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ABSTRACT 
 

The increasing availability of geospatial datasets on watershed characteristics and hydro-
meteorological variables emphasises the importance of integrated hydrological models for effective 
catchment management. Climatic and physiographic determinants such as topography, land use, 
soil properties, and anthropogenic interventions substantially influence a catchment's hydrological 
equilibrium. The SWAT model was used to elucidate rainfall-runoff dynamics in the Upper Cauvery 
River Basin, Karnataka, India (36,682 km²), applying the SCS Curve Number (CN) method for 
runoff estimation. Runoff was estimated for 2012–2021 using rainfall data from the Indian 
Meteorological Department (IMD), soil data from the FAO, and land use/land cover and slope 
datasets.Soil erosion, exacerbated by intensified agricultural practices, was evaluated using the 
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Revised Universal Soil Loss Equation (RUSLE) model integrated with Geographic Information 
Systems (GIS). The SWAT model results showed that runoff accounted for 15-20% of the total 
precipitation, with an annual soil loss of 2027.95 tons. The predominance of agricultural land use, 
covering 66.29% of the basin, significantly contributed to high runoff, whereas the forested areas 
(26.48%) demonstrated a low runoff potential. About 38% of the basin exhibited a very low soil loss 
risk, while 11% was classified as high risk and 9% as very high risk. The SWAT model is 
recognized for its robustness, and this research aims to leverage its capabilities to validate its 
effectiveness in estimating runoff and erosion, providing crucial insights for advancing sustainable 
catchment resource management.  
 

 
Keywords: Hydrological modeling; SWAT model; rainfall-runoff estimation; soil erosion; watershed 

management. 
 

1. INTRODUCTION  
 
The Indian subcontinent has transitioned into a 
water-stressed region, with per capita water 
availability sharply declining from a surplus of 
5,410 m³ in 1951 to just 1,614 m³ in 2011, 
despite its population surging to 1.2 billion 
(Gupta et al., 2019a). Concurrently, the 
intensification of soil erosion, predominantly 
driven by hydrological forces, represents a 
profound threat to environmental quality, 
agricultural productivity, and global food security 
(Pimentel et al., 1995; Lal, 2001; Morgan, 2005). 
The socio-economic and ecological ramifications 
of soil erosion are particularly catastrophic in 
developing nations, where vast population 
segments intrinsically depend on agriculture and 
land-based resources for sustenance (Erenstein, 
1999). Several forces, including hydric and 
aeolian processes, gravity, flora, and fauna, act 
as catalysts of soil degradation (Zachar, 1982; 
Blanco & Lal, 2008). Moreover, tillage practices 
exacerbate this degradation by displacing soil 
from elevated to lower slopes, particularly in 
topographically complex terrains. 
 
Key determinants of surface runoff and soil 
erosion encompass rainfall intensity, soil 
erodibility, slope length and gradient, land 
use/land cover (LULC), and land management 
practices (Wischmeier & Smith, 1978; Hurni, 
1993; Morgan, 2005; Debolini et al., 2013). 
Furthermore, socio-economic and institutional 
factors significantly influence surface runoff and 
soil erosion by shaping land use and 
management decisions made by farmers. These 
factors include population pressure, poverty, 
limited access to agricultural inputs and credit, 
and the absence of robust land tenure policies 
(Tefera, 2002). Historically, unsustainable land 
use practices and inadequate investments in 
sustainable management have contributed to the 
degradation of arable land across many regions 

(Zachar, 1982; Blaikie, 2016; Tamene & Vlek, 
2008; Debolini et al., 2015). Consequently, soil 
erosion imposes both local and downstream 
socio-economic and environmental costs (Zema 
et al., 2012). On-site impacts include the loss of 
fertile topsoil, nutrient depletion, and reduced 
agricultural productivity. Simultaneously, off-site 
effects, though less immediately apparent, can 
lead to sedimentation, heightened flood risks, 
and reduced efficiency in hydropower generation 
and irrigation systems (Hurni et al., 2008; Borrelli 
et al., 2013; Haregeweyn et al., 2013). 
 
Hydrology, as a cornerstone of environmental 
science, is critical to sustainability and human 
well-being. It involves the study of water's 
distribution, movement, and interactions within 
the Earth's systems, encompassing its physical 
and chemical properties and relationships with 
ecosystems. Central to hydrology is the water 
cycle, which describes the continuous movement 
of water through different stages and 
environments. Surface runoff, where water flows 
over land into rivers and lakes, is essential to this 
cycle, linking precipitation events to water bodies 
(Gupta et al., 2019a; Gupta et al., 2016; 
Perlman, 2016). It plays a vital role in modulating 
water flow into stream systems and returning 
excess precipitation to the oceans, thereby 
maintaining the hydrological balance. However, 
rapid urbanization and industrialization have 
increasingly disrupted this balance, exacerbating 
challenges such as flooding, erosion, and water 
scarcity (Sharma et al., 2022). As a result, the 
study and management of runoff have become 
critical in addressing contemporary water-related 
issues. 
 
Rainfall-runoff modeling has become 
indispensable for understanding and managing 
water resources in diverse regions (Abuhay et 
al., 2023; Gholami et al., 2022). These models 
provide critical insights into catchment 
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hydrological responses to precipitation events by 
simulating the transformation of rainfall into 
runoff and subsequent flow through watersheds. 
Such models are essential for forecasting water 
availability and mitigating water-related hazards 
like floods and droughts (Tasdighi et al., 2018). 
Accurate runoff predictions are vital for designing 
flood control infrastructure, water supply 
systems, and reservoir management strategies, 
as well as for assessing the impacts of land use 
changes, climate variability, and human activities 
on water resources (Kijowska-Strugała & 
Bochenek, 2023; Santos et al., 2023). 
 

Among the numerous hydrological models 
available, the Soil and Water Assessment Tool 
(SWAT) stands out for its robust and versatile 
capabilities. SWAT is a semi-distributed, 
physically based model that operates 
continuously over time while maintaining 
computational efficiency (Krysanova & 
Srinivasan, 2015). It requires detailed input data 
such as climate variables, soil characteristics, 
topography, and vegetation types to simulate 
hydrological processes accurately (Al-Kakey et 
al., 2023; Arnold et al., 1998). Additionally, 
SWAT-CUP (Calibration and Uncertainty 
Procedures) has evolved into a comprehensive 
tool capable of evaluating the impacts of a 
variety of chemical and water-related processes, 
making it highly valuable for simulation and 
analysis (Fan & Shibata, 2015; Gassman et al., 
2007; Rahman et al., 2013). 
 

The versatility of the SWAT model is further 
demonstrated by its extensive application across 
continents, where it addresses critical research 
needs in hydrology, sediment transport, pollutant 
dynamics, and scenario analysis (Gassman et 
al., 2014). Researchers have widely used SWAT 
to investigate water budgets, soil erosion, 
hydrological processes, and pollutant transport, 
and it plays a crucial role in assessing the effects 
of water management practices and land 
use/land cover (LULC) changes on various 
environmental factors (Woznicki et al., 2016). 
However, despite its strengths, SWAT presents 
certain challenges due to its inherent complexity 
and the vast temporal and spatial datasets it 
requires. The model’s numerous parameters and 
intricate interrelationships make calibration and 
validation challenging and time-consuming 
(Abbaspour et al., 2007a, b; Baker & Miller, 2013; 
Rezaeianzadeh et al., 2013; Tokar & Markus, 
2000). 
 

Based on these insights, our study aims to 
comprehensively evaluate SWAT-Based Rainfall-

Runoff and Soil Erosion Modeling in the Upper 
Cauvery River Basin. 
 

2. DESCRIPTION OF STUDY AREA  
 

The Cauvery River, the fourth largest in Southern 
India, originates at Talakaveri in the Brahmagiri 
hill range of the Western Ghats, Coorg District, 
Karnataka (Fig. 1). It stretches 800 km to the Bay 
of Bengal. It covers a catchment area of 81,155 
sq. km, shared by Karnataka, Tamil Nadu, 
Kerala, and Puducherry. The river spans 381 km 
in Karnataka and 357 km in Tamil Nadu, with its 
water cycle driven by the southwest monsoon in 
Karnataka and the northeast monsoon in Tamil 
Nadu, receiving an average annual rainfall of 
1,000 mm. Temperatures range from 18°C to 
44°C. The river supports extensive irrigated 
agriculture, hydroelectric power plants, and 
industries, contributing to livelihoods and 
Karnataka's food production. Rich in biodiversity, 
the Cauvery Basin is a popular tourist destination 
known for its forests, wildlife sanctuaries, 
national parks, ancient temples, and cultural 
heritage. 
 

3. MATERIALS AND METHODS 
 

3.1 Input Data 
 
The SWAT hydrological model used in this study 
relies on various input data, including 
topographical, climatic, land use, and soil data, 
sourced from multiple databases. Topographical 
data were obtained from the Shuttle Radar 
Topography Mission (SRTM) Digital Elevation 
Model (DEM), which served as the basis for 
watershed delineation. This DEM data generated 
sub-watershed configurations, stream networks, 
slope, and slope lengths, utilizing the QGIS 
interface for SWAT (Fig. 2a). Soil data were 
sourced from the FAO Soil Classification system, 
revealing seven distinct soil classes, with Silty 
Clay Loam being the dominant texture (Fig. 2b). 
The FAO classification detailed soil properties, 
including physical characteristics like texture and 
structure, chemical properties like phosphorus 
content, electrical conductivity, cation exchange 
capacity, and biological attributes like organic 
matter and organic carbon. Land Use and Land 
Cover (LULC) data were acquired from the 
Bhuvan portal, identifying 13 different land use 
categories, with the major ones being Deciduous 
Forest, Plantations, and Fallow Land (Fig. 2c). 
This data was essential for assessing the impact 
of land use on hydrological processes in the 
study area. Climatic data covering the period from 
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Fig. 1. Study area Upper Cauvery River basin 
 

Table 1. Input Data and its sources 
 

Sl.no Data set Source 

1 SRTM DEM Landsat 8 (30m resolution) 
2 Soil Map FAO soil classification 
3 LULC LULC classification by Bhuvan portal 
4 Meteorological data Indian Meteorological Department (IMD) 

 

Table 2. Soil classification with their textural classes: 
 

Sl 
no. 

FAO Soil 
Class 

Soil Composition (%) Textural Class OC (Kg C/m2) OM 
(%) 

  Sand Silt Clay    

1 3714 47 29 24 Sandy Loam 0.7 2.35 
2 3727 35 43 22 Silty Clay Loam 1.37 1.25 
3 3781 35 42 23 Silty Clay Loam 1.26 2.35 
4 3824 32 43 25 Silty Clay Loam 0.7 2.167 
5 3825 38 39 23 Loam 1.95 1.204 
6 6997 41 37 22 Loam 1.45 3.334 

 

2012 to 2021, including rainfall, temperature, and 
wind velocity, were provided by the Indian 
Meteorological Department (IMD). These climatic 
variables were crucial for simulating the 
hydrological response of the watershed under 
different conditions. A summary of all input data 
and their sources is provided in Table 1, which 
supports the SWAT model's application for 
evaluating runoff and soil erosion processes in 
the watershed.  
 

3.2 Methodology 
 

The SWAT hydrological model, developed by the 
USDA Agricultural Research Service (ARS), is a 

process-based and computationally efficient tool 
that utilizes spatially distributed inputs, including 
topography, land use, soil, and climate data, to 
predict the yields of water, sediment, nutrients, 
pesticides, and bacteria. In this study, SWAT was 
employed to simulate the impacts of land 
management on water, sediment, and 
agricultural chemical outputs. It is a semi-
distributed, continuous-time model        
specifically designed for long-term river basin 
simulations. 
 

For this study, land use data were sourced from 
the LULC classification on the Bhuvan portal, 
while soil data was obtained from the FAO soil 
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classification. Topographic data were derived 
from the Shuttle Radar Topography Mission 
(SRTM) Digital Elevation Model (DEM) which has 
a 30m resolution. These DEM data was used to 
configure sub-watersheds, delineate stream 
networks, and calculate slope and slope lengths 

using QGIS and the QSWAT plugin. The model 
can be initiated by searching for QSWAT in the 
plugin toolbar and following its three-step 
process to set up and run simulations. The 
methodology for this process is summarized in 
Fig. 3. 

 

 
 

Fig. 2. a) Digital elevation model b) Soil classes c) LULC map of the Cauvery River basin 
 

 
 

Fig. 3. Overview of methodology 
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Fig 4. Workflow of SCS CN method of runoff estimation 
 
3.2.1 Runoff estimation using SCS CN 
 
The SCS curve number method is a simple, 
widely used, and efficient method for determining 
the approximate amount of runoff from rainfall 
events in a particular area. Although the method 
is designed for a single storm event, it can be 
scaled to find average annual runoff values. The 
parameters requirements for this method are 
very low, the amount of rainfall, and the curve 
number. The curve number is based on the 
area's hydrologic soil group, land use, treatment, 
and hydrologic condition. In hydrological 
modeling, runoff estimation is the most important 
parameter. SWAT-based Soil Conservation 
Service Curve Number (SCS-CN), USDA method 
is used to predict runoff in 34 HRUs of 13 sub-
basins (Fig. 4). This SCS model computes direct 
runoff through an empirical equation requiring 
rainfall, soil class, and land use land cover data. 
Curve number (CN) is a computed variable that 
is based on the Antecedent Moisture condition 
(AMC), LULC, and soil data. 
 

3.2.2 Soil erosion estimation using the 
RUSLE model 

 

The estimation of soil erosion for the upper 
Cauvery Basin in southwestern India was carried 
out using the Revised Universal Soil Loss 
Equation (RUSLE) model integrated with GIS 
(Fig. 5). The basin, covering a drainage area of 
36,682 km², was analyzed using remote sensing 

data, and erosion probability zones were 
determined through GIS. The RUSLE model 
computes the average annual soil erosion using 
the equation: 
 

A = R × K × LS × C × P 
 

Here, A represents soil loss per unit area, R is 
the rainfall-runoff erosivity factor, K is the soil 
erodibility factor, LS accounts for slope length 
and steepness, C represents the cover 
management factor, and P denotes the support 
practice factor. Rainfall erosivity (R) refers to the 
kinetic energy and impact of rainfall on erosion, 
measuring the intensity of rain that causes sheet 
and rill erosion. Soil erodibility (K) quantifies the 
vulnerability of soil to detachment and erosion 
from raindrops and runoff. The C factor relates to 
crop and management practices affecting 
vegetation cover, while the LS factor accounts for 
the impact of slope length and gradient on soil 
loss. The P factor reflects the efficiency of land 
management practices like contouring and 
terracing in reducing erosion. The study's 
process involved utilizing topographic maps, 
satellite imagery, and Digital Elevation Model 
(DEM) data to derive key terrain parameters 
such as slope and flow direction. These factors 
were combined with soil data to calculate soil 
erodibility, while rainfall data were sourced to 
estimate the rainfall erosivity factor. The land 
use/land cover (LULC) data, integrated into the 
model, determined the crop management factor. 
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The RUSLE model was applied to generate soil 
loss maps, indicating erosion-prone areas. The 
soil erosion risk was classified based on the 
calculated soil loss values, producing a potential 
soil loss map for the upper Cauvery Basin. This 
comprehensive assessment highlights zones 
vulnerable to soil erosion, enabling effective land 
management and conservation practices to 
mitigate erosion risks (Ganasri 2016, Linsley 
1975). 
 

4. RESULTS AND DISCUSSION 
 

This study carried out model simulations over 10 
years, from January 1, 2012, to December 31, 
2021. The SWAT model was rigorously 
calibrated to ensure precision, yielding high-
accuracy outputs. Runoff estimation was 
conducted using the Curve Number method 
embedded within the SWAT model. 
 

4.1 Delineation of Watershed and Flood 
Plain 

 

This study conducted a comprehensive 
watershed analysis to facilitate effective water 
resource management and conservation. The 
watershed, defined as an area draining water 
from higher elevations to a common outlet, was 
divided into 13 sub-basins and 17 channels, 
including second-order streams. Elevation and 
flow direction were used to identify point sources, 
while reservoirs were identified based on 
depressions and flow accumulation patterns. 
Influenced by topographic factors, sediment yield 
in the floodplain represents the sediment 
transported from upstream and deposited along 
river courses. This yield is typically quantified 
either by volume (e.g., acre-feet) or normalized 
per unit area of the basin. The study computed 
sediment yield over multiple years, presenting 
the results as an annual average. 

4.2 Hydrologic Response Unit (HRU’s) 
 
The hydrologic response unit (HRU) is the 
smallest spatial unit of the model, and the 
standard HRU definition approach lumps all 
similar land uses, soils, and slopes within a 
subbasin based upon user-defined thresholds. 
This standard method provides an efficient way 
to discretize large watersheds where simulation 
at the field scale may not be computationally 
feasible. These are the basic conceptual units in 
the SWAT model. It is the amalgamation of land 
use, soil, slope, and landscape where all these 
layers are overlaid. Multiple HRU’s are created 
with a 10% threshold limit of land use, soil, and 
slope. A total of 34 HRUs are generated for 7 soil 
classes and 13 land use classes. 

 
4.3 Runoff Estimation using SCS CN 

Method 
 
Runoff estimation was carried out using the Soil 
Conservation Service (SCS) Curve Number (CN) 
method, developed by the USDA. This approach 
was applied to 34 Hydrologic Response Units 
(HRUs) across 13 sub-basins, relying on rainfall, 
soil class, and land use/land cover (LULC) data 
to compute direct runoff. The method classifies 
soils into four Hydrological Soil Groups (HSGs), 
which range from Group A (high infiltration, low 
runoff potential) to Group D (low infiltration, high 
runoff potential) (Table 3). 

 
4.3.1 Weighted curve number (WCN) for each 

land use class 

 
The Weighted Curve Number (WCN) was 
computed by assigning CN values to specific 
land use classes and soil groups. The CN values 
ranged from 72 for certain agricultural soils to 91 

 
Table 3. USDA HSG soil classification 

 

HSG Types of Soil Soil Texture Runoff 
Potential 

Minimum Rate 
of Infiltration 
(mm/hr) 

Water 
transmission 
Rate (in/hr) 

A Deep well-drained 
soils 

Sandy, sandy 
loam 

Low 7.62-12.38 High rate (0.3) 

B Moderately deep 
with fine to coarse 
texture 

Silt loam or 
loam 

Moderate 4.89-7.06 Moderate rate 
(0.15-0.28) 

C Moderately fine to 
fine textures 

Sandy clay 
loam 

Moderate 1.87-4.89 Low rate  
(0.05-0.15) 

D Soil with a 
permanent high-
water table 

Clay loam, silty 
clay loam, silty 
clay, clay 

High 0-1.27 Very low rate (0-
0.05) 
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Table 4. WCN calculation table 
 

Land Use HSG CN Area (%) % of Area*CN WCN 

Agriculture C 
D 
A 

88 
91 
72 

62.29 5481.52 
5668.39 
4484 

88.25 

Built up C 
D 
B 

88 
91 
82 

5.38 473.44 
489.58 
441.16 

Wasteland C 
A 

88 
82 

3.84 2330.24 
314.88 

Forest C 
D 

88 
91 

26.48 2330.24 
2409.68 

Waterbodies D 91 4.85 441.35 
Others B 

C 
D 

82 
88 
91 

1.65 135.3 
145.2 
150.15 

 

 
 

Fig. 5. Workflow for estimation of Soil erosion 
 
for built-up areas and water bodies                
(Table 4). The calculated WCN for the            
study area was 88.25, indicating a high       
potential for runoff, particularly in areas with 
impervious soils and urban development. 
Agriculture, which dominates 62.29% of the land 
area, significantly influences the region’s runoff 
potential. 
 

4.3.2 Runoff quantification 
 

The analysis of rainfall and runoff data from 2012 
to 2021, utilizing the Soil Conservation Service 
(SCS) Curve Number (CN) method, reveals 
significant fluctuations in average annual rainfall, 
peaking above 1000 mm in 2014, 2018, and 

2019. Despite these peaks, average annual 
runoff consistently remained lower, never 
exceeding 500 mm. The SCS CN method 
indicates that soil type and land management 
practices significantly affect runoff generation, 
with areas classified under hydrologic soil group 
(HSG) D exhibiting higher runoff potential 
compared to HSG A. 

 
The analysis demonstrates a correlation between 
increased rainfall and runoff, particularly in 2014, 
2017, and 2018; however, the substantial 
disparity between rainfall and runoff suggests 
that a significant portion of rainfall is absorbed or  
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Fig. 6. a) Flood plain map, b) Delineated channels and sub-basins  

 
Table 5. Runoff  risk zone classification of the Cauvery River basin 

 

Sl No. Runoff Risk Runoff value Major land use 

1 Very Low <0.025mm/ha/yr. Forest and Plantation 
2 Low 4.85- 12.50 mm/ha/yr. Shrubland and mixed forest 
3 Medium 12.85-21.34 mm/ha/yr. Grassland and wasteland 
4 High 21.34 – 33.48 mm/ha/yr. Agricultural lands 
5 Very High 33.48-55.89 mm/ha/yr. Follow and barren land 
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Fig. 7. Runoff- Rainfall graph from 2012-2021 
 
lost to evaporation and infiltration. Runoff 
percentages consistently remained below 50% of 
total rainfall, highlighting inefficiencies in runoff 
generation, potentially due to soil absorption 
capacity and impervious surfaces in urban areas. 
With a high weighted curve number (WCN) of 
88.25, the study area shows significant runoff 
potential, necessitating effective water 
management strategies to optimize resource 
capture and minimize losses. This integrated 
approach emphasizes the critical role of land 
use, soil characteristics, and hydrological 
dynamics in shaping runoff behavior, 
underscoring the need for targeted management 
practices in response to increasing rainfall 
variability and climate change impacts. 
 
4.3.3 Rainfall-runoff correlation 
 
The relationship between potential runoff and 
rainfall at a specific temporal scale 
demonstrates a strong positive correlation, 
evidenced by a correlation coefficient (R-value) 
of 0.967. This high R-value suggests a nearly 
perfect linear association, indicating that 
increases in annual rainfall correspond to 
proportional increases in annual runoff.  
 
An R2 value approaching +1 signifies a robust 
linear relationship, with positive values 
confirming the direct correlation between these 
variables. Fig. 8 presents the scatter plot of 
average annual rainfall against runoff, 
showcasing the data points alongside the best-
fit line. This further substantiates the rainfall-
runoff relationship within the Cauvery basin. 

The analysis indicates a commendable 
correlation, affirming the direct dependency 
between these two hydrological parameters. 
Moreover, daily correlation coefficients for 
rainfall and runoff spanning from 2012 to 2021 
consistently reflect this positive linear trend, as 
illustrated in Fig. 7. This reinforces the findings 
of a significant relationship between rainfall and 
subsequent runoff, emphasizing the importance 
of understanding this interaction for effective 
watershed management. 
 
4.3.4 Runoff risk zone mapping 
 
The Runoff Risk Zone Map, developed from a 
decade of daily rainfall data, land use/land 
cover (LULC) evaluations, and soil 
classifications, illustrates runoff vulnerability 
across the basin. The analysis reveals that 
66.29% of the basin is classified under High 
runoff risk, with 21.34 and 55.89 mm/ha/yr rates 
predominantly associated with agricultural 
lands. This highlights the elevated susceptibility 
of cultivated areas to surface runoff, 
exacerbated by soil properties and intensive 
agricultural practices.  
 
In contrast, fallow and barren lands demonstrate 
the greatest vulnerability, classified as Very High 
runoff risk, with runoff values reaching up to 
55.89 mm/ha/yr due to the lack of vegetation, 
which exposes the soil to runoff and increases 
erosion risk. Conversely, 26.48% of the basin, 
primarily forested areas, is categorized as Very 
Low-risk, exhibiting runoff values of less than 
0.025 mm/ha/yr. Forest ecosystems effectively 
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mitigate runoff through dense vegetation and 
robust root systems that enhance water 
absorption. Shrublands and mixed forests fall 
within the Low-risk category, with runoff          
values between 4.85 and 12.50 mm/ha/yr, 
offering moderate protection against runoff. 
Grasslands and wastelands are                
designated as Medium-risk, with runoff values 
ranging from 12.85 to 21.34 mm/ha/yr, reflecting 

reduced infiltration and vegetation cover. The 
Runoff Risk Map delineates the runoff risk 
gradient across the basin, underscoring the 
pivotal role of land cover in influencing runoff 
potential. Agricultural areas are particularly 
susceptible, while forests act as natural buffers, 
necessitating targeted land management 
strategies to mitigate surface runoff impacts in 
high-risk zone. 

 

 
 

Fig. 8. Rainfall- Runoff corelation graph 
 

 
 

Fig. 9. Runoff risk zone mapping of upper Cauvery River basin 
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Fig. 10. a) Rainfall erosivity map, b) Soil erodibility map, c) Soil erosion map, d) Crop and 
management factor map, f) Slop length and steepness map 

 

4.4 Soil Erosion Quantification 
 
Soil Erosion can be defined as a method of 
detachment, transportation of surface soil 

particles from their origin, and deposition at 
some other area. Based on the Rainfall erosivity 
factor, soil erodability factor, slope length and 
steepness factor, crop management, and 

a 
b 

c 

d f 
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Table 6. Soil erosion quantification using the RUSLE Model 
 

Sl.no Soil Loss 
Risk 

Soil loss value 
(t/ha/yr.) 

Area 
(%) 

Area (km2) Annual Soil 
Loss (t/ha/yr.) 

1 Very Low <0.75 38 13,939.16 104.54 
2 Low 0.75-4.5 24 8,803.68 281.69 
3 Moderate 4.5-8.4 18 6602.7 448.9 
4 High 8.4-13.6 11 4035.02 532.62 
5 Very High 13.6-21.4 9 3301.38 660.2 

Total 100 36,682 2027.95 

 
support factor we generated the potential soil 
loss (t/ha/yr.) (Fig.10). 
 

The analysis of soil loss risk indicates that 38% 
of the total area, equivalent to 13,939.16 km², 
falls under the Very Low-risk category, with a 
soil loss value of less than 0.75 t/ha/yr, resulting 
in an annual soil loss of 104.54 t/ha/yr. The Low-
risk category, covering 24% of the area or 
8,803.68 km², experiences soil loss between 
0.75 and 4.5 t/ha/yr, leading to an annual soil 
loss of 281.69 t/ha/yr. The Moderate risk 
category affects 18% of the area, or 6,602.7 
km², with soil loss values between 4.5 and 8.4 
t/ha/yr, contributing 448.9 t/ha/yr to the total 
annual loss. Meanwhile, 11% of the area, 
corresponding to 4,035.02 km², falls under the 
High-risk category, with soil loss values between 
8.4 and 13.6 t/ha/yr, resulting in 532.62 t/ha/yr of 
soil loss. Finally, the Very High-risk category 
accounts for 9% of the total area, or 3,301.38 
km², with soil loss ranging from 13.6 to 21.4 
t/ha/yr, contributing the highest annual soil loss 
of 660.2 t/ha/yr. Overall, the total annual soil 
loss across the entire region amounts to 
2027.95 t/ha/yr (Table 6)  
 

5. CONCLUSION 
 
Hydrological modeling is crucial for water 
resource planning, design, and decision-making. 
SWAT, a its robust, comprehensive, and 
systematic rainfall-runoff model, addresses the 
challenge of managing natural resources amid 
environmental changes. Applied to the Cauvery 
River basin, SWAT was used to simulate runoff 
from 1st January 2012 to 31st December 2021 
using the SCS-CN method. Soil erosion was 
estimated using the Revised Universal Soil Loss 
Equation (RUSLE), integrated with ArcGIS Pro. 
The results indicate 15-18% runoff and a total 
soil loss of 2027.95 t/ha/yr. Runoff from 
agricultural and fallow lands contributed 
significantly (33.48-55.89 mm/ha/yr), requiring 
management interventions. Soil erosion was 
highest in cropland and wasteland (13.6-21.4 

t/ha/yr), emphasizing the need for agroforestry, 
reduced chemical fertilizers, and minimal tillage 
to mitigate erosion. Sedimentation in the lower 
catchment and reduced reservoir capacity further 
highlight the need for integrated soil and water 
management. The SWAT model showed a strong 
correlation between simulated and observed 
data, with satisfactory runoff and soil loss 
estimate results. 
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