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ABSTRACT 
 

In this paper, the critical poses of PPS-RRS-PRS Hybrid Parallel Robot Manipulators (HPRMs) are 
geometrically investigated in Double Algebra (DA) approach. The screw theory and a reciprocal 
screw of dyad joints borrowed from the projective space to obtain the geometrically symbolic form 
of the inverse of the Jacobian matrix (J) which is expressed in the Global Wrench System (GWS) 
term called superbrackets. These superbrackets mean the symbolic form of the joints screw lines 
which are the Plücker coordinate finite lines or lines at infinity related to the Hybrid Parallel Robot 
Manipulators (HPRMs). The critical configurations arise when these Plücker coordinate lines 
vectors become linearly dependent at the vanished points of the superbrackets. The results of the 
investigation are the following: the four planes defined by the position of the joints intersected at 
last at one point which means that the fourth plane passes through the point defined by the other 
three. Both the base frame and mobile platform lie in a parallel plan. The key contribution in this 
paper is a determination of singularity condition of Robots Manipulators and rigidity framework 
without algebraic calculus by Grassmann-Cayley Algebra approach. This paper calculated the 
determinant of the Jacobian Matrices in a coordinate- free manner by developing and reducing the 
Superbracket expression. A novelty of this research from other research is that the Hybrid Parallel 
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Robot with no identical leg was cheeked and investigated by Grassmann-Cayley Algebra. Not only 
fully parallel robot may be studied using Double Algebra, but no-identical legs hybrid parallel robot 
should be also analysed using Double Algebra. 
 

 
Keywords: Hybrid robots; double algebra; critical poses; reciprocal screw of dyad joints; superbracket. 
 

1. INTRODUCTION 
 
Hybrid parallel robot manipulators (PRMs) end 
effector is connected to the base by no-identical 
legs involves instantaneous motion complexity, 
such as critical poses problem. At these special 
configurations, the hybrid parallel robot gains one 
or more degree of freedom (DOF) and becomes 
uncontrollable. To avoid this hazardous robot 
motion which can cause serious damage and 
injury, many researchers tried to overcome this 
critical poses problem in the past years. Several 
of them have suggested a lot of solutions [1-6]. In 
the most studies of researchers [7-15] critical 
poses of fully and identical legs of the parallel 
robot based on Grassmann- Cayley Algebra (or 
Double Algebra) has been emphasised with 
attention. Indeed, Double Algebra, also called 
Grassmann-Cayley Algebra was created by 
Hermann Grassmann and Arthur Cayley with its 
two operators, namely join (  ) and meet (  ) 
correspond to the geometric operations of 
summing and intersecting vector respectively in 
Projective Space. These two operators have 
dualistic property and can be interchanged [16]. 
Nevertheless, the studies of the hybrid parallel 
robot with no-identical legs based on DA or GCA 
still remain few. The present study aims to 
investigate the special configurations of no-
identical legs PPS-RRS-PRS hybrid parallel 
robot manipulators. In this paper, the adopted 
hybrid parallel robot consists of three no-identical 
legs. The screw theory, its geometric reciprocity 
and a reciprocal screw of dyad joints for robot 
manipulators were borrowed from the projective 
space to obtain the Jacobian matrix (J), which 
represents Plücker coordinate vector of finite line 
or line at infinity. Double Algebra approach in 
projective space enables to determine the 
symbolic form of the Jacobian Matrix which can 
be written, developed and reduced in 
superbracket expression. The critical poses 
condition that cancels the symbolic form of the 

determinant of the Jacobian matrix is founded in 
a coordinate- free manner. The vanished points 
of the symbolic form of the determinant and their 
interpretation involve these specials poses 
analysis of the adopted mechanism. The key 
contribution of this paper is the determination of 
singularity condition and frame rigidity of Hybrid 
Parallels Robots Manipulators without algebraic 
calculus by Grassmann-Cayley Algebra 
approach. The paper calculated the determinant 
of the Jacobian Matrices in a coordinate- free 
manner by developing and reducing the 
Superbracket expression. A novelty of this paper, 
which is different from other researches is that 
Hybrid Parallel Robot with no identical legs was 
cheeked and investigated by Grassmann-Cayley 
Algebra. 
 
The outline of the paper is as follows: section 2 
presents screw theory, geometric reciprocal 
screw, and reciprocal screw of dyad joints for 
robot manipulators in projective space before the 
superbracket expression which is a symbolic 
form of the Jacobian matrix in a free coordinate 
manner in Double Algebra. Section 3 describes 
the architecture of the structure and the adopted 
hybrid parallel robot before the geometric 
reciprocal screws of dyad joints of the 
manipulators. Section 4 develops the specials 
critical poses conditions of the hybrid parallel 
robot mechanism by analysing and interpreting 
the vanished condition of previously determined 
superbracket. Section 5 ends the paper with 
discussion before conclusion with an overview 
for future  
 
2. RECIPROCAL SCREWS OF JOINTS 

AND JACOBIAN MATRIX EXPRESSED 
IN SUPERBRACKET FORM 

 

Definition of all the terms of abbreviation, 
symbols and the equations presented in this 
paper. 

 
Abbreviations     Descriptions 
GCA :     Grassmann-Cayley Algebra 
GWS :     Global Wrench System 
PRS :     Prismatic-Revolute-Spherical kinematic chain 
PR :     Dyad Prismatic-Revolute kinematic chain 
PS :     Dyad Prismatic-Spherical kinematic chain 
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RS :     Dyad Revolute-Spherical kinematic chain 
PRS :     PRS with actuated Prismatic joint only 
PRS :     PRS with actuated Revolute joint only 
PRS :     PRS with actuated Spherical joint only 
PMs :     Parallel Manipulators 
SM :     Serial Manipulator 
ST        :                                                                 Screw Theory 
TS        :                                                                 Twist System 
TSG :                  Twist System Graph 
WSG :                  Wrench System Graph 
3-PRS : 3 Kinematics chains where each of them consists of Prismatic, Revolute and Spherical joints                                
6-R : a kinematic chain which consists of six revolute joints. 
 
Symbols: Descriptions 
 

: Join operator 
: Meet operator 

: Intersection of vectors 
: Spanning by vectors 

:iF Constraint wrench force of the 
thi limb for the Parallel Robot 

 
: Permutation 
: Wrench intensity 

, :p q
 Plücker coordinate vector of finite line passing through two distinct finite points p and q 

 

:  Plücker coordinate vector of lines at infinity, passing through two points at infinity 
 

6 6 :J    Jacobian of Square Matrix of six columns six rows 
:k        Number of joint 

:il       
thi Limb or 

thi  kinematic chain 
:m  Number of link 
:  Order of task space 
3P ：Projective Space of 3 dimensional 

:sP Symbolic level of Plücker coordinates 

:ip Prismatic joint axis of 
thi  limb 

:  Plane at infinity in the Projective Space 

:ir Revolute joint axis of the 
thi  limb 

:is Spherical joint axis of the 
thi  limb 

0 :S
Position Vector of any point on the screw axe 

:S Unit vector along the screw axis 

0$̂ :
Zero pitch screw 

$̂ : Infinite pitch screw 
:V Vector Space 
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:
n

W thn  Actuated wrench force  

0$̂ :r Wrench of zero pitch 

$̂ :r Wrench of infinite pitch 


int

[ ,..., ] :
n po s

a b
 Superbracket which consist of n points 

0 s :S 
 Moment of the screw related to the origin of the reference frame. 

 

 
 

Diagram 1. Frame Work of the Method algorithm in the paper 
 

2.1 Screw Theory and Geometric 
Reciprocal Screws in Robotic 

 
In projective space, the geometric approach of 
Plücker coordinates finite lines or lines at infinity 
have six coordinates where the first three 
coordinates determine the direction of the line 
and the last three represents the moment vector 
of the line [16]. Similarly in kinetic of robot 
manipulators, six components are either 
coordinates of the instantaneous motion or the 
force acting on the robot arm, and then the 
infinitesimal motion of the robot manipulator can 
generally be considered as the resulting motion 
of several instantaneous screws of arbitrary 
pitches. Instantaneously, a screw motion (Fig. 1) 
of robot manipulator in a Plücker coordinate line 

with its associated pitchh  is described as:      
 

0$̂ [s;(s ]Ts hs                                     (1)  

with, s the unit vector along the screw axis, 0s the 

position vector of a point on the screw axis with 

respect to a reference frame, h the pitch of the 

screw. A zero pitch screw 0$̂ and an infinite pitch 

screw $̂  can be respectively identified with a 

Plücker coordinate vectors of a finite line 
 

 0 0$̂ [ ;( )]Ts s s                                       (2)  

 
and a line at infinity  
 

3 3$̂ [0 ; ]Ts                                             (3) 

 
Similarly a wrench is a screw representing a 
combination of force and couple. When a robot 
manipulator subjects to a pure force along the 
axis, l is a wrench of zero pitch screw (Fig. 2a) 



and when it subjects to the pure couple is a 
wrench of infinite pitch screw (Fig
respectively described as

 
[12]: 

 

 0 0$̂ [ ;( )]Tr r r rs s s 
                               

 

3 3$̂ [0 ; ]Tr rs                                          

 
The pioneers who investigated the concept of 
reciprocal screws called these screws as the 
twists if they represent an instantaneous motion 
of the rigid body and the wrenches if they 
represent a system forces and couple acting on a 
rigid body [5,16]. The main idea of this concept is 
that if a wrench acts on a robot manipulator in 
such a way that it produces no work while the 
robot manipulator undergoes an infinitesimal 
twist, then both screws representing the twist and 
the wrench are to be reciprocal to each over. 
This paper focuses on the geometrical reciprocal 
screws associated with some dyad screws on 
robot manipulators (For more details on screws 
and reciprocal screws see [5,16]). The reciprocal 
 

          Fig. 1. Screw motion                           
 

Fig. 3a. R-S Dyad                                                Fig. 3b. P
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and when it subjects to the pure couple is a 
w (Fig. 2b) 

                               
 (4)  

                                       (5) 

The pioneers who investigated the concept of 
screws as the 

twists if they represent an instantaneous motion 
of the rigid body and the wrenches if they 
represent a system forces and couple acting on a 
rigid body [5,16]. The main idea of this concept is 
that if a wrench acts on a robot manipulator in 
such a way that it produces no work while the 
robot manipulator undergoes an infinitesimal 
twist, then both screws representing the twist and 
the wrench are to be reciprocal to each over. 
This paper focuses on the geometrical reciprocal 

ith some dyad screws on 
robot manipulators (For more details on screws 

The reciprocal 

screw associated with a robot manipulator is 
obtained by an intersection of the systems 
of reciprocal screw associated with the joints. 
The dyad joint is just the combination of two 
joints. 
 
Dyad joints R-S: The joints associated with a 
revolute-spherical dyad form a four
study deduces that the reciprocal screws form 
two-system. All reciprocals screws are zer
pitches screws forming a planar pencil. They are 
lines forces passing through the centre of the 
spherical joint and lie on a plane which contains 
both the axis of the revolute joint and the centre 
of the spherical joint as shown in Fig
 
Dyad joints P-S: When it is associated with 
joints screw, forms four system and with the 
reciprocal screws form a two-system. According 
to the reciprocal screw of prismatic and of the 
spherical screw, the reciprocal screws of dyad 
joints P-S is defined as the screws p
through the centre of the spherical joint and lie 
on a plane which is perpendicular to the axis of 
the prismatic joint as shown in Fig. 

 
motion                           Fig. 2a. Finite line              Fig. 2b. Lin

 
S Dyad                                                Fig. 3b. P-S Dyad 

 
 
 
 

; Article no.JSRR.44010 
 
 

screw associated with a robot manipulator is 
obtained by an intersection of the systems                   

d with the joints. 
The dyad joint is just the combination of two 

The joints associated with a 
spherical dyad form a four-system. The 

study deduces that the reciprocal screws form 
All reciprocals screws are zero 

pitches screws forming a planar pencil. They are 
lines forces passing through the centre of the 
spherical joint and lie on a plane which contains 
both the axis of the revolute joint and the centre 
of the spherical joint as shown in Fig. 3a. 

When it is associated with 
joints screw, forms four system and with the 

system. According 
to the reciprocal screw of prismatic and of the 
spherical screw, the reciprocal screws of dyad 

S is defined as the screws passing 
through the centre of the spherical joint and lie 
on a plane which is perpendicular to the axis of 

. 3b. 

 

Line at infinity 

 



 
 
 
 

Akonde; JSRR, 21(2): 1-10, 2018; Article no.JSRR.44010 
 
 

 
6 
 

2.2 Jacobian Matrix of Robot Motion 
Expressed in Double Algebra 
Approach 

 

Above determined screw and its reciprocal used 
to obtain the Jacobian matrix are important to 
know more about the motion of robot arm. 
Staffeti and Thomas [16] have shown that the 
duality is inherent in Double algebra and has 
been used to reflect the duality between 
reciprocal twist and wrench which in combination 
corresponds to the determinant of the Jacobian 
matrix. The rows of the Jacobian matrix consist 
of six Plücker vectors of lines or lines at infinity. 
It’s obvious that the determinant of Jacobian 
matrix becomes zero when the Plücker vectors 
are linearly dependent at critical poses of the 
robot arm. The calculation of this determinant is 
just a superbracket obtained from the joining of 
wrenches system in Double Algebra approach. 
These superbrackets can be developed and 
reduced in the ordinary form. The vanished 
points and interpretation are the critical poses 
investigation in Double Algebra. This paper 
implemented this method on (PPS-RRS-PRS) 
hybrid parallel manipulators. 
 

3. ARCHITECTURE AND ADOPTED 
REPRESENTATIONS FOR HYBRID 
PARALLEL ROBOT  

 
The hybrid parallel robot presents in this work 
consist of three no-identical kinematics legs. It 

has three different kinematics legs li (i=1,2,3) 
with different structures: l1= PPS; l2=RRS; 
l3=PRS. For l1 the axis of prismatic joint P1,1 is 
perpendicular to the axis of the prismatic joint 
P1,2 follows a spherical joint at point S1. For l2 the 
axis ofrevolute joint R2,1 is perpendicular to R2,2, 
follows a the spherical joint at S2. For l3 the axis 
of prismatic joint P3,1 is perpendicular to R3,2 
follows by a spherical joint at S3. The spherical 
joint Si which each consists of three (ui vi wi) 
intersecting non- planar rotation joints at Si 
respectively for li  is connected to the link of the 
end effector .The moving frame platform centred 
on o’(x’,y’,z’) is connected to a fixed base 
centred on o(x,y,z) as shown in Fig. 4. Each 
independent kinematic leg li has five degrees of 
freedom, while the chosen hybrid parallel 
mechanism has three and described as: the input 
mechanism adopted in this paper consist of P1,2; 
R2,2; R3,2 respectively actuated joints of l1, l2 and 
l3. The screws passing through the centre of the 
spherical joint S1 and lie on a plane which is 
perpendicular to the axis of the prismatic joint 
P1,1 is β1 as shown in Fig. 5. The screw lines 
forces passing through the centre of the 
spherical joint S2 and lie on a plane which 
contains both the axis of the revolute joint R2,1 
and the centre of the spherical joint S2 is α2                   
as shown in Fig. 6. The screws line passing 
through the centre of the spherical joint S3       
and lie on a plane which is perpendicular            
to the prismatic joint P3,1 is γ3 as shown in        
Fig. 7. 

 

 
 

Diagram 2. Analysis of robot critical pose condition based on Grassmann-Cayley approach 
using bracket as symbolic form of the determinant of Jacobian Matrice 
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Fig. 4. PRS limb of HPMs                                          Fig. 5. Reciprocal Wrench β1 

 
     Fig. 6. Reciprocal Wrench System α2                   Fig. 7.   Reciprocal Wrench System γ3 

 

4. CRITICAL POSES CONDITION AND 
INTERPRETATION OF SUPER-
BRACKETS VANISHING POINTS 
USING DOUBLE ALGEBRA 

 

4.1 Analysis of Critical Pose of These no 
Identical Legs: PPS; RRS and PRS 

 

To know in which condition the hybrid parallel 
reaches in critical configuration, the Jacobian 
matrix of the motion of the mechanism must be 
obtained. The rows of the Jacobian matrix are 
Plücker coordinate finite lines or line at infinity 
which provides more information about the 
architecture structure and constraints force [12-
14]. From Double Algebra, the study borrowed 
some useful tools to express this Jacobian matrix 
without coordinate. Indeed; the end effector is 
forced mechanically by these hybrid legs through 
actuators while the actuators act on the joint 
screws to reduce the DOF [3] of the mechanism 
which is described as:   

1

( 1)
g

i
i

DOF n g X


                      (6) 

 

6(8 9 1) (5 5 5) 3DOF          Where n  

, g   and iX   are respectively the number of 

bodies, joints and degree of freedom of the 

i th  joint of the mechanism, therefore,the 
wrenches system of both constraint wrenches 
and actuated wrenches system on the hybrid 
parallel robot should be calculated [16]. 
 

4.2 Constraint Wrenches System Fi 
 
Since each no-identical leg li has 5 serial 
kinematic chains, each different Twist Ti of a 5-
system Twist form respectively 5 different 
reciprocal constraints wrench of a 1-system Fi to 
all the 5-system Twist of Ti [12-14]. The 
constraint wrench system forms a 1-system 
constraint wrench of zero pitch (Figs. 5 and 6). 
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1
st
 leg PPS: The corresponding reciprocal 

constraint is defined as a finite line passing 
through the centre of a spherical joint S1 along 
the direction perpendicular to the prismatic joint 
P1,1 which is as: 
 

1 1,2 1 1,2[ ,(S )]F p p 
                                 

(7) 

 
2

nd
 leg RRS: The corresponding reciprocal 

constraint is defined as a finite line passing 
through the centre of a spherical joint S2 along 
the direction parallel to the revolute joint R2,2 and 
described as: 
 

2 2,2 2 2,2[ ,(S )]F r r 
                                  

(8) 
 
3

rd
 leg PRS: The corresponding reciprocal 

constraint is defined as a finite line passing 
through the centre of a spherical joint S3 along 
the direction parallel to the revolute joint R3,2 and 
described as:  
 

3 3,2 3 3,2[ ,(S )]F r r                                    (9) 

 
4.3 Actuated Wrenches System Wi 
 

1
st
 leg: PPS: W1 forms a 2-system wrench only 

reciprocal to all passive a 4-system Twist 
[(P1,1)(Su1)(Sv1)(Sw1)] because the actuated 
prismatic joint P1,2 is blocked. All reciprocal 
screws lines lie on plane β1/ (F1β1) 
 

2
nd

 leg: RRS: W2 forms a 2-system wrench only 
reciprocal to all passive a 4-system Twist 
[(R2,1)(Su2)(Sv2)(Sw2)] because the actuated 
revolute joint R2,2 is blocked. All reciprocal 
screws lines lie on plane α2 / (F2 α2) 
 
3

rd
 leg: PRS: W3 forms a 2-system wrench only 

reciprocal to all passive a 4-system Twist 
[(P3,1)(Su3)(Sv3)(Sw3)] because the actuated 
prismatic joint R3,2 is blocked. All reciprocal 
screws lines lie on plane γ3/ (F3 γ3) 
 

4.4 Superbrackets 
 

Since a symbolic level of Plücker coordinates 
without specific coordinate is described as: 
 

1 2 3

1 2 3

...

[ ... ]

s k

s k

p w w w w

p ww w w

    


 

 

Where the symbol, , of join represents the 
operation of union or joining the                     
associated vector subspaces of two or more 
extensors. 
 
It is shown that the wrench space of the parallel 
combination of motion constrains is the sum of 
the wrenches spaces of the composing 
constraints [17]. In Double Algebra language the 
sum of the composing wrenches spaces, applied 
to a motion for robot manipulator which the 
centres of motion of the robot legs are joint 
extensors, is the support of the join of extensors 
that represent the Global wrench space of the 
robot manipulator which is also called the 
superbracket. In this paper, the sum of the 
wrenches spaces of the composing constraints 
is:  

 

1 2 3 1 2 3  GWS w w w F F F          (10) 

 
GWS = [w1w2w3F1F2F3] = [ β1 α2 γ3 F1F2F3]  (11)   

 
since F1  β1, F2   α2   and F3  γ3. 

 
In projective space, any plane may be defined by 
two different lines and any line is formed by two 
different points which can be either two different 
finite points or one finite point and one point at 
infinity, a point which is not belonging to one line 
can form a plane with that line. According to the 
adopted representation in this paper, Double 
Algebra approach involves the symbolic 
approach of these six Plücker coordinates finite 
lines and lines at infinity in projective space is 
described as: 
 

GWS= [β1 α2 γ3]                                        (12)  
 
where β1=(a,b,n) ; α2(ef,gh); γ3=(i,j,m) with A= a, 
N= n, F= f, H= h, I= i and M=m  points 
respectively at infinity (the capital letters are the 
points at infinity)  
 

GWS= [Ab,bN,eF,gF,Ij,jM]                        (13)  
 
The expression of the superbracket can be 
developed and reduced in some combinatory of 
linear monomials brackets. The useful tool, 
graphic user interface, provided by Stephane 
Caro performs this computation and gives us the 
expression below: 
 

[Ab,bN,eF,gF,Ij,jM]= - ([AbNe] [bgFj] [FIjM]) + 
([AbNF] [bgFj] [eIjM])    + ([AbNg] [beFj] [FIjM]) – 
([AbNF] [beFj]  [gIjM] ) (14) 


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Fig. 8. Wrench graph of the adopted mechanism 
 

Where the vanished points of these 
superbrackets involve the linearly dependency of 
Plücker coordinate lines or the critical 
configurations.  
 

4.5 Wrench Graph for the PPS-RRS-PRS 
Hybrid Parallel Mechanism 

 

Geometrically, wrench graph is the graphical 
representation of Global Wrench System which is 
acting on a PPS-RRS-PRS hybrid parallel robot 
shown in Fig. 8.  
 

4.6 Interpretation of Vanished Point of the 
Superbracket 

 

There are neither lines nor tetrahedrons. 
Therefore fours planes (AbN) (bFj) (IjM) (egF) = 
0.For instance,it indicates that the fourth planes 
passes through the point defined by the other 
three or the four planes intersect a last at one 
point .Both the  base frame and mobile platform 
lie in a parallel plan. 
 

5. CONCLUSION 
 

The present approach investigated the critical 
pose and configurations conditions for hybrid 
parallel robot manipulator with no identical legs. 
Indeed Grassmann-Cayley Algebra which is 
called as Double Algebra in projective space was 
implemented on, PPS-RRS-PRS, hybrid parallel 
manipulators. To obtain in coordinate- free 
manner, the Jacobian matrix was associated to 
the instantaneous motion of these three no 
identical legs. Screw theory and geometric 
reciprocal screw of dyad joint were used to 
determine respectively the constraint wrench 
system and the actuated wrench system which in 

combination obtained the GWS also called the 
Jacobian matrix or superbrackets in Double 
algebra language. The vanished points of these 
superbrackets suggested that the critical pose 
arose when the four plans intersected a last at 
one point. The Jacobian matrix six legs lines lie 
on linear depending or both base and mobile 
platform in parallel plane. This research aims to 
implement Double Algebra methodology on 
hybrid parallel robots, and it was found that 
critical poses of hybrid manipulators the four 
planes defined by the position of the joints 
intersected at last at one point which means the 
fourth plane passes through the point defined by 
the other three. Both base frame and mobile 
platform lie in a parallel plan. Not only fully 
parallel robot may be studied using Double 
Algebra, but no identical legs hybrid parallel 
robot should be also analysed using Double 
Algebra. The study recognise that the method 
adopted in the current study does cover neither 
the varieties (complexities) of hybrid parallel 
robots nor hybrid robots. The results present in 
this paper should be useful in the rigidity of the 
framework for no identical leg at the conceptual 
stage. Further studies should be focused on the 
pure condition for either a hybrid parallel robot or 
hybrid robot. 
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