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Abstract 

 
The goal of this study is to prove a fixed-point theorem for E-contraction in a completely controlled metric 

space. Many previous findings in the literature are extended/ generalized by our findings. We also present 

examples that demonstrate the utility of these findings. 
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1 Introduction and Preliminaries  
 

“The notion of E-contraction was introduced by Fulga and Proca [1]. Later, this concept has been improved by 

several authors, e.g.”, [2-4]. 
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Dass and Gupta [5] established “first fixed point theorem for rational contractive type conditions in metric 

space”.  

 

Theorem 1.1 (see [5]) Let       be a complete metric space, and let       be a self-mapping. If there exist 

          with        such that  

 

                  
                    

          
                                                                                       (1.1) 

 

for all        then   has a unique fixed point      . 

 

Nazam et al. [6] proved “a real generalization of Dass-Gupta fixed point theorem in the frame work of dualistic 

partial metric spaces”. 

 

Czerwik [7] reintroduced “a new class of generalized metric spaces, called as b-metric spaces, as generalizations 

of metric spaces”. 

 

Definition 1 (see [7]) Let   be a nonempty set and    . A function                is said to be a b -

metric if for all          
 

(b1).           iff     

(b2).                for all       

(b3).                            
 

“The pair        is then called a b-metric space. Subsequently, many fixed-point results on such spaces were 

given” (see [8–13]). 

 

Kamran et al. [14] initiated “the concept of extended b-metric spaces”.  

 

Definition 2 (see [8]) Let   be a nonempty set and              be a function. A function        
       is called an extended b -metric if for all          
 

(e1).           iff     

(e2).                for all       

(e3).                                 
 

The pair      is called an extended b-metric space.  

 

“Recently, a new kind of a generalized b-metric space was introduced” by Mlaiki et al. [15].  

 

Definition 3 (see [15]) Let   be a nonempty set and              be a function. A function        
       is called a controlled metric if for all          
 

(c1).           iff     

(c2).                for all       

(c3).                                     
 

The pair      is called a controlled metric space (see also [16]).  
 

The Cauchy and convergent sequences in controlled metric type spaces are defined in this way [17-23] 
 

Definition 4 (see [15]) Let      be a controlled metric space and        be a sequence in  . Then,  
 

1. The sequence      converges to some   in    if for every      there exists          such that 

           for all    . In this case, we write          . 

2. The sequence      is Cauchy; if for every     there exists         such that             for 

all      . 

3. The controlled metric space       is called complete if every Cauchy sequence is convergent. 
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Definition 5 (see [15]) Let       be a controlled metric space. Let    and    . 

 
1. The open ball        is       

 
                      . 

 
2. The mapping       is said to be continuous at    ; if for all    , there exists     such 

that                 . 

 
This paper's main objective is to propose a fixed-point theorem for E-contractions in the context of complete 

controlled metric spaces. Our finding broadens and generalises a few established findings in the literature                

[24-32]. We also provide examples to highlight the applicability of the findings made in E-contractive 

circumstances. 

 

2 Main Results 

 
The following theorem is our main result. 

 
Theorem 2.1 Let       be a complete controlled metric space and       be a mapping such that  

 
                                                                                                                   (2.1) 

 
for all      , where      . For      and each    we let        . If 

 

            
                      

          
 

   

  
                                                                                           (2.2) 

 
and               and               exist, are finite, and                  for every    , then   

possesses a unique fixed point. 

 
Proof Let      be an initial point. Define the sequence      by               . Obviously, if there 

exists      such that          , then         , and the proof is finished. Thus, we assume that      

   for each     Thus, by (2.1), we have 

 
                          
                                           
                                         (2.3) 

 
If                         for some    then from (2.3), we have 

 
                                                               

 
which is a contradiction. Hence                          and so from (2.3), we have 

 
                                                   

 
 The last inequality gives  

 

            
  

   
                                                                                                                     (2.3) 

 

Let   
  

   
  . Thus, we have 

 
                                                                                                     (2.4) 
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For all       and    , we have 

 

                                                       
                                                           
                                 
                                                           
                                               
                                           
                       

            

 

     

 

   

     

                      

          
   
                                                                                                                       (2.5) 

 

This implies that 

 

                                

            

 

     

 

   

     

                      

          

   

     

            

            
           

            

 

     

 

   

     

           
           

          

   

     

              

            
           

            
 
         

                
                                                                                     (2.6) 

 

Let 

 

              
 
     

              
                                                                                       (2.7) 

 

Consider  

 

              
 
     

              
                                                                                       (2.8) 

 

Then by condition (2.2) and by the ratio test, the series      is convergent. That is,         exists. Hence, the 

sequence      is Cauchy. Now, by (2.6), we have 

 

                     
                                                                                           (2.9) 

 

Note that         . Letting       in (2.9), we obtain 

 

                                                                                                                                      (2.10) 

 

This shows that the sequence     is Cauchy in the complete controlled metric space       . Thus, there is some 

    .So that  

 

             
                                                                                                                           (2.11) 
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that is,      as    . Now, we will prove that   is a fixed point of  . By (2.1) and condition (iii), we 

have 

 

    
                     

                 
            

   
               

                 
           

   
               

        
          

           
                   

         
               

        
          

           
                    

                                                                    (2.12) 

 

Since              and               exist, are finite, by (2.10), (2.11), we have 

 

    
                        

       
                                                                               (2.13) 

 

Suppose that         having in mind that                  
     , so 

 

      
                        

       
           

                                                (2.14) 

 

This is a contradiction. Thus, we must have       . Next, we show that    is unique. Let    be another fixed 

point of   in    then       . And so, by (2.1), we have 

 

    
           

       
       

           
           

         
       

           
          

         
      

     (2.15) 

 

This is a contradiction. Thus,       . It completes the proof. 

 

3 Examples  
 

Now we furnish some examples to demonstrate the validity of the hypotheses of generality of our result.  

 

Example 3.1 Let         . Take the controlled metric    defined as  

 

                            

                 
 

 
                  

  

  
                  

 

  
  

 

where               is symmetric such that 

 

                                              
 

 
 

 

Given       as 

 

     and        . 

If   
 

 
. Then  

 

  
  

   
  

 
 

  
 
 

 
 

 
     

 

Take       then       and       for all     , we have              and               exist, are 

finite, and                  for every    . Also 
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We consider the following cases. 

 

(1) Let        then 

                                           
(2) Let         then 

                                           
(3) Let         then 

                                           
(4) Let         then 

 

                            
 

  
 

 
 

 
  
 

 
    

  

  
        

 
 

 
                            

                                
                                

 

(5) Let          then 

 

                            
 

  
 

 
 

 
  
 

 
        

  

  
    

                              
                                
                                

 

(6) Let          then 

 

                            
 

  
 

                                
 

(7) Let         then 

 

                            
 

  
 

                                
 

(8) Let          then 

 

                              

                                
 

(9) Let          then 

 

                              

                                
 

Clearly, (2.2) is satisfied. On the other hand, note that (2.1) holds for all      . All other hypotheses of 

Theorem 2.1 are verified, and so   has a unique fixed point, which is      . 
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4 Conclusion 
 

It is concluded that a fixed-point theorem for E-contractions is required context of complete controlled metric 

spaces. We also provide examples to highlight the applicability of the findings made in E-contractive 

circumstances. 
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