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Abstract

We define two integer sequences that depend on a parameter § and that are related to each other
by two recurrence relations.

Then we find the Binet formula for the terms of these sequences and, by developing it, we will
get an equivalent combinatorial formula.

We show that each sequence follows the same relation of recurrence although they differ in the
initial conditions.

Later we show that these numbers are related to the k—Fibonacci numbers and we finish this
section finding its generating functions.

Finally, for certain particular values of § we show that these numbers are related to the Chebyshev
polynomials.

This paper deals with a new concept of k—Fibonacci sequences linked to each other, so there
is no literature on the subject. I hope that this article will be the starting point for other
mathematicians that wish to investigate this topic.

Keywords: k—Fibonacci numbers; k—Lucas numbers; Binomial expansion; geometric sum; generating
function; Chebyshev polynomials.
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1 Introduction

Classical Fibonacci numbers have been very used in as different Sciences as the Biology, Demography
or Economy [1]. Recently they have been applied even in the high-energy physics [2, 3]. But there
exist generalizations of these numbers given by researches as ([4]) who considers the generalized
(a,b)— Fibonacci numbers as the numbers F,(a,b) verifying the recurrence relation F,41(a,b) =
a- Fr(a,b) +b- Fr_1(a,b) with the initial conditions Fy(a,b) = p and Fi(a,b) = q.

In the study of the four-triangle longest-edge (4TLE) partition of a triangle [5], the k—Fibonacci
numbers appear as a particular case of the generalized Fibonacci numbers. These numbers have
been studied intensively in recent years [6].

Definition 1.1 (k-Fibonacci numbers). For any positive real number k, the k~Fibonacci sequence,
say Fy, = {Fkvn}n€N7 is defined by the recurrence relation

Fiont1 =k Fyn+ Fip—1 forn>1
with initial conditions Fj o =0 and Fi 1 =1
The sequence of the k-Fibonacci numbers is Fj, = {0, 1, k, k% + 1,k* + 2k,...}
For k = 1, classical Fibonacci sequence is obtained and for k = 2, Pell sequence appears.
We define the negative k—Fibonacci numbers as Fj,—, = (—1)"+1Fk,n.

In similar form, the k~Lucas numbers are defined as L, n4+1 = k Lk,n+ Lk n—1 with initial conditions
Lk,O =2 and Lk,l = k’ [7]

The well-known Binet formula in the Fibonacci numbers theory [5, 4, 8] allows us to express the
k—Fibonacci and the k—Lucas numbers by mean of the roots o1 and o2 of the characteristic equation

2 n o n
kEVEEHA B 00y

associated to the recurrence relation v = kr + 1. If o1,2 = ,
2 g1 — 02

Lin =07 4+ 03. As consequence Ly, = Fn—1+ Finy1.

Shown below some properties of o1 and o2 that we will use in this paper:

o1+02=k,01—02=Vk?+4, 01~02:—1,02:ka+1, 0'1(0'1—]6):1—)]6—0'1:—i:()’2.

o1

2 Dual ) — k—Fibonacci Sequences

In this section we define the dual 6 — k—Fibonacci sequences and study the relationships between
them (for a general case, see [9, 10, 11]).
Let 0 be a complex number.

Definition 2.1. We define the dual § — k—Fibonacci numbers u,(8) and v, (d), for n € N, in the
form
un(8) — o1vn(6) = (1 — 016)™ (2.1)

or equivalently by the relation

un(8) — o2vn(8) = (1 — 020)™ (2.2)
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While there is no confusion, we will represent w,,(6) and v, () as u and v, respectively.
Given values to n, we can find the first terms of the sequences U(8) = {un ()} and V(8) = {vn(d)}.
We must taking into account that ¢™ = Fj 0 + Fin—1. In particular, 0?2 =ko+1and o =
(k* +1)o + k.

_ -1
n=0 — {UO a1vo }—>(01—02)1}020—>1}0:O—>uo:1
uO—O'QU():l

n=1 — {Zi:z;zzi:z;g}—>(U1—02)v1:(01—02)5
S =0 —>u =1
252
o2 o TS e )
— (01 — 02)v2 = 2(01 — 02)8 — (07 — 03)6°
— =20 —k6> s up=1+6
n=3 — - —>v3=30-3k&>+ (K°+1)6° > uz =1+35"—ko°

Then,
U@) ={1,1,14 62,1 +35% — k63, 14+ 6d> — 4kd® + (1 + k*)d*,...}
V(8) = {0,6,25 — k62,36 — 3k 6% + (K> +1)8°,4d — 6kd® + 4(1 + k*)d® — (2k + k)d*, .. .}
We can see that the elements of these sequences verify the following relations that we will prove
later (formulas (2.5) and (2.6)):
Unt1 = Un + OUn, Unt1 = Oun + (1 — kd)vn
Taking into account up = 1 and vo = 0, by mean of these relations we can find easily the first
elements of the sequences U(d) and V (§).

2.1 Binet formulas

Multiplying the equation (2.1) by —o2, the (2.2) by o1, and summing both results we obtain

un(8) = Tt =020)" =021 = 049)" (2.3)

01 — 02

Subtracting the equations (2.1) and (2.2), we obtain

(01 —o02)vn = —(1 —010)"™ + (1 — 020)™ from where
o (1 — 0'2(5)" — (1 — 0'15)”
vp(8) = P (2.4)
2.2 Relations between u,., v,,1 and u,, v,
Next we will prove the relations
Unt1 = Un + OV, (2.5)
Unt1 = Oun + (1 — kd)v, 6)
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Proof of equation (2.5). From equation (2.3)

o2(1 — 015)"+1 —o1(1— 025)"+1

Un+1 - N g1 — 02
_ 02(1—015)(1—015)n—0’1(1—(725)(1—0’26)”
- o1 — 09
(0’2 + (5)(1 — 0'1(5)” — (0'1 =+ 5)(1 — 0'25)”
- B g1 — 02
_ o 02(1=010)" —o1(1 —020)" 5 (1—=016)" = (1 —020)"
o1 — 02 g1 — 02

= Up + 5vn
To prove the relation (2.6), we must take into account that o1 + o2 = k. Then

Oun + (1 —kd)v, =
(60’1 +1-— kJ(S)(l — 0'26)n — (502 +1-— kd)(l — 015)n

o1 — 02
(1= (k=01)0)(1 —020)" = (1 — (k= 02)0)(1 — 510)"
- g1 — 02
(1 =020)(1 —020)" — (1 — 010)(1 — 016)"
o g1 — 02
(1 — O’2(5)n+1 — (1 — 0’15)n+1
- g1 — 02 = Untl
Then, with the initial conditions up = 1 and vg = 0, it is relatively easy to find the previous

sequences U(d) and V(9).
The terms of the sequence U(§) (and V(§)) verify the following recurrence relation.

Theorem 2.1 (Recurrence relations in U(d) and V (4)).

Unp1 = (2= k&)un + (6> + k6 — Dup s (2.7)
Vni1 = (2= k&) v, + (6 +kd—Dvy_y (2.8)

To prove them, we will use equation (2.3) and must apply the following identity:

(2—k6)(1—028)+ 6> +kd—1=
=2—2020 — kS + ko6’ + 5"+ kS —1=
=1—2090 + (koo +1)6> =1 — 2028 + 056> = (1 — 026)?
Proof of equation (2.7).
0'1(1 — 0'2(5)n — 0'2(1 — 0,15)n
o1 — 02
_ n—1 _ _ n—1
Un1 _ 0'1(1 0'26) 0'2(1 0’15) Then:
01 — 02
2=k un+ (8> +kd—Vuy_1 =
(1—020)""to1((2—-k6)(1 —028) + 6>+ k6 —1)

Up =

01 — 02
(1=018)" o2 (2= k) (1 —010) +° + k5 — 1)
g1 — 02
(1 — 025)n+10'1 — (1 — 0’16)n+10'2
= = Un+1
o1 — 02
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In similar form we can prove the equation (2.8).

From these equations we can find the Binet formulas, taking into account that the recurrence
equation of these formulas is r* — (2 — k §)r — (6% + k6 — 1) = 0. Finding the roots of this equation
and remembering that uo = 1, u1 =1 and vo = 0, v1 = 4, it is easy to find the formulas (2.3) and
(2.4).

To find the u, and v, dual numbers it is easier to apply the following combinatorial formulas.

Theorem 2.2 (Relations between u,, v, and the k—Fibonacci numbers). Forn > 0

un(8) = Z(?)Fk,y‘l(—&j (2.9)

=0

va(8) = —Z(?)Fk,j(—é)j

Proof.
We must taking into account that o¥os = o'
formula, it is

(01 - 03) = —oP"'. Then, expanding the Binet

1.
1 n A\ n An\
un(9) = - =17 )old o2 + 1) . |oldo
o - > o (5) e > (7))
_ 1 i (P (i i1 s
= T 2 (-1) (]) (01 o3 )5
7=0
un(®) = S (") Py
=0 J
2.

1 - (™) s n_j”(,jj
vn(6) = oo | 2 (-1 <j)015 +]Z:;)( 1) (]) 25>

w(@) = Y (-1’7 <?> Fy.;8

That is: {v(d)} is the binomial transform of the sequence {—Fy jn(—1)"}.

By using of Mathematica® and applying the preceding formulas, we can obtain the six first terms
of the sequences {u,(d)} and {v,(8)} in the following form:

flk- , n_] : = Fibonacci[n, k]

ulk-, no, 6] = Z Binomial[n, j] f[k, j — 1] (=6)
=0

vlko, no, 6] 1= Z Binomial[n, j] f[k, j] (—0)’
=0

Table[Expand[u[k , n, ¢]], {n,0,5}]
Table[Expand[v][k , n, d]], {n,0,5}]

The § symbol is written in Mathematica as \[Delta]
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2.3 New combinatorial formulas for u, and v,

Later, and using the Binet identities, we will prove the following two new formulas for u,, and vy,
respectively:

un(8) = i (;‘) Frji1(1—k6)" 7§ (2.10)
vn(8) = zn: <’;) Fio(1— ko) 5 (2.11)

To prove the equation (2.10), we must remember that o1 + 02 = k

n

> <1;> Frjr(1—k&)" ¢

§=0

—(1k6)"i<

J=0

1=k [ n o5 \? _ " (n 028\’
= ooy "lz i \1 ke ""’Z il \1 ks
L 3=0 j=0
o (1 —k(S)n [ 0'15 " _ 0’26 "
- g1 — 02 _Ul 1+1—k‘5 72 1+1—k5

n

Jj+1 Jj+1 L
>"1 T2 (1 k§) I
J

01 — 02

A=k (A+(o1—k))" (14 (02—k)d "]
T N . 21— ko)
_ 0’1(1 —025)n —0’2(1 —016)n :un((S)

In the same way we prove the formula (2.11).

Theorem 2.3 (Generating function of the sequence U(9)). The generating function of the sequence

U(9) is
u(z) = 1+ (kd -1z
T 1—(2—kd)x— (02 +kd—1)2?
Proof.
Taking into account the recurrence relations (2.7) and (2.8),
u(:r) = uo+ u (:E) + UQ:EQ -+ u3;p3 + .-
2—-kdzu(z) = (2 — kd)uox + (2 — kd)urz® + (2 — k O)uga® 4 - --

(6> + ko —Dzlu(z) = (62 + k6 — Dugz® + (8> + k6 — Duga® + - -

from where, the first equation, less the second and third equations, gives
(1-2-kd)z— (6> + ko — 1)x2) u(z) =uo + (u1 — (2 — kd)uo) z —
1+ (kd -1z

— u(z) = 1—(2-kd)z— (02 +ké —1)z?

The generating function of the sequence V(4) can be found in the same way, but we prefer to
do it in a different way.

Theorem 2.4 (Generating function of the sequence V' (§)). The generating function of the sequence
V(0) is

_ dx

T 1—(2—kd)x — (62 + kS — 1)z2

v(z)
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Proof.
In [12] is proven the following theorem: Let s,t¢ be given complex numbers and let {A,}52o be a

given sequence of numbers and A(z) its generating function.
n

o 1

If 2(n) = JZ::O (n t" 75’ A;, the generating function of the sequence {z, } is Z(x) = . txA (1 il;l)

We apply this theorem to the formula (2.11), v, = Z <n) Fr;j(1 — k&))" 76 with A; = Fj,
j=0

t =1—kd, and s = 0, and being f(z = ;—p5—) the generating function of the sequence

Fy, = {Fkn}. Then, the generating function of the sequence V is

v(z) = 1_(11_k5)xf<1—(15fk6)m>

dx
B 1 ' 1—-(1—ké)z
T 1-(1-kd)= Lk S Sz ?
B (1—(1—k5)x>_<1—(1—k6)x)
ox
= —
1—-2x+kédx+ 22 — 0222 — kd x2
ox

v(z) =

1—(2—ké)x— (624 kd — 1)z

Since the 6 — k—Fibonacci numbers are in fact the binomial transformations of the scaled
sequences of Fibonacci, thus in some moment we realized that it would be welcome, for emphasizing
the meaning of these numbers, to have at our disposal the general formulas for 6 — k—Fibonacci
numbers for ”the most generally expressed” parameters § from the set of complex numbers. So,
these are the roots of this work [13].

By using of Mathematica® we can get the first six terms of the sequences {u,(0)} and {v, ()}
again in the following way:
1+ (k6 — D a
1 -2 —-—kd)zx — (2 +kd — 1)
o

1 -2 —-kd)ax — (2 +kd — 1)

CoefficientList[Series[u[x], {x, 0, 5}], x]

CoefficientList[Series[v[x], {x, 0, 5}], X]

ulz] =

vjz] =

3 Main Theorems and Results

In this section we will study the properties of the § — k—Fibonacci numbers for particular cases of §.

Theorem 3.1.
Fk,p Fk,pnﬁ—l Fk,pn
fo=gp=—rtun="7""—, =1y,
k,p+1 k,p+1 k,p+1
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ka

Proof. If § =
that Fyp0 + Frp1 L o",

o= () () ()
=0 J 01— 02 Frpt1 Frpt1
= (Fk’p_l>n 1 Gli " (UliFk’p) 22 (J2Fk’p)j
Fipr1 01 — 02 o J Fre,p—1 Frp—1
A) et (0 (e 5) e ”F“’) )
= : o (14 Z5%e ) gy (14 L2502
(Fk,p+1) o1 — 02 ! Frp ? Fip

1 01(Fep—1 + 01Fp)" — 02(Frp—1 + 02 Fi p)"

- 1-ké = ?ZT’: From the equation (2.10) and taking into account
2P

n
Fk ,p+1 01— 02
1 1
1 (O’If n ol et > 1 r
= k,pn+1
n _ n ’
B 01— 02 F i

We prove the second formula in the same way.

. . k Fiont1 k Fi on
In particular, if p=2 — § = k2+1 Then u, (k2 T 1) = W+ 1) and vy, (k2 - 1) = CENE

Theorem 3.2 (¢ and the § — k-Fibonacci and Lucas numbers). For

0= 1 (01 + 02 +i(01 —o2)tana) and a & {(2n +1)3},

2
o1 —02\" (—1)"0’;@71.”& _ U{Leina
(8 ( ) 3.1
v ( ) 2cosa o1 — 09 ( )
o1 — 02 n (_1)n+10_n716—ina 4 O_nfleina
W(0) = ( ) 2 L 3.2
v ( ) 2cosa o1 — 09 ( )

Proof. We are going to find the value of the right member of equation (2.4).

1 . .
0 = o ((o1 4+ 02) cosa + i(o1 — 02) sin o)
1l—02d = 1+ 2;2& ((o01 4+ 02) cosa + (o1 — 02) sin «)

= L (2cosa+(71+a§)cosa+i(flfag)sina)

2cosa
1
= 2cosa(2cosa+kazcosa—i(k02+2)sina)
1
= 2cosa(2(cosa—isina)+k‘02(coso¢—isina))
1 )
= 2 k —l1x
2cosa( tkoz)e
— 2+ kor=—(201 —k)oa = —(201 — 01 — 02)o2 = —(01 — 02)02
01— 02 —ia
1—090 = —
7z 2(:0304[726

n g " n_—ina
S 100 = ()" (Fon) e

(1—-016)" = (Ul — 02) ofe™™

2cos a

(1= 028)" ~ (1 = 10)" = (T ”2)" (=1)"ohe e — gheine

2cos
o1 —o2\" (_1)n0_£le—zna _ U{zetna
= () = 5
COs «xx 01— 02
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In the same way we can prove the formula (3.2) from the formula (2.3).
We are going to develop the equations (3.1) and (3.2) for the case where n is even or odd.

1. For even n € N:

n_ —ina n _ina

o1 — 02 —1)"o5e —ote
n é =
v () (ZCosa) o1 — 09
(01 — 02) o3 (cos(na) — isin(na)) — of (cos(na) + isin(na))
2cos « o1 — 09

= - (Ul — 02) (Ul — % cos(na) + P Wk sin(na))

2cos« o1 — 02 01— 02

(YR F cos(noz)—i—iM sin(na)
2 cos a ko /2 + 4

2. For odd n € N:

—ina

"Je +ole

up(8) =

(0‘1 — 02

2cos o 01 — 02

)
(01 — o2 )" o5 (cos(na) — isin(na)) + o1 (cos(na) + isin(na))

2cosa o1 — 0y
2
- *( 2120:@4) ( if = cos(ne) +iFk,nsm(na))

Similarly
1. For even n € N:

un(8) = (@

2 cos a

) (Fk,nq cos(na) + i% Sin(na))

2. For odd n € N

VEZ+A\" [ Lin— . .
n = = Fron
un (9) < 2 cos N/ R cos(na) + iFy, n—_1 sin(na)

3.1 Relation between the § — k—Fibonacci and Lucas numbers and
the Chebyshev polynomials

Let (01 — 02)tana = (01 + 02) tan 8 be. Evidently a = arctan (% tan ﬁ). Then
1— 02
k + iktan k . k i
§ = — - =
2 2COSB(cosﬁ+zsmﬁ) 200566
1 1
cosa = =

V1 +tan? a 2
H(Mmﬂ)
g1 — 02

VEk2 + 4cos _ Vk?44cosp
(k2 + 4) cos? B + k2sin’ 8 B k2 +4cos? B
k sin,B. VE2+4cosfB ksin 8
VEk2 +4cosp \/k2+4c0326 B \/k2+400826

sina = tana-cosa =
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1.

2.

2 2
BT cosam LY 1 V3k

3 2VE2 1 C2VEZH 1 .
_Lotm/3) — 2 " v
Un ( ke ) ( k +4) <Fk,nTn(cos @) + \/mLkmUn,l(cos a))
o

being T, (cos o) and Uy (cos a the Chebyshev polynomials of first and second kind, respectively

([14)).

Furthermore, in [15, 16] are proven two binomial formulas for Tp, (z) and U, (z), respectively:

/2 i _
Tn(x) — Q Z (71) ( ] ]> (21’)”_2] N

2j:0 n—7j J

1 [k +4 "=y (2n—j)\ (K2 +4\"
Tn = = " .
- <2\/k2+1> ”j;)zn—g j 21
1 [k24+4)
T2n71 (2 k2+1>_

o1 k2+1”§‘:1 (-1 (2n—1-3\ (K> +4\"’
2 k2+4j202n—1—j J k2 +1

Similar formulas hold for the Chebyshev polynomials of the second kind:

; T
§ = —ke's | from where

Ln/2] .
_n (" —2J n—2j
Un(x) = 5 Z(—UJ( ; >(2x) =
7=0

1 [R+4) & 2=\ (K +a\"
— U2n<2 k‘2—|—1>_n ;( 1)< j 2o

1 [k2+4

UQn—l (2 k2+1>

-1 k2+1'§(_1)j m—1—7\ (K +4\""
2 k44— J k2 +1

B = T cosa = LM sina = L « = arctan (L) and then
4 V2VEZ+T1 V2VEE £ 2 VE2+4
k insa k*+4 7(  Lin ) 1 [k2+2
n\ = = - F nTn —_ Un, . F = —
v ( \/ie ) 5 ie,nLn (COS @) +z\/m 1(cos @) or VAR
it is easy to find the Chebyshev polynomials Toy, (), Ton—1(2), U2n(x), and Uzp—1(z).
V3VE2+4 1 [k2—4 3(k2 +4)
=—- s cosa = ————, sina= —/ —5——=, o =arctan | ~——-——— | and then
g 2 V21 V2V k2+2 3k
Un | ———=e = — FinTn(cosa) +i————Up_1(cosa) |, with cosa =
(-& 1) (Fnuteosa) +i— 2, (cosa)
3(k2+4)

m, and we can find the respective Chebyshev polynomials of first and second kind

for 2n and 2n — 1, respectively.

10
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3.2 Ifo=—
To prove the following identities, we must taking into account this equality: (1+i0)? = 14+2ic—0> =
14200 — (ko +1) = (20 — k)o

e From equation (2.7): unt1(—i) = (2+ik)(un(—12) — un—1(—1t))

o Uzppa(—i) = (26 — k)" T Fy .

Proof. From equation (2.3).
o1(1 +i02)*" "2 = 01(1 4 i02)* (1 4 i02)*)" = 01(2i — k)oa(2i — k)"o8 = —(2i — k)" 'od

and o2(1 +i01)*""? = —(2i — k)" ol
1 N n _ 1 N n n . n
Then, uzn a(—i) = ZHET102)" Z02(LF 100" _ (o, pynsaof =0
o1 — 02 g1 — 02

=(2i— k)" " Fn

L U2n+3(—i) = (2Z — k))n+1 (Fk,n +7:Fk:,n+1)-
Proof. From equation (2.9),

2n+3
. 2n+ 3 y
Uzn43(—1) = Z ( j )Fk,jllj

=0
1 13 (on+3) . 1 (2n+3),.
il Pl DN I ICORb=a Wi A U0
1 2 1 =0 J 2 =0 ]
1 1 1
= — (—(1+¢al)2"+3——(1+iag)2"+3)
1 — 02 \ 01 o)
1

01 — 02 o1

_ (iu+ial)(1+i01)2((1+m)2)"

L atien+ie? +¢02)2)")

= - ! — (1 +i0)(2 = k)(2i — K)o)"
(14 i 02)(2i — k)(2i — k)oa)™)

n n n+1 n+1
. g1 — O . O — 0.
= (2z—k)"+1< L2242 2 )

01 — 02 01 — 02

= (2—k)"" (Fom +iFrni1)

Similarly,

Unt1(=1) = (2+ k) (va(—4) = va—1(=0))
Von(—1) = (26 — k)" Fyn

Vant1(—1) = —(20 — k)" (Fie,n + 1 Frng1)

4 Conclusions

We have defined two dual 0 sequences by mean of two relations between them (2.1) and (2.2) and
then we prove that they are two generalized Fibonacci sequences. We find later the Binet formulas
of these numbers, and by developing these equations, we see that these numbers u,(§) and v, (9)
are the binomial transforms of Fy ,,—1(—90)" and Fy . (—9)", respectively (equations 2.7 and 2.8).
For a particular value of the parameter §, we are able to relate them to e’® (equations 3.1, 3.2).
And finally, by mean of the characteristic roots 01,2, we see that some of these last numbers are
related to the Chebyshev polynomials.

The way remains open to continue investigating these sequences and their properties.
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