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ABSTRACT 
 

Spider mites are pests of crops and ornamental plants. It has a cosmopolitan distribution and 
causes huge economic loss by yield reduction. Wolbachia is a prevalent endosymbiont in spider 
mites. Wolbachia imparts cytoplasmic incopmpatibility, parthenogenesis, mitochondrial DNA 
variation, behavioural changes, and varied effects on fecundity and longevity in spider mites. Co-
infection with other endosymbiotic bacteria such as Cardinium, Spiroplasma and Rickettsia are also 
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common with profound effects on host mites, host bacterial flora and host plants.32 species of 
spider mites belonging to 9 genera are reported to have infected with Wolbachia. Highest infection 
is reported in tetranychus genera followed by bryobia.The detection, effects and applications of 
Wolbachia infection in spider mites are discussed. Wolbachia prevalence in the spider mite host is 
greatly dependent upon the host genotype, Wolbachia density and environmental factors. 
Dissecting the Wolbachia-spider mite interactions may enhance knowledge on evolutionary and 
ecological aspects of animal microbe interactions. This study will contribute to understand the 
Wolbachia- spider mite interactions and may pave way to the control of this agricultural pest. 
 

 
Keywords: Wolbachia; biological control; endosymbiont; pest. 
 

ABBREVIATIONS 
 
CI          : Cytoplasmic Incompatibility  
MtDNA  : Mitochondrial DNA  
FISH     : Fluroscent insitu hybridization  
PCR     : Polymerase chain reaction  
Rdna    : Ribosomal DNA 
 

1. INTRODUCTION 
 
Microbial symbiosis is a significant phenomenon 
in the biosphere, since it lead to the origin of 
eukaryotic cells and species formation, 
influencing the ecological, behavioural, and 
physiological activities of animals and plants. The 
most prevalent symbiotic microbe in the animal 
world is the alpha proteobacterium Wolbachia 
[1,2]. Current estimates suggest that 52% of 
arthropods and several filarial nematode species 
harbor Wolbachia [3]. This success is mainly 
attributed to its ability to induce various types of 
reproductive manipulation in hosts to increase 
the reproductive success of infected females, 
thereby increasing its own transmission [4]. The 
Wolbachia system serves as a model for inquiry-
based science education that incorporates 
lessons on biotechnology, biodiversity, and 
bioinformatics.  
 
Wolbachia has effects on the evolution of the 
host genome and speciation. It has applications 
in biological pest control through population 
replacement strategy (which provides a 
mechanism for the autonomous spread of 
desired genes into targeted populations), 
incompatible insect technique (to suppress target 
pest populations by repeated sweeps with 
infected individuals) and genetic manipulation. 
Anti-Wolbachia drug therapy is being 
successfully used to treat filarial diseases since 
Wolbachia is an obligate mutualist in filarial 
nematodes. Wolbachia can protect its hosts 
against a wide array of pathogens, including 
viruses, protozoan parasites, fungi, or pathogenic 
bacteria [1]. In contrast it can also infect any 

beneficial arthropod species and may 
dramatically affect the outcome of a biological 
control program [5]. 
 
Spider mites (Acari: Tetranychidae) represent a 
distinctive evolutionary group that is comprised of 
about 1200 species, including many closely 
related species [6]. They are so named because 
some species utilize silk in constructing webbing 
on leaves or pads for oviposition and also for 
dispersal via ballooning much in the manner of 
some spiders. Spider mites have two 
reproductive strategies (bisexual and 
parthenogenetic). Many species of them have a 
wide host range, whereas others are highly host-
specific [7]. They are notorious pests of many 
cultivated plants, causing massive economic 
losses worldwide, with approximately 0.9 billion 
Euros being spent annually for their control [8]. 
Due to the rapid evolution of pesticide resistance, 
effective control strategies are less. The 
presence of Wolbachia is most common in spider 
mites, although reproductive parasites such as 
Cardinium, Rickettsia and Spiroplasma also 
occur. A deeper understanding of Wolbachia 
impact on spider mite hosts may facilitate the 
development of intervention tools for controlling 
them. Manipulation of bacteriome could lead to 
future opportunities to decrease agricultural loss. 
Also, spider mites are considered a suitable 
model organism for studies related to Wolbachia 
to unravel the mysteries of animal microbe 
interactions [9]. We synthetize in this review the 
current knowledge accumulated on Wolbachia 
prevalence and effects in the spider mites. 
 

2. PREVALENCE OF WOLBACHIA 
 
The influential insider Wolbachia was first 
described in 1924 by Hertig and Wolbach [10] in 
the ovaries of the mosquito Culex pipiens. 
Tsagkarakou et al. [11] was the first to report 
Wolbachia in spider mite, Tetranychus urticae. 
Later studies confirmed a high prevalence of 
Wolbachia in spider mites across the globe. To 
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date, 32 species belonging to 9 genera of 
tetranychidae are infected with Wolbachia. Lack 
of incidence in others can be due to fewer 
sampling attempts because they are polymorphic 
for the infection; the absence of infection in the 
selected sample does not mean that the entire 
species is uninfected. In T. urticae, a 
cosmopolitan agricultural pest coming under 
spider mites, Wolbachia is detected in all the 

surveyed populations, with the infection rate 
varying from 2.5 to 80% [12].  
 
A total of 32 species of spider mites belonging to 
9 genera is reported to have infected with 
Wolbachia. Highest infection is reported in the 
Tetranychus genera, with 12 species infected. 
Second highest infection is reported in the 
Bryobia genera, with 9 species infected. 

 
Table 1. Wolbachia infection in tetranychid mites 

 

S.No Spider mite species Country/region Reference 

1.  Aplonobia histricina Berlese Spain [69] 

2.  Amphitetranychus viennensis Zacher China [52,45] 

3.  Bryobia berlesei Eyndhoven Netherlands [57] 

4.  B. graminum Schrank Netherlands 34 

5.  B. kissophila Eyndhoven Netherlands, Belgium, 
Portugal, South Africa, 
Spain USA, France, 
Greece, Italy 

[34,57] 

6.  B. neopraetiosa Meyer  Netherlands [34] 

7.  B. praetiosa Koch  Netherlands [34,57,73] 

8.  B. rubrioculus Scheuten  Austria, Netherlands, 
France, Poland 

[34,57,58] 

9.  B. sarothamni Geijskes 

 

Netherlands, Belgium, 
France 

[56,57,73] 

10.  B. species1 Netherlands [57,73] 

11.  B. species V Netherlands [57,73] 

12.  Eutetranychus banksi McGregor Spain [71] 

13.  E. orientalis Klein Spain, Egypt  [69,74] 

14.  Oligonychus biharensis Hirst Bangladesh [74] 

15.  O. castaneae Ehara & Gotoh Japan [75] 

16.  O. gotohi Ehara Japan [27,55] 

17.  Panonychus citri McGregor China, Spain [69,76] 

18.  P. mori Yokoyama Japan [16,17,27,55] 

19.  Petrobia harti Ewing California, China [7,51] 

20.  Schizotetranychus cercidiphylli Ehara Japan [27] 

21.  Tetranychus cinnabarinus Boisduval China [12,52,53] 

22.  T. evansi Baker & Pritchard Brazil, Portugal, Spain [9,69,77] 

23.  T. kanzawai Kishida 

 

Japan, China, Indonesia [17,67,78,27,28, 
30,55,7,79,74] 

24.  T. ludeni Zacher Portugal [9,79] 

25.  T. neocaledonicus Andre Louisiana [74] 

26.  T. parakanzawai Ehara Japan [27,57] 

27.  T. phaselus Ehara China [67,7,64,79] 

28.  T. piercei McGregor. China [7,20] 

29.  T. pueraricola Ehara & Gotoh Japan, China [7,67,27,54,55] 

30.  T. truncatus Ehara 

 

China [7,8,52,67,80,15, 
81,44,46,49,60, 
61,62,63,82,79, 
83] 

31.  T. turkestani Ugarov & Nikolskii Gainesville,Netherlands , 
France, Greece, Spain, 
Poland, Turkey 

[84,21,69,74,85] 
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S.No Spider mite species Country/region Reference 

32.  T. urticae Koch Athens, Netherlands, 
Gainesville, Japan, 
California, Austria, China, 
South Korea 

Florida, France, Greece, 
Brazil, Portugal,Spain, 
Korea, France, 
Switzerland, Italy, 
England, Turkey 

[7,9,11,12,65,52, 
67,37,86,78,84, 

87,18,19,21,23, 

24,26,29,31,32, 

35,38,88,45,48, 

88,51,54,55,57, 

69,71,72,89,77, 

90,79,73,74,85] 

 

3. EFFECTS OF WOLBACHIA 
 
Four classical phenotypes induced by Wolbachia 
are CI, parthenogenesis, male killing and 
feminization. Of these only CI and 
parthenogenesis are detected in spider mites. 
 

3.1 Cytoplasmic Incompatibility (CI) 
 

CI is the most frequently found Wolbachia-
induced phenotype and has been described in 
several arachnids, isopods and insect orders. 
Here the sperm from Wolbachia-infected males 
is incompatible with eggs from females that do 
not harbour the same Wolbachia type (or types). 
CI comprises two distinct components: 
Wolbachia-induced modification of sperm during 
spermatogenesis and rescue of this modification 
in embryos infected with the same strain. If the 
sperm is modified, but the appropriate Wolbachia 
are not present in the developing embryo, 
embryonic development is disrupted [4]. In the 
arrhenotokous (a form of parthenogenesis seen 
in spider mites, in which unfertilized eggs 
develop into males) species, two CI types are 
found in incompatible crosses. Egg 
haploidization and male production, referred to 
as ‘male development’ and aneuploidy and 
female mortality, referred to as ‘female mortality’ 
[13]. But in spider mites, only female mortality 
type of CI is produced by Wolbachia [14,15] and 
it is apparent by a reduced egg hatchability and a 
lower daughter: son ratio [15,16,17,18, 19,20]. 
The first report on CI in spider mites (T. urticae & 
T. turkestani) is given by Breeuwer [21]. Then a 
variable level of CI ranging from no CI to 
complete CI is reported from spider mites 
[15,19,22, 23,24,25,26]. 
 
No effect in reproductive incompatibility is 
reported in T. urticae [27] and T. kanzawai 
[28,29,30]. Varied level of CI is reported in many 
other populations of T. urticae but no CI is 
reported in T. kanzawai in any populations 
tested. This is proposed to be due to the host 

genotype or low bacterial density in the gametes 
[30]. Wybow et al. [31] reported that there is 
striking variation in CI with different host genetic 
backgrounds by transferring a single CI-inducing 
Wolbachia isolate into multiple host nuclear 
backgrounds of T. urticae. 
 
The tripartite associations among WO, 
Wolbachia, and CI were analyzed by Lu et al. 
[32]. WO is a Bacteriophage widespread in the 
genus and harbored by 89 % of Wolbachia. 
According to Phage Density Model [33], when 
phage WO is lysogenic and titers of Wolbachia 
are high in male reproductive tissues, CI intensity 
is high after mating with an uninfected female; 
when phage WO becomes lytic, Wolbachia cell 
titers decrease as a result of cell lysis and cause 
the CI intensity also decreased. WO may 
alternate between lytic and lysogenic life cycles 
or change phage production under certain 
conditions including temperature, host age and 
host species background. The results of Lu et al. 
[32] confirm the effect of temperature and host 
age in the life cycle of WO and consequently in 
Wolbachia and the host. 
 

3.2 Parthenogenesis 
 

Wolbachia-induced female parthenogenesis 
(Thelytoky) is present in species with 
arrhenotokus development. Instead of producing 
sons from unfertilized eggs, infected females 
produce daughters, which unlike males can 
transmit the bacteria to their offspring. Like CI, 
Wolbachia-induced parthenogenesis is caused 
by disruption of the cell cycle during early 
embryonic development, which results in diploid 
development in unfertilized eggs. Wolbachia-
induced parthenogenesis is reported in two 
species of the genus Bryobia [34]. 
 

3.3 Behavioural Changes 
        
T. urticae females evolved avoidance of 
incompatible males to escape CI by oviposition 
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and mating behavior [35]. Uninfected females 
preferred uninfected males and infected females 
aggregated their offspring to promote sib mating. 
But a later study [36] divulge that there is no 
such preference for infected or uninfected males. 
Zhao et al. [37] also observed no difference in 
mating competitiveness between infected and 
uninfected males. A combined effect of host-
associated incompatibilities and Wolbachia-
induced post mating isolation contributing to host 
population divergence and the subsequent 
evolution of intrinsic reproductive barriers is 
demonstrated by Cruz et al [38]. A subsequent 
study by the same authors [39] showed that pre-
mating isolation matches both host-associated 
and Wolbachia-induced post-mating isolation. So 
it is clear that Wolbachia may have a 
considerable effect in the processes of speciation 
currently ongoing in spider mites. 
 
Evolution of CI driven polyandry is reported in 
spider mites [40]. Although spider mites shows 
first sperm precedence, to avoid CI, They break 
sperm priority pattern in favour of the second 
male, only when the first mating is incompatible. 
In addition, mutation fixation and hybridization 
caused by Wolbachia or Cardinium are proposed 
to result in the evolutionary success of asexual 
spider mites [41]. 
 

3.4 Life History Parameters 
 

Wolbachia can influence life history traits 
differentially across populations. Fecundity varies 
distinctly amongst different species and 
populations of spider mites with Wolbachia 
infection including deleterious [23,24,42], neutral 
[15,24,25] and beneficial effects [25,26,37]. 
Similarly positive, negative and neutral effects of 
Wolbachia infection on longevity are reported 
from spider mites [15,25]. Vala et al. [23] 
reported Wolbachia causing hybrid breakdown in 
the f2 generation and it is confirmed in two 
populations of T. urticae [43].  
 

3.5 Effects at the Transcriptional Level 
         
With the advent of advanced molecular 
techniques, some of the mechanisms underlying 
Wolbachia mediated phenotypes in the host is 
revealed. It has been shown to regulate several 
reproduction-related host genes and pathways. 
To identify genes involved in the Wolbachia-
induced effects, RNA interference and 
transcriptome analysis is used. However, the 
genes regulated by Wolbachia in different hosts 
are diverse and complex. Chorion protein S38, 
an important component protein in the early 

stage of egg shell formation and Ras opposite 
gene (Rop) (mediate cell division in Drosophila) 
were down-regulated by Wolbachia in T. 
truncatus and resulted in oviposition decrease. 
Differentially expressed genes showed the effect 
of Wolbachia infection on energy, nitrogen, and 
oxygen metabolism [44]. Zhang et al. [45] found 
that Wolbachia responses are sex-specific with 
the transcription of 251 genes being affected in 
females and 171 genes being affected in males 
in T. urticae. More profoundly affected genes in 
both sexes were lipocalin genes and genes 
involved in oxidation-reduction, digestion and 
detoxification. Lipocalins are small extracellular 
proteins that typically bind hydrophobic 
molecules. In spider mites, they may bind 
pesticides or allelochemicals, resulting in the 
sequestration of these toxic, generally 
hydrophobic compounds. This may be the 
reason for T. urticae resistance to a variety of 
plant chemicals and pesticides.Two genes 
encoding vitellogenin were upregulated in 
infected females. Vitellogenins are important for 
the growth and differentiation of oocytes and for 
transporting metallic ions, lipids and vitamins into 
the oocytes, hence, these genes might have a 
role in enhancing female fecundity. In T. 
truncatus co-infected with Wolbachia and 
Spiroplasma, detoxification genes, lipocalin 
genes, histone-related genes, vitellogenin genes, 
immune-related genes and genes related to lipid 
metabolic processes are differentially expressed 
[46]. Detoxification genes such as P450, 
glutathione-S-transferase (GST), ABC 
transporters, and carboxyl/cholinesterases are 
found to be upregulated in Wolbachia infected T. 
urticae [47]. This has increased mite survival 
after exposure to the insecticides abamectin, 
cyflumetofen, and pyridaben. Bing et al. [48] 
revealed that Wolbachia-infected mites 
upregulated the gene expression levels of 
many T. urticae salivary proteins including a 
cluster of Tetranychidae-specific, functionally 
uncharacterized SHOT1s (secreted host-
responsive proteins of Tetranychidae). RNA 
interference experiments showed that 
knockdown of SHOT1s significantly decreased 
Wolbachia density, increased the number of 
deposited eggs and decreased the egg hatching 
rate. Zhu et al. [49] identified 177 putative 
salivary proteins from T. truncatus. Of these14 
proteins were only found in Wolbachia-
Spiroplasma infected spider mites, and 6 
proteins were only found in Wolbachia- 
Spiroplasma uninfected spider mite, indicating 
that Wolbachia and Spiroplasma can affect the 
salivary secretion of spider mites. 
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Rong et al. [50] recognized the involvement of 
miRNA in Wobachia-spider mite interactions. 
miRNA’s are non coding small RNA’s that play 
significant roles in regulating cellular processes. 
They integrated the mi RNA and mRNA 
transcriptome data to predict the candidate target 
genes and their biological functions were 
analyzed using the gene ontology annotations of 
the T. urticae genes. The team revealed that the 
Wolbachia infection affected 91 miRNAs in 
females and 20 miRNAs in males. Genes related 
to apoptosis, sphingolipid metabolism, lysosome 
function, and lipid transporting in both sexes, as 
well as reproduction in females were found to be 
affected. Authors raise the possibility of a 
symbiotic relationship between Wolbachia and 
spider mites. 
 

4. CO-INFECTIONS 
 
Multiple endosymbiont infections are common in 
spider mites. They have a range of phenotypic 
effects; some have no additional impact over 
single infections, whereas others appear to 
enhance the effects of single infections or lead to 
novel phenotypic effects. P. harti [51], T. 
cinnabarinus [52,53], T. pueraricola [54,55], T. 
viennensis [52], B. sarothamni [56,57], T. urticae 
[9,57], B. rubrioculus [57,58], T. evansi [9], T. 
piercei [20], O. gotohi and P. mori [55] are 
reported to have co-infected with Wolbachia and 
Cardinium. In T. urticae, Cardinium enhancing 
the severity of CI induced by Wolbachia is 
reported [59]. T. truncatus and B. sarothamni co-
infected with Wolbachia and Cardinium were 
reported to have higher fecundity [15,56]. 
 
T. truncatus [46,60,61] and T. urticae [58] are co-
infected with Wolbachia and Spiroplasma. T. 
truncatus shows higher egg deposition and faster 
developmental rate, compared with singly 
infected and uninfected spider mite strains. 
Doubly infected mites could induce incomplete 
CI, whereas Wolbachia singly infected mites 
could not induce CI [62]. T. truncatus co-infected 
with Wolbachia and Spiroplasma showed higher 
thermal tolerance than uninfected and singly 
infected mites [63]. This co-infection also 
protects them from pathogenic bacteria [46]. 
T.truncatus co infected with Wolbachia and 
Spiroplasma showed lower expression levels of 
jasmonic acid and salicylic acid-responsive 
genes than those damaged by uninfected spider 
mites. Also, they consumed more tomato amino 
acids compared to uninfected spider mites. 
These may be the reason for the reproductive 
benefits conferred by endosymbionts [8]. 

Wolbachia and Spiroplasma could influence the 
bacterial community of T. truncatus. It did alter 
the abundance of many bacterial genera, such 
as Megamonas and Bacteroides [60]. Decreased 
fecundity with co-infection is also reported in T. 
truncatus [46]. 
 

Co-infection with Wolbachia and Rickettsia is 
reported in T. evansi and T. urticae and triple 
infection with Wolbachia,Cardinum and 
Rickettsia is reported in T. ludeni [9]. Co-infection 
with Cardinium and two strains of Wolbachia 
detected in T. phaselus displayed a high level of 
CI with reduced egg hatchability and male-biased 
sex ratio and showed greater depression of 
fecundity [64]. 
 

Wolbachia have a domination over other 
symbionts in the co-infected spider mites. In the 
co-infected T. truncatus, Wolbachia had 
significantly higher density than Spiroplasma. 
The gene expression patterns of the Wolbachia 
singly infected strain were similar to the doubly 
infected strain, which showed a stronger effect of 
Wolbachia in the co-infected strain [46]. 
Wolbachia boosted the expression of Cardinium-
induced CI in T. piercei, the strength of CI 
induced by doubly infected males also was found 
to be higher than that induced by the singly 
infected males [20]. 
 

5. DETECTION METHODS 
 

Wolbachia is an intracellular symbiotic bacterium 
that cannot be cultured outside of host cells. 
Thus, the detection of its presence in mites is 
done mainly using PCR-based techniques, 
sometimes aided by bioassays (crossing 
breeding studies). PCR amplification and 
sequencing of a fragment of ribosomal DNA and 
any of the protein-coding genes ftsZ [16], groEL 
[65], wsp [17] and citrate synthase (gltA) [66] is 
the generally used technique for the detection of 
infection. Long PCR which uses two enzymes 
(Taq and Pwo), is a highly sensitive method [65]. 
It gives the highest incidence of Wolbachia (76%) 
in arthropods but is not generally used because 
of false positives due to the detection of 
environmental contaminants. Multiplex PCR is a 
rapid, reliable and highly sensitive method to 
detect multiple endosymbionts simultaneously. 
Chen et al. [67] used the technique in four strains 
of T. cinnabarinus co-infected with Wolbachia 
and Cardinium. Zele et al. [68] also developed a 
multiplex PCR method for the rapid identification 
of T. urticae, T. evansi and T. ludeni, and the 
detection of their endosymbionts, namely 
Wolbachia, Cardinium and Rickettsia. 
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Wolbachia strain diversity is determined by 
multilocus sequence typing, which overcomes 
the recombination issue and provides an 
expanded data set for comparative analyses [69]. 
To date, 17 Wolbachia supergroups (from A to R, 
except for supergroup G, which is controversial) 
have been established [70]. FISH is used for 
localization of Wolbachia. It is found mainly 
located in the gnathosoma and ovaries of 
females and testes of males [8,37]. 
 

6. APPLICATIONS FOR PEST CONTROL 
 

Wolbachia-based incompatible insect 
technique (IIT), pathogen blocking 
technique (PBT) and anti-Wolbachia drug 
therapy have been shown to be effective at 
protecting humans from mosquito-borne 
diseases. Similar strategies have been put forth 
to shield plants from agricultural pests and the 
diseases they cause. CI induced by Wolbachia, 
can be used as a population suppression 
strategy, analogous to the IIT that reduces or 
eliminates the population, or/and as population 
replacement, using the bacteria as a vehicle to 
drive desired phenotypes into natural populations 
[71]. Still, the requirement for techniques to 
create insect lines that are transinfected with 
Wolbachia represents a barrier to the widespread 
use of Wolbachia-based pest management 
solutions. Gong et al. [72] considered the 
following five qualities as prerequisites for this 
kind of strategy to be successful in agriculture. 
(1) stable Wolbachia interspecific transinfection 
in a target insect line, (2) little or no fitness cost 
in the transfected line, (3) an ability of the 
transinfected line to induce strong CI (necessary) 
and pathogen blocking (optional) phenotypes, (4) 
establishment of an effective sex sorting method 
for the target species, and (5) an ability of the 
transinfected line to be artificially maintained and 
mass-reared. 
 

Zele et al. [73] infers that despite reports of 
Wolbachia induced pathogen resistance in 
arthropods, the effectiveness of biological control 
with entomopathogenic fungi is not hampered 
and may even be enhanced by it in spider mite 
T.urticae. Studies on endosymbionts in pest 
mites are considered significant as they can be 
used to optimize control programs or to explain 
resistance in pests against certain control agents 
[5,58,74]. 
 

7. CONCLUSION 
 
Although spider mites are serious agricultural 
pests with more than 1200 species, only 32 

species are reported to have been infected             
with Wolbachia. This is because there                 
haven't been as many investigations done in this 
area. The prevalence and effects of their 
infection depend upon various factors such as 
the host genotype, host-microbial flora, host 
plant, and environmental factors. While 
considering their effects on evolution,                 
genetics and biological control, investigation of 
Wolbachia infection in spider mites across the 
globe will be fruitful. Moreover, spider mites 
being a suitable model organism for                   
studies related to Wolbachia, investigations will 
help to understand and unravel host-microbe 
interactions. 
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