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Abstract 

 
Human-assisted surveys, such as medical and social science surveys, are frequently plagued by non-response 

or missing observations. Several authors have devised different imputation algorithms to account for missing 

observations during analyses. Nonetheless, several of these imputation schemes' estimators are based on 

known population mean X of auxiliary variable. In this paper, a new class of almost unbiased imputation 

method that uses nx
 as an estimate of X is suggested. Using the Taylor series expansion technique, the MSE 

of the class of estimators presented was derived up to first order approximation. Conditions were also 

specified for which the new estimators were more efficient than the other estimators studied in the study. The 

results of numerical examples through simulations revealed that the suggested class of estimators is more 

efficient. 
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1 Introduction 

 
Numerous studies in the field of sampling survey have estimators for estimating population parameters like 

population mean, population variance, standard deviation etc. under the assumption that complete information 

about sampling units is available. Some authors like Singh et al, [1], Sahai et al. [2], Srivastava et al. [3], Ahmed 

et al. [4], Audu et al. [5], Audu et al. [6], Muili et al. [7], Zaman [8], Zaman and Kadilar [9], Zaman [10] and 

Yadav and Zaman [11] Audu et al. [12], Audu et al. [13] have worked extensively in that direction. Also, 

authors like Singh and Tailor [14], Sisodia et al. [15], Khoshnevisan et al. [16], Singh et al. [17], Singh and 

Audu [18], Ahmed et al. [19] and Audu et al. [20] utilized coefficient of variation of auxiliary variable in the 

estimators’ formulation and obtained highly efficient estimators. The estimators in the aforementioned 

literatures assumed that information on sampling units drawn from the population is completely available. 

However, this assumption is often violated due to non-response as a result of refusal to answer questions, 

inaccessibility to respondents, etc. In such situations, responses of non-respondents can be imputed using 

imputation techniques. 

 

Imputation is the process of replacing missing data with substituted values. When substituting for a data point, it 

is known as "unit imputation"; when substituting for a component of a data point, it is known as "item 

imputation" (Singh [21]). There are three main problems that missing data causes. It can introduce a substantial 

amount of bias, make the handling and analysis of the data more arduous, and create reductions in efficiency 

(Barnard and Meng [22]).
 
Missing data due to non-response can create problems for analyzing data and 

imputation is seen as a way to avoid pitfalls involved with likewise of cases that have missing values. That is to 

say, when one or more values are missing for a case, most statistical packages default to discarding any case that 

has a missing value, which may introduce bias or affect the representativeness of the results. Imputation 

preserves all cases by replacing missing data with an estimated value based on other available information. Once 

all missing values have been imputed, the data set can then be analyze using standard techniques for complete 

data (Gelman and Jennifer [23]). There have been many theories embraced by scientists to account for missing 

data but the majority of them introduce bias.  

 

Survey such as in medical and social science etc. conducted by human are often characterized by non-response. 

Hansen and Hurwitz [24] first discussed the issue of non-response and imputation methods to deal with non-

response issues were suggested by several scholars like Singh and Horn [25], Singh and Deo [26], Ahmed et al. 

[27], Wang and Wang [28], Kadilar and Cingi [29], Toutenburg et al. [30], Singh (2009), Diana and Perri [31], 

Al-Omari et al.  [32], Singh et al. [33], Mishra et al. [34], Singh and Gogoi [35], Singh et al. [36], Prasad [37], 

Audu et al [38-41], Shahzad et al. [42] and Audu and Singh [43] are some of the most recent imputation 

methods. However, some of the estimators of the schemes proposed by aforementioned authors are functions of 

population mean of auxiliary variable ( X ) and if  X is unknown, the schemes can not be applied to real life 

situations and are biased. This study, therefore, implored the concepts of bias-filtraion and two-phase sampling 

in which 
nx  is taking as the estimate of X to obtain new efficient imputation scheme. 

 

1.1 Notations 

 
The following notations have been used. 

Y: Study variable. 

X: Auxiliary variable. 

  ,   : The population mean of the variables X and Y respectively. 

r: Response units size 

n, N:  Size of the sample, Population size. 

nx  : The sample mean of X based on sample of size n. 

rx : The sample mean of X response units  

ry : The sample mean of Y response units.   

   
2

12

1

1
N

x i

i

S N x X




   The population mean squares of X. 

https://en.wikipedia.org/wiki/Missing_data
https://en.wikipedia.org/wiki/List_of_statistical_packages
https://en.wikipedia.org/wiki/Bias_(statistics)
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   
2

12

1

1
N

Y i

i

S N y Y




   : The population mean squares of Y.
 

YX Y XS S S    is the covariance between variables Y and X.
 

1 1

r,N r N    :  Correction factor for response 

1 1

r,n r n    : Correction factor for non-response 

Y YC S Y :  Coefficient of variations Y  

X XC S X : Coefficient of variations Y 

R Y X : Ratio Y to X 

 

  

   

1

2 2

1 1

N

i i

i
YX

N N

i i

i i

X X Y Y

X X Y Y

 

 

 



 



 
: Correlation coefficient of Y and X 

 

2 Some Existing Imputation Schemes and their Estimators 

 

Let   denotes the set of r units’ response and 
c  denotes the set of n r units’ non-response or missing out 

of n  units sampled without replacement from the N units’ population
N . 

 

Under mean method of imputation, values found missing due to non-response are to be replaced by the mean of 

the rest of observed values (Kalton [44]). The study variable thereafter, takes the form given as,  

 

.

           i

         i

i

i c

r

y
y

y


 


       (2.1) 

 

Under the method of imputation, sample mean denoted by
0̂ can be derived as 

 
1

0
ˆ

r

i R

r y 



            (2.2)  

 

The bias and variance of 
0̂  is given in (2.3) and (2.4) 

 

0
ˆ( ) 0Bias             (2.3) 

 
2

0 ,
ˆ( ) r N YVar S           (2.4)  

 

where    
211 1 2 1

,

1 1

, 1 ,
N N

r N Y i i

i i

r N S N y Y Y N y
  

 

      
 

 

Lee et al., [45] proposed ratio imputation method as given (2.5) 



 

 
 

 

Audu et al.; AJPAS, 15(4): 235-250, 2021; Article no.AJPAS.77964 
 

 

 
238 

 

.

i

       i

ˆx      i

i

i c

y
y




 


         (2.5) 

 

where 

1 1

ˆ / /
r r

i i r r

i i

y x y x
 

  
 

 

Under the method of imputation, estimator of population mean denoted by
1̂ ,  as in (2.5) 

 

1
ˆ /r n ry x x            (2.6)  

 

The Bias and MSE of 
1̂  up  1n is given as: 

 

 1 2 2

1 ,
ˆ( ) r n x YX x yBias Y R S S S           (2.7) 

 

   2 2 2

1

1 1
ˆ( ) 2r y X YX Y XMSE MSE y S R S R S S

r n
 

 
     

 
                       (2.8)  

 

where    
212 1 1 1

,

1 1

, , 1 , , , /
N N

YX YX Y X X i i r n

i i

S S S S N x X X N x r n R Y X 
   

 

          

Singh and Horn [25] utilized information from imputed values for responding and non-responding units as well, 

thereafter giving study variable the form given by (2.9). 

 

.

ˆ(1 ) ,         i

ˆ(1 ) ,                      i

i i

i

c

i

n
y x

ry

x

  

 


  

 
  

      (2.9) 

 

The estimator of population mean denoted by
2̂ as well as its bias and MSE are given as 

 

  1

2
ˆ 1r n ry x x                         (2.10) 

 

   1 2 2

2 ,
ˆ( ) 1 r n x YX x yBias Y R S S S                      (2.11) 

 

     2 2 2 2 2 2

2 , ,
ˆ 2r r n y x xy r n xMSE MSE y S R S RS R S                      (2.12) 

 

where 1
y

YX

x

S

RS
  

 
 

Ahmed et al. [27] proposed imputation scheme for population means estimators which is applicable when the 

study and auxiliary variables are either positively or negatively correlated, using power transformation. 
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1

. 1

i

i C

r r

r

y i

y X
ny ry i

n r x




    

         

               (2.13) 

 

Under the (2.13) method, the resultant estimator of the population mean Y as well as bias and MSE are given as 

 

1

3
ˆ

r

r

X
y

x




 

  
 

                    (2.14) 

 

 
  2 2

1 11

3 , 1

1
ˆ

2

X

n N YX Y X

R S
B Y R S S

 
   

 
  

 
                (2.15) 

 

where 
y

YX

x

S

RS
 

 
 

  2 2

3 ,min
ˆ (1 )r N YX YMSE S                   (2.16) 

 

Singh et al., [36] proposed Exponential-Type Compromised Imputation scheme to minimize the effect of 

distance between X  and 
rx on the efficiency of Ahmed et al. [27] as 

 

 

 
.

1 exp

1 exp

r
i r

r

i

Cr
r

r

X xn
v y v y if i

r X x
y

X x
v y if i

X x

  
   

  
 

 
    

               (2.17) 

The point estimator of population mean Y under the proposed method of imputation is: 

 

   1

4
ˆ (1 ) expr r r rvy v y X x X x



                    (2.18) 

 

  1 2 2

4 ,

3 1
ˆ (1 )

8 2
r N x YX x yBais Y R S S S     

   
 

               (2.19) 

 

   2 2

4 ,min
ˆ 1r N Y YXMSE S                     (2.20)  

 

Where 1 2 /YX Y XS RS  
 

 

Prasad [37] proposed ratio exponential imputation scheme given in (2.21) to address the problem of 

compromised in Singh et al [36] as 
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 2

.

/

exp
2

i

i Cr r

r yx x

y i

y y X x
n r i

n r X x






    

            

              (2.21) 

 

Under this method, the resultant estimator of Y as well as the bias and MSE are given as 

 

     1

5 0 2
ˆˆ exp 2 /r YXt X x X x x   



                   (2.22) 

 

     1 2 2

5 ,
ˆ 1 3 4

8
r N X yx y xBais Y Y R S S S


      

    
 

            (2.23) 

 

 
  
  

2 2 2 2 2

,

5 min 2 2 2 2 2

,

0.25
ˆ

0.25

r N Y X YX

r N Y X YX

Y S R S RS
MSE

Y S R S RS

  


  

 


  
            (2.24)  

 

where when   2 2 2 2 2 2

,/ 0.25r N y X YXY Y S R S RS       ,     2 2/ YXx X x X     . 

Singh and Gogoi [35] Proposed imputation scheme which is applicable when X and Y are positively or 

negatively correlated, for population mean estimators using linear combination approach  

 

 

 
.

1

1

r
i r

n
i

Cr
r

xn X
y y i

r x X
y

x
y i

X

 




  


 
  


                (2.25) 

The point estimator of population mean Y under proposed method of imputation is: 

 

 6
ˆ 1 r

r

n

xX
y

x X
  

 
   

                    (2.26) 

 

where 
1  is an unknown parameter to be estimated. 

 

The bias, mean square error and minimum mean square error are given by: 

 

    1 2 2

6 ,
ˆ 1 2n N X YX Y XBias Y R S S S                      (2.27) 

   2 2

6 , ,min
ˆ

r N n N YX YMSE S        

 

Audu et al. [38] proposed some new imputation schemes as in (2.28). They incorporated filtration parameters 

i  to obtain unbiased class of estimators.  
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 1

1

.
2 c

2 3

         i

               

exp          i

i

i
r

r

r r

n
y

r
y

X xn X
y

n r x X x






 





     
              

             (2.28) 

 

    

    

         

1 2

3 1 2 1 2

1 2

2 2 1 1 2

1 2

1 2 2 1 1 2 1 1 2 1 2

4 2 1 / / 2

2 2 2 / / 2

1 2 4 2 1 2 / / 2

X XY Y XY Y X

X XY Y XY Y X

X XY Y XY Y X

S S S RS

S S S RS

S S S RS

      

      

            







   



     


        
    

(2.29)  

 

where  1 2, 1, 1   
 

 

The point estimator of population mean Y under proposed method of imputation as well as bias and MSE are 

given as: 

 

 1

2

7 1 2 3
ˆ exp

r

r

r r

X xX
y

x X x




   
   
     

      

               (2.30) 

 

 7
ˆ 0Bias                      (2.31) 

 

   2 2 2 2

7 ,
ˆ 2r N Y X XY X YMSE S R S RS S                     (2.32) 

 

where 
2

2 1 3
2


    

 
 

3 Proposed Imputation Schemes 

 
Having studied the work of Audu et al. [38], the following imputation scheme is proposed. 

 

Let  be a set of population with N units,   with cardinality R  and 
c be complement of  . 

Let 
nx  be an unbiased estimate of X , the population mean of X based on the sample of size  n  , then,  

 

 1

1

.
2 c

2 3

         i

exp          i

i

i
n rn

r

r n r

n
f y

r
y

x xn x
y f f

n r x x x








     
     

       

   (3.1) 

where  1 2 1,1    , , 1,2,3if i   are filtration parameters,

3

1

1i

i

f


 .  
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3.1 Estimation Method/Procedure 

 
The estimator of the proposed scheme is obtained as 

 

. .

1
ˆ

c

i i

i i

t y y
n  

 
  

 
           (3.2) 

 

1

1 . 2 3 2

1 1

1
ˆ exp

r n r
n n r

i r

i i r n r

x x xn
t f y y f f

n r x x x






 

      
                  

     (3.3) 

 

The estimator of the proposed scheme is given as; 

 

1

1 2 3 2
ˆ expn n r

r

r n r

x x x
t y f f f

x x x




     
               

                                                       (3.4) 

 

The Mean Square Errors of  t̂  under Case I is defined as; 

 

 ˆ
I

MSE t                                                              (3.5) 

 

where, 
ˆ ˆ ˆ

r n r

t t t

y x x

   
   

   
 is a matrix of order 1 3 ,  is its transpose and the variance- covariance 

matrix is defined as  

2

, , ,

2 2

, , ,

2 2

, , ,

r N y n N yx r N yx

n N yx n N x n N x

r N yx n N x r N x

S S S

S S S

S S S

  

  

  

 
 

   
 
 

 is a 3 3 non-singular matrix. 

 

On differentiating t̂  with respect to , ,r n ry x and x , to obtain (3.6), (3.7) and (3.8) respectively; 

 

1

1 2 3 2

ˆ
expn n r

r r n r

x x xt
f f f

y x x x




    

             

                                                     (3.6) 

 

 

1

1

1

2 1 3 2 22

ˆ 2
expn n rr

r

n r n rn r

x x xxt
y f f

x x x xx x




  

     
                

                                          (3.7) 

 

   

1

1
2 1 3 2 221

ˆ 2
expn n n r

r

r n rr n r

x x x xt
y f f

x x xx x x




  

 

     
                 

                         (3.8) 

 

By setting , ,n r rx X x X y Y   in (3.6), (3.7) and (3.8), to get (3.9), (3.10) and (3.11) respectively, 
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1 2 3 1 2 3

ˆ
exp 1

r

t X X X
f f f f f f

y X X X

    
         

    
                                     (3.9) 

  

2
2 1 3

ˆ

2n

t Y
f f

x X




  
  

  
                                                                                                  (3.10) 

 

2
2 1 3

ˆ

2n

t Y
f f

x X




  
   

  
                                                                                              (3.11) 

 

Let 
2

2 1 3
2

f f


  
 

 

Substituting (3.9), (3.10), (3.11) into (3.5) to obtain the MSE of 
1t  under case one as 

 

      2 2 2 2

, , , , ,
ˆ 2r N y r N n N YX y x r N n N xMSE t S R S S R S                               (3.12) 

 

Differentiating (3.12) with respect to   , we have, 

 

YX y

x

S

RS


                                                                                                                              (3.13) 

 

Substituting (3.13) into (3.12), we obtain the minimum MSE of the estimator t̂  under case I as 

 

    2 2

, , ,min
ˆ

y r N r N n NI
MSE t S                                                                                  (3.14) 

 

To obtain the expressions for 
1 2 3, ,f f f  the following system of equations are used 

 

1 2 3

2
1 1 2 3

1 2 2 3 3

1

0
2

0 0

YX y

x

f f f

S
f f f

RS

f f f




 

   



   

   

                                                                                        (3.15) 

 

Solving (3.15), we obtained (3.16) as 

 

   

 

 

1 1 1

1 3 2 1 3 2 2

1 1 1

2 3 1 3 2 2

1 1 1

3 2 1 3 2 2

1 / 2

/ 2

/ 2

YX y x

YX y x

YX y x

f S S R

f S S R

f S S R

      

     

     

  

  

  

        


  


   


                                                        (3.16) 

where 1 2,  , and 3  are biases of the estimators combined in the proposed schemes define by: 
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 

 

 

1

1

2
2 2 21 1

2 , 1 , 1 1

2
22 2 2

3 2 , ,

0

2

exp
4 8 2

r

n
r r N x YX y x n N YX y x x

r

n r
r r N x YX y x n N YX y x

n r

Bias y

x R
Bias y RS S S S S RS

x Y

x x R
Bias y RC S S S S

x x Y





 
       

  
     




  


       
                

      
                  







    (3.17)  

 

The Mean Square Errors of t̂  under Case II is derived using as; 

 

 ˆ
II

MSE t                                                                                               (3.18) 

 

where,

2

, ,

2

,

2

, ,

0

0 0

0

r N y r N YX y x

n N x

r N YX y x r N x

S S S

S

S S S

  



  



 
 

   
 
 

 is a  3 3 non-singular matrix. 

 

Substituting (3.9), (3.10), (3.11) into (3.18) to obtain the MSE of 1t  under case II  as 

 

    2 2 2 2

, , , ,
ˆ 2r N y r N YX y x r N n N xII

MSE t S R S S R S                                             (3.19) 

 

Differentiating (3.19) with respect to   , we have, 

 

 
,

, ,

r N YX y

n N r N x

S

RS

 


 



                                                                                                                

(3.20) 

 

Substitutes (3.20) into (3.19) to obtain minimum mean square error 1t  under case II as; 

 

 
 

2 2

,2

,min
, ,

ˆ r N YX

y r NII
n N r N

MSE t S
 


 

 
  

  

              (3.21) 

 

To obtain the expression for 1 2 3, ,f f f  the following system of equation are solved 

 

 

1 2 3

,2
1 1 2 3

, ,

1 1 2 2 2 2

1

0
2

0

r N YX y

n N r N x

f f f

S
f f f

RS

f f f

 


 

  

  



   
 

   

                                                                           (3.22) 

 

Solving (3.22), we obtained (3.23) as 
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     

   

   

1 1 1

1 3 2 , , , 1 3 2 2

1 1 1

2 3 , , 1 3 2 2

1 1 1

3 2 , , , 1 3 2 2

1 / 2

/ 2

/ 2

r N n N r N y x

n N r N y x

r N n N r N y x

f C C

f C C

f C C

         

        

       

  

  

  

       
  


   


   


                     (3.23)  

 

where 1 2,  , and 3  are biases of the estimators combined in the proposed schemes define by 

 

 
1

1

2 2
1 2 21 1 1 1

2 , 1 ,

2 2
22 2 2 2 2

3 2 , ,

0

2 2

exp
4 8 2 4 8

r

n
r r N x YX y x n N x

r

n r
r r N x YX y x n N

n r

Bias y

x
Bias y Y R RS S S RS

x

x x R
Bias y RS S S

x x Y





   
    

    
    



 

         
                   

       
                    

2

xRS










   
  

  

   (3.24) 

                                                                                                      

 

3.2 Theoretical efficiency comparison 
 

In this section, efficiency conditions of the proposed estimators over sample mean 0̂ , Audu et al. [38] 7̂

were established. 

 

i. Sample mean Vs Proposed Estimator 

 

   

  

0 1

,2 2 2

, , ,

, ,

ˆˆ 0

1
0

I

r N

y y r N r N n N xy YX

r N n N

Var MSE t

S S




    

 

 


     



             (3.25) 

 

   0 1

2

,2 2

,

, ,

ˆˆ 0

0 0

II

r N xy

y y r N YX

r N n N

Var MSE t

S S



 
 

 

 

 
       

                             (3.26) 

 

ii. Audu et al. [36] Vs Proposed Estimators 

 

   
  

 

2 2

, , , ,

7

, ,

ˆˆ 0
x r N y r N n N r N y

YXI
y r N n N

RS S Y S
MSE MSE t

YS

    
 

 

  
   


(3.27) 

 

   

,2

, ,

7
ˆˆ 0

r N

x

r N n N

YXII
y

RS

MSE MSE t
S




 
 


                  (3.28) 
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4 Empirical Study for Efficiency Comparison 

 
In this section, simulation study was conducted to examine the superiority of the proposed estimators over other 

estimators considered in the study. Data of size 10000 units were generated for study population using function 

defined in Table 1 below. Samples of sizes 500 units from which 60 units were selected as respondents were 

randomly chosen 10,000 times by method Simple Random Sampling without Replacement (SRSWOR) The 

efficiency (MSEs) and efficiency gained (PREs) of the considered estimators were computed using (4.1) and 

(4.2) respectively. 

 

   
10000 2

1

1ˆ ˆ
10000

d d

d

MSE Y 


         (4.1) 

 

 
 

 
0

ˆ
100l

MSE
PRE

MSE






 
   
 

       (4.2) 

 

Table 1. Simulation data used for empirical study 

 
Population Study Variable y Auxiliary variable X 

1 3 0.4Y X     ~ (0.5, 3)X unif  

II ~ (5, 0.3)X Norm  

Where 
 ~ 0,1N

 

 

Table 2. MSE and PRE of Proposed and Other Estimators using Population I 

 
Estimators MSE PRE Estimators MSE PRE 

Mean  0̂  89.189 100.00 Singh and Gogoi [35]  6̂  72.200 123.53 

Lee et al,. [45]  1̂  50.501 176.61 Audu  et al. [38] 

Singh and Horn [25]  2̂  44.883 198.71  71̂  62.457 142.80 

Ahmed et al. [27]  3̂  78.210 114.04  72̂  44.460 200.60 

Singh et al. [36]  4̂  82.923 107.56  73̂  47.499 187.77 

Prasad [37]  5̂  77.445 115.17  74̂  56.111 158.95 

Proposed estimators 

Case I MSE PRE Case 1I MSE PRE 

 11 1
t̂  

15.70613 567.861  11
ˆ

II
t  

25.116 355.11 

 12 1
t̂  

42.2845 210.926  12
ˆ

II
t  

21.334 418.07 

 13 1
t̂  

19.65429 453.789  13
ˆ

II
t  

21.334 418.07 

 14 1
t̂  

26.23558 339.954  14
ˆ

II
t  

25.252 353.20 

 

Tables 2 and 3 show the results of MSEs and PREs of the proposed and related existing estimators considered in 

this study using models I and II respectively from the simulation studies in Table 1. The result revealed that 

proposed class of estimators have minimum MSEs and higher PREs compared to that of conventional and other 

related estimators considered in the study. These results imply that using sample mean 
nx  as estimate of 
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population mean X  and bias-filtration technique has enhanced the performance of imputation scheme and 

make it more efficient and less cost in estimation of missing values than other related estimators considered in 

this study. 

 
Table 3. MSE and PRE of proposed and other estimators using Population II 

 
Estimators MSE PRE Estimators MSE PRE 

Mean  0̂  107.824 100 Singh and Gogoi [35]  6̂  52.577 205.08 

Lee et al,. [45]  1̂  60.74127 177.513 Audu et al. [38] 

Singh and Horn [25]  2̂  16.876 638.919  71̂  32.602 330.73 

Ahmed et al [27]  3̂  94.32676 114.309  72̂  87.618 123.06 

Singh et al [36]  4̂  38.603 279.315  73̂  76.777 140.44 

Prasad [37]  5̂  94.30049 114.341  74̂  89.893 119.95 

Proposed estimators 

Case I MSE PRE Case 1I MSE PRE 

 11 1
t̂  

15.65151 688.905  11
ˆ

II
t  

31.815 338.91 

 12 1
t̂  

41.60992 259.131  12
ˆ

II
t  

28.816 374.18 

 13 1
t̂  

19.59101 550.375  13
ˆ

II
t  

28.816 374.18 

 14 1
t̂  

35.96499 299.803  14
ˆ

II
t  

31.854 338.50 

 

5 Conclusion 
 
From the results obtained from the empirical study on the efficiency of the proposed scheme’s estimators over 

some existing related schemes’ estimators considered in the study, it was obtained that the estimators of the 

proposed scheme have minimum MSE compared to other estimators considered in all the numerical 

computations carried out in the study, hence, the proposed estimators demonstrated high level of efficiency over 

other estimator considered in this study.  The results revealed that the proposed scheme which utilized sample 

mean 
nx  based on sample size n N  instead of population  mean X  which required N  population units, 

provides more efficient estimators that minimize resources for collecting information in mail survey 

characterized with non-response. 
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