrium Points
The system (3.1) can be rewritten in the vector form

Ẋ = F

where

X =

 x
y
z

 and F =

 a(y − x)
bx+ kxz
−cz − hxy

 .
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Fig. 3. Lyapunov Exponents for t ∈ [0, 300]

Table 1. Lyapunov exponents for t ∈ [0, 300]

Time LE1 LE2 LE3
20.00 1.0581 -0.1213 -13.0163
40.00 1.2286 -0.0466 -13.2582
60.00 1.2148 -0.0432 -13.2553
80.00 1.2332 -0.0233 -13.2941
100.00 1.2504 -0.0206 -13.3136
120.00 1.2327 -0.0139 -13.3050
140.00 1.2260 -0.0203 -13.2938
160.00 1.2199 -0.0194 -13.2887
180.00 1.2182 -0.0086 -13.2985
200.00 1.2241 -0.0147 -13.2997
220.00 1.2547 -0.0049 -13.3425
240.00 1.2571 -0.0055 -13.3447
260.00 1.2100 -0.0084 -13.2934
280.00 1.2141 -0.0048 -13.3011
300.00 1.2144 -0.0048 -13.3012

To get the equilibrium points of the system (3.1), we set F = 0. Thus,

a(y − x) = 0

bx+ kxz = 0

−cz − hxy = 0

(3.2)

From equation (3.2), we have that the equilibrium points are given at the origin o(0, 0, 0) and at the points

E± =

(
±
√

bc
kh
,±
√

bc
kh
,− b

k

)
.
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3.3 Stability of the origin o(0, 0, 0)

The Jacobian matrix of the system (3.1) is

J(x, y, z) =

 −a a 0
kz + b 0 kx
−hy −hx −c

 (3.3)

Evaluating the Jacobian matrix at the origin o(0, 0, 0) gives

J(0, 0, 0) =

 −a a 0
0 0 0
0 0 −c

 (3.4)

From equation (3.4), we obtain the characteristic polynomial

P (λ) = λ3 + (a+ c)λ2 + (ac− ab)λ− abc = 0. (3.5)

The Hurwitz matrix associated with the polynomial (3.5) for a0 = 1, a1 = (a+ c), a2 = a(c− b) and a3 = −abc
is given by

H =

[
(a+ c) −abc

1 a(c− b)

]
(3.6)

From section (2), the polynomial (3.5) is Hurwitz if and only if

∆1 = |a+ c| > 0

∆2 =

∣∣∣∣ (a+ c) −abc
1 a(c− b)

∣∣∣∣ > 0

The system’s parameters a and c are postive, hence ∆1 is positive. ∆2 > 0 if the following condition holds;

− a2b+ a2c+ ac2 > 0. (3.7)

The terms a2c and ac2 are positive for all positive values of a and c. However, −a2b is negative because b is a
positive parameter. Therefore the characteristic polynomial (3.5) is not Hurwitz.
Also, from the linearized system;

ẋ = a(y − x)

ẏ = bx

ż = −cz
(3.8)

It is immediately observed that, the system’s y and z equations break out with solutions y(t) = ebt and
z(t) = e−ct. This reveals that y(t) grows exponential fast from the origin whereas z(t) approaches the
origin exponentially indicating that the system is unstable. Furthermore, judging from the eigenvalues of the
charactertic polynomial (3.5), which are;

λ1 = −c

λ2 = −1

2
a+

1

2

√
a2 + 4ab

λ3 = −1

2
a− 1

2

√
a2 + 4ab

(3.9)

From the eigenvalues (3.9), clearly λ1, λ3 < 0. However λ2 is positive because the square root is an increasing
function in [0,∞). We conclude that the origin is a saddle.
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3.4 Stability of E±

Evaluating the Jacobian matrix (3.3) at the equilibria E± yields the common characteristic polynomial

PE
±

a,b,c(λ) = λ3 + (a+ c)λ2 + (ac+ bc)λ+ 2abc (3.10)

As in the previous case, the matrix H is

H =

[
(a+ c) 2abc

1 c(a+ b)

]
(3.11)

for a0 = 1, a1 = (a+ c), a2 = a(a+ b) and a3 = 2abc. The polynomial (3.10) is Hurwitz if and only if

∆1 = |a+ c| > 0

∆2 =

∣∣∣∣ (a+ c) 2abc
1 c(a+ b)

∣∣∣∣ > 0.

We construct the associated Routh arrary as follows;

λ3 1 c(a+ b)

λ2 a+ c 2abc

λ1 b0 b1

λ0 c0 c1

where;

b0 =
c(a+ b)(a+ c)− 2abc

a+ c
,

and
c0 = 2abc > 0

Also, b1 and c1 are zero.

From Routh - Hurwitz criterion, the number of roots of the characteristic polynomial with positive real parts
is equal to the number of changes in sign of the first column of the Routh array. To have all the roots of the
characteristic polynomial on the left side of the complex plane, we should not have any sign variation in the
first column of the Routh Array. Since c0 is positive, it only remains to analyze the sign of b0 as a function of
the variable parameter c (the adjustable parameter of the system (3.1)). We note that if b0 is positive then the
polynomial (3.5) is Hurwitz and the equilibria E± are stable. That is, we solve the inequality,

c(a+ b)(a+ c)− 2bc

a+ c
> 0

which yields the condition,

c >
a(b− a)

a+ b
. (3.12)

Hence, the polynomial (3.5) is Hurwitz if the condition in the inequality (3.12) is satisfied. This implies that
the equilibria E± of the system (3.1) are asymptotically stable if c > a(b− a)/(a+ b).

To ascertain the nature of roots, we construct a graph of the characteristic polynomial using the parameter
values a = 10, b = 40, c = 2.5, k = 16, and h = 1. The characteristic polynomial PE

±
a,b,c(λ) crosses the λ-axis just

once, indicating the presence of complex eigenvalues as shown in Fig. 4. Next, we investigate the possibility
of PE

±
a,b,c(λ) having purely imaginary roots. To do this, we take λ = iω as an eigenvalue and substitute into

PE
±

a,b,c(λ). We get
(iω)3 + (a+ c)(iω)2 + (ac+ bc)iω + 2abc = 0 (3.13)
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Fig. 4. Graph of PE
±

a,b,c(λ)

Equating the real and imaginary parts to zero gives

c =
2ab

a+ b
− a. (3.14)

At the value of c in the equation (3.14), the characteristic polynomial PE
±

a,b,c(λ) has purely imaginary roots.

4 Numerical Results
In this section, we verify the stability results obtained from the previous section with simulations performed in
the MAPLE software. The parameter c is taken as the adjustable or control parameter for our simulations.

4.1 Stability of the origin o(0, 0, 0) and E±

From our analysis, we obtained that the origin o(0, 0, 0) is unstable for all positive values of c. To demonstrate
this, we observe the flow of the system (3.1) close to the origin. In particular, we choose the initial conditions
x(0) = y(0) = z(0) = 0.1. The trajectory moves away from the origin as time increases indicating that the origin
is not attracting. This is shown in the Figs. 5 and 6.

Fig. 5. Stability of the Origin o(0, 0, 0) at c = 1, t = 0..1
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Fig. 6. Stability of the Origin o(0, 0, 0) c = 2, t = 0..1

However, as time increases the trajectory from the unstable manifolds of the origin are attracted onto the stable
manifolds of the equilibria E± implying that the equilibria E± are asymptotically stable as shown in Figs. 7
and 8.

Fig. 7. Stablity of E± at c = 1, t = 0..1

Fig. 8. Stability of E± at c = 1, t = 0..500
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At c = 2.4, the equilibria E± are chaotic and have strange attractors. At this point, the system is sensitive to
any change or disturbance. The trajectory oscillates around one of the equilibria E± for a while and jumps onto
the other to do the same as shown in Fig. 9. This random behavior is repeated for some time.

Fig. 9. Chaotic attractors at c = 2.4

At c = 6.0, the system (3.1) experiences a Hopf bifurcation. This is where the eigenvalues of the equilibria E±

are non-hyperboic (zero real parts) as computed in equation (3.14). This is characterised by a center manifold
as shown in Fig. 10.

Fig. 10. Bifurcation at c = 6.0
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At c > 6.0, the equilbria E± of the system (3.8) have one negative real eigenvalue and a pair of complex
conjugates with negative real parts. Fig. 11. shows the phase portrait of the case c = 7.0.

Fig. 11. Stability of E± at c = 7.0

5 Conclusion
Hurwitz polynomials reduce the problem of stability of equilibrium points of nonlinear systems into an algebraic
linearized system providing necessary and sufficient criteria in terms of Hurwitz determinant or Routh - Hurwitz
array for which the system is stable. The stability analysis of the chaotic reverse butterfly-shaped dynamical
system has been performed using Hurwitz polynomials. The proposed method has been illustrated clearly and
validated with numerical simulations in MAPLE software.
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