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Abstract 
 

The multivariate “Seasonal Vector Autoregressive Moving Average” was used to measure the growth rate of 
Gross Domestic Product (GDP) in five (5) sectors: Agriculture, Industries, Building/Construction, 
Wholesales/Retails, and Services. The data was gathered from the National Bureau of Statistics and spans 33 
years, from 1985 to 2017. To evaluate the model, real (R) software was used. The variability statistics for the 
five variables show that all of the variables have a seasonality pattern that is not stationary. We difference the 
data series (once) to obtain stationary series and define the season order to indicate the seasonality pattern. 
We find the best model using Akaike information criteria and Bayesian information criteria. The best model 
was determined to be the SVARMA (4, 1, 1) (1, 0, 0)12. We also apply model simplification to the SVARMA 
(4, 1, 1) (1, 0, 0), 12 model, to exclude statistically insignificant parameters. The forecasts revealed that the 
rate of growth in the Agriculture sector is slowly growing, the rate of growth in the Industries sector is slowly 
decreasing, the rate of growth in the Building/Construction sector is increasing, the rate of growth in the 
Wholesales/Retails sector is not stable, and the rate of growth in the services sector is poor. 
 

 
Keywords: Agriculture; industries; building/construction; wholesale/retail; services; GDP; and seasonal.   
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1 Introduction 
  
For several years, economics researchers have been involved in forecasting (predicting) data activity. For this 
reason, a variety of forecasting methods have been proposed and developed. The number of researchers to 
investigate will be quantified using data analysis techniques and analytical technologies. Nigeria's economy has 
not been stable over the years, and as a result, the country has been plagued by economic challenges, threats, 
and shocks, both internal and external, for decades. Internally; the product of spending and consumption 
patterns, as well as a lack of effective public policy substitution and perception causes changes. Externally, 
crises may be caused by population growth, revolution, or war, among other things. Every country's economic 
growth reflects its ability to increase service and goods production. It refers to an increase in a country's Gross 
Domestic Product (GDP). Macroeconomic variables play a key role in any country's economic output. Nigeria's 
economy has faced a range of challenges in both the agricultural and non-agricultural sectors, all of which have 
led to a slowing of growth, which may have an impact on GDP. As a result, this study aims to look into the 
interrelationships of Nigeria's GDP across these sectors. Some factors, such as agriculture, industry, wholesale 
retail, building & services, will be taken into account. This research work on the seasonal multivariate time 
series model for the sectors in Nigeria's GDP will help to improve macroeconomic policy formulation in Nigeria 
especially by predicting the future trend of output from major sectors like Agriculture, Manufacturing industries, 
General services. The Central Bank of Nigeria (CBN), National Bureau of Statistics (NBS), Ministry of Finance, 
and ministry of planning will hopefully gain from the application of findings of this work in their research and 
statistics departments periodically. The results of this study will reawaken interest in the development of 
quantitative skills for statistical economic and financial analysis 
 

2 Reviews of Related Work 
 
Multivariate time series models are very crucial in modeling and identifying the joint structure on which these 
decisions depend. The resulting seasonal multivariate analyses provide good insight into the multivariate 
structure and also a simple guide to model choice and assessment. 
 
Practically, an elaboration of this basic model is to incorporate time-variation in covariance matrices [1], 
recently in economics, an application was devoted to forecasts US employment growth [2]. 
 
Multivariate analysis is suitably applied in making such a forecast. These techniques have benefited from big 
improvements with regard to the easiness of use [3]. [4] Conducted research on stock index forecasting: a 
comparison of classification and level estimation on multivariate models, assessing the effectiveness of several 
multivariate techniques to group the level of estimation method, and comparing the relative measurement 
intensity of the models with respect to the trading benefit produced by their forecast. They also came to the 
conclusion that applying the model's threshold trading rules increases returns. 
 
[5] Examined the seasonality of hip fracture and estimates of season-attribution effects using a multivariate 
ARIMA analysis of population-based evidence. The findings of their study, which used the autoregressive 
integrated moving average (ARIMA) model, revealed that seasonality and month have a major impact on hip 
fracture admission rates. According to the ARIMA regression coefficients, hip fractures are often more frequent 
in January and May. 
 
[6] Researched the seasonal ecology of recent benthic Ostracoda from the North Cadiz Gulf coast using 
multivariate analysis (Southwestern Spain). They look at the seasonal components of ostracodes, and find that, 
as compared to previous studies, some recovery has degraded the system. [7] conducted a multivariate approach 
to modeling univariate time series using an autoregressive model, the model allowed for periodically varying 
coefficients and adopts vector elements in integrated the maximum likelihood method in cointegration check 
with the annual series. The researcher also concluded that it is often to apply transformation for the non-
stationary seasonal time series in order to obtain better results. [8] Looked at the relationship between inflation, 
work rates, and GDP using multivariate time series analysis. The results of the multivariate time series analysis 
using STATA software revealed that the inflation rate has no effect on GDP, while the work rate has a negative 
relationship with GDP. The causality between the variables in the study was also determined using Granger 
causality. According to their findings, all independent variables have a unidirectional relationship with GDP in 



 
 
 
 

Moses and Etuk; AJPAS, 12(3): 46-58, 2021; Article no.AJPAS.67299 
 
 

 
48 

 

the short term. [4] Investigated how oil price shocks affect investment using a multivariate vector autoregressive 
model with impulse response function and other experiments. Oil price shocks have a negligible effect on real 
GDP, according to the findings. They also came to the conclusion that oil price shocks have no absolute effect 
on actual GDP. To make such a prediction, the multivariate model is used. These methods have benefited from 
significant advancements in terms of ease of use. [9] Looked at checking for non-linearity in multivariate time 
series. The researcher considered a multivariate extension of the test proposed by [10] to ignore non-linearity, 
which used main components to resolve the test's dimensionality problem. An adaption of multivariate analysis 
to new technologies such as databases, the internet, economic data, etc. is an emerging area. 
 

3 Methodology 
 
3.1 Seasonal occurrence 
 
Mostly, seasonality showed in many economic, financial, and environmental variables. However, this can also 
occur in many earnings per share of the organization, which exhibit the characteristics of the yearly cyclic 
method. The unemployment number of a country always show the effect as many searches for a job mostly at 
the end of a year as many students graduated from school. Similarly, we can also observe this pattern on the 
daily temperature of a given location in Nigeria, we can also note this in the rate of traveling and the rate of 
consumption of Natural gas is also seasonal. So we can also see that many economic data published in the 
Central Bank of Nigeria bulletin are seasonally adjusted. The X-12 model procedure is based on most 
adjustment techniques, except this model has a seasonal frequency trough, which implies that some seasonality 
remains in the results. For example, the monthly unemployment rate of the United State is analyzed in, [11] 
(chapter three). So, in implementations, even for seasonally adjusted results, it is important to consider seasonal 
models. 
 

3.2 Multivariate time series 
 
Suppose a K-dimensional vector of time series wt = (w1t, w2t, w3t… wkt).  
A multivariate model is the (kx1) vector (wt) where the ith row of (wt) is (wit). This implies that for any time t, wt 
= (w1t, w2t, w3t … wkt). 
 

3.3 Linearity of multivariate Time Series tW  
 
 Statistically, speaking multivariate model is nonlinear; moreover linear series can often give an accurate 
approximation for making a decision.  
 

0
t t i

i

W a 





           (3.1) 

 

3.4 Inevitability of multivariate model   
 

A multivariate series  tw is a linear encounter of its lagged values, hence, multivariate time series is always a 

value of the model tw as a tool of its lagged values t iw   for i is greater than 0 plus new information at time t. 

This can be presented as  
 

 
1

t t j t j
j

w c a w





   ,         (3.2) 

 
This equation must be a convergent series and the invertibility condition of the model is that all  must be less 
than 1 in a unit circle. 
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3.5 Stationary process 
 
A probability process is said to be stationary if its 1st and 2nd moments are dependent on time. That is, a 
stochastic process wt is stationary, if  
 

i. �(��) = μ		���	���																																																																																																																																												(3.3) 
 

ii. �	[(�� − μ)(���� − μ)′] 	= ���(��		)																																																																																																												(3.4) 
 
This implies that Γ�(�) ⇒ Γ�(−�)′ for t and � = 0,1,2, …. 
 

3.6 Vector autoregressive (VAR) model  
 
In modeling dynamics between a set of variables, the VAR model provides us with an approach. This method is 
specifically concerned with the dynamics of multiple variables. This can be written as; 
 

w� = θ� +	θ�w��� + θ�w��� + ⋯ + θ�w��� + a�      (3.5) 

 
The VAR (P) model can be written in the matrix form as 
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3.7 Vector moving average (VMA) model 
 
In this case, we will consider a VMA model of (2)-dimensional VMA (1) model, that is 
 

1 1t t tw a a              (3.6) 

We can also rewrite this, using  1 1 ij
  , therefore  

 

1,11 1,12 1, 11 11

2 2 2 1,21 1,22 2 1

tt t

t t t

aw a

w a a

 

  





       
          
       

      (3.7) 

 
This is equivalent to the following equations 
 

1 1 1 1,11 1, 1 1,12 2 1t t t tw a a a               
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2 2 2 1,21 1, 1 1,22 2 1t t t tw a a a               

 

From the prior equations, the coefficient 1,12 measures the impact of 2 1ta  on the 1tw  in the presence of the 

model, also 1,21 present the effect of 1, 1ta  on 2tw  in the midst of 2 1ta  . 

 

3.8 Vector autoregressive moving average (VARMA) model 
 
An N-dimensional variable tw is a VARMA (p,q) model if a process.  

 

0( ) ( )t tB w B a             (3.8) 

 

In which we defined, 0  as a constant vector, 
1

1( ) p
k i iB B       and 

1
1( ) q

k i iB B     are two 

matrix polynomials, and { ta } is a sequence of independent and identically distributed random vectors with zero 

mean and positive covariance matrix a  and B is the backward shift operator define as Bkwt=wt-k. 

 

3.9 Seasonal model                 
 

The direct generalization of the univariate model of seasonal time tw  is written as; 

 

(1 )(1 ) ( )( )S S
t k k tB B z B B a             (3.9) 

 
With this equation, we can also generate the multivariate model.  
 
Therefore we refer this to the model as the seasonal model. We may also rewrite the equation (3.9) to be; 
 

1 1

S
k k

t tS

B B
z X a

B B

   


 
                   (3.10) 

 

So by letting (1 )(1 )s
t tw B B z     and  ,w e  be the lag autocovariance matrix of wt. It’s straight forward to 

see that  
1( )( ) ( )S S S

t k k t k tw B B a B B B a                 (3.11)  

 See [11] 
 

3.10 Order of selection 
 
In this work, we will emulate the proposed tool of [12], and that consisting of model specification, estimation, 
and diagnostic checking on multivariate analysis. We will use the recent procedure of [13]. But this approach of 
selecting the model order of multivariate time series was first proposed by [14].  Behind the approach is to 
compare different sets of the multivariate model that amount to examining the hypothesis of testing; 
 

��;	∅� = 0  Versus �∝;	∅� ≠ 0   

 

3.11 Information criteria  
 
Models are successful in concluding any mathematical model based on the knowledge criteria. So, we 
understand that all parameters are based on chance, consist of two properties.  Firstly, components are 
concerned with the model data's goodness of fit test, while the second component penalizes more complex 
models.  
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These methods are;  
 

2
,

2
( ) | |aAIC In K

T
  

                     (3.12) 

 

2
,

( )
( ) | |a

In T
BIC In K

T
  

                        (3.13) 

 

3.12 Model checking 
 
Model-checking is a major aspect of the examination of the model; it is also known as a diagnostic test. In 
model design, this plays a significant role, such as multivariate normality, a typical model is said to be adequate. 
 

4 Results 
 
4.1 Data 
 
The data used in this work was collected from the National  Bureau of Statistics (NBS), the data contain 
quarterly government records for sectors GDP of Agric, Industries, B/ construction, W/Retail, and Services 
growth rate from 1985-2017, a total of 33 years. 
 

4.2 Variability of the Variables  
 
The observation of the variability with the series graph on Fig. 1, 
 

 
Fig. 1. Plot of the raw data 
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Fig. 2. Plot of first difference of the raw data 
  
The variability statistics of the five variables in Fig. 1 indicate that there is a seasonality trend in all the 
variables. In particular, the graph of building and construction shows linearity changing without limits, together 
with that of services, wholesale, and retails. While that of industries and agriculture abrupt start and permanent 
effect of linearity were also indicated. In all the variable graphs, we observed that the effect of the trend started 
in 2004 that was when the GDP of these sectors started to experience challenges or shock on the economic 
market. We all also noticed that the graph in Fig. 1 is not for stationary series, so to make it to be stationary we 
plot the graph of the first difference, which will help us to indicate the seasonality trend. So we difference the 
data series (once) to obtain stationary series and identify the season order (see Fig. 2) 
 

Table 1. Model selection using AIC and BIC criteria 
 

S/N VAR –ORDER AIC BIC 
1 SVARMA(4,1,1)(1,0,0)12 -26.789 -23.837 
2 SVARMA(3,1,0)(1,1,0)4 -23.267 -21.0274 
3 SVARMA(2,1,0)(1,0,0)4 -24.2535 -21.617 
4 SVARMA(3,1,0)(1,0,0)12 -25.9821 -22.6453 
5 SVARMA(3,1,0)(1,0,0)4 -25.1474 -22.5869 
6 SVARMA(4,1,0)(1,1,0)12 -25.2186 -22.1894 
7 SVARMA(4,1,1)(1,0,0)3 -25.817 -22.0269 
8 SVARMA(4,1,1)(1,0,0)6 -25.8361 -22.2874 
9 SVARMA(4,1,0)(2,0,0)12 -25.0187 -22.0994 
10 SVARMA(4,1,0)(1,0,0)12 -26.3964 -23.4431 

 
 In the order of selecting the model in Table 1, K=5, the parameters of the model (no. of variables used in the 
work). P= SVARMA (p,d,q)(P,D,Q)S (lag); which stands for the vector order of the model. T=132, stand for the 
sample size. On applying the sequential likelihood ratio test, using the information criteria on the data. We 
subjected the data into SVARMA (p,d,q)(P,D,Q)S (lag) models, in the order; we selected the best model in table 
1. We observed that the order selected by AIC, and BIC, of the SVARMA (4,1,1)(1,0,0)12 model, have the least 
value of AIC, and  BIC. So statistically speaking, the SVARMA (4,1,1)(1,0,0)12 model of the  GDP order of 
selection is the best in modeling the data  GDP in Nigeria.  

 

4.3 Model Presentation of the Fitted SVARMA (4, 1, 1) (1, 0, 0)12 model    
 
The fitted SVARMA(4,1,1)(1,0,0)12 model of the logarithm growth rates of the quarterly sectors GDP of 
agriculture, industries, building &construction, wholesale & retails, and services in Nigeria can be presented as 
follows; 

-1
0
0
0

0
1
0
0
0

A
G

R
IC

.

-5
0
0

5
0
0

IN
D

U
S

-3
0

-1
0

1
0

3
0

0 20 40 60 80 100 120

B
..
.C

O
N

Time

-2
0
0

0
2
0
0

W
...

R
E

T

-1
0
0

1
0
0

0 20 40 60 80 100 120

S
E

R
V

IC
E

S

Time

Raw data of Sectors GDP with first difference



 
 
 
 

Moses and Etuk; AJPAS, 12(3): 46-58, 2021; Article no.AJPAS.67299 
 
 

 
53 

 

�� =

⎣
⎢
⎢
⎢
⎡
0.0097
0.0030
0.0351
0.0158
0.0124⎦

⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
−0.0713			 − 0.0084				0.0742			0.01269			 − 0.3112
1.2032			 − 0.3159				0.5776			 − 0.6418			 − 0.1086		
−0.0903		 − 0.1084		 − 0.0832		0.0370		 − 0.0702
0.1599						0.1521		 − 0.1680		 − 0.1616		 − 0.0637
0.0537					0.0379			 − 0.0841			 − 0.0048		 − 0.0676⎦

⎥
⎥
⎥
⎤

���� 

+

⎣
⎢
⎢
⎢
⎡
−0.1405			0.0244				0.2240			0.10680			 − 0.2285

0.5970			 − 0.0834				 − 0.1380			 − 0.4973		0.0180		
−0.0478		 − 0.0192	 − 0.1190		 − 0.0290		0.0348
		0.1477				0.0569		0.2830		 − 0.0997		 − 0.4033

		−0.0021				0.0266			0.1090			 − 0.0223		 − 0.1791 ⎦
⎥
⎥
⎥
⎤

���� 

+

⎣
⎢
⎢
⎢
⎡
−0.0170			 − 0.0036				0.0876			0.0972			 − 0.1408
0.6349			 − 0.1894				0.0576			 − 0.6138			0.6543		
0.0233		 − 0.0199		 − 0.0346		0.0778		 − 0.1380
0.1566						0.0078		0.0734		 − 0.1367		0.0235

0.1182				 − 0.0077			0.0658			0.0313		 − 0.2295 ⎦
⎥
⎥
⎥
⎤

���� 

+

⎣
⎢
⎢
⎢
⎡
0.6408			 − 0.0497				0.1350			 − 0.0190			0.0847

0.2791						0.0932				0.4450			 − 0.5166			 − 0.0986		
−0.1913		 − 0.0908		0.6510						0.0876						0.1881
0.0492				 − 0.0402		0.4260		0.5966		 − 0.1747
0.0775				 − 0.0804			0.2700			 − 0.0460		0.6085 ⎦

⎥
⎥
⎥
⎤

���� 

+

⎣
⎢
⎢
⎢
⎡
−0.02426		 − 0.03012			 − 0.0677	 − 0.1535			0.3541
−0.03301					0.16157			 − 0.7219			 − 0.2516			0.8880		
−0.04015								0.01056		0.3094		0.0139		 − 0.0893
0.00385						0.00166		0.3018		 − 0.1221		 − 0.0123
−0.08460				0.02527			0.5310			 − 0.1652		0.1129 ⎦

⎥
⎥
⎥
⎤

����,�� 

⎣
⎢
⎢
⎢
⎡
0.2833			 − 0.0275		0.0288		 − 0.0683	 − 0.300
1.111				 − 0.2316				0.5661			 − 0.4788			0.081		
−0.1269		 − 0.1302		0.1964		0.0589	 − 0.1450
−0.1637					0.1922		0.3205		0.3656		 − 0.740
0.0706				0.0406			0.1348			0.121		 − 0.172 ⎦

⎥
⎥
⎥
⎤

���� 

 
And the residual covariance matrix is 
 

Σ� =

⎣
⎢
⎢
⎢
⎡

0.00382		0.00308		0.00144		0.00316		0.00164
0.00308		0.003028		0.001296		0.002977		0.003225
0.00144		0.001296		0.00264		0.001285		0.001589
0.00316		0.002977		0.001285		0.005377		0.001699
0.00164		0.003225		0.001589		0.001699		0.001792⎦

⎥
⎥
⎥
⎤

 

 
Similarly, we can rewrite the above matrix model as the equation below; 
 

��� = 0.0097− 0.0713��,��,��� − 0.0084��,��,��� + 0.0742��,��,��� +	 

0.01269��,��,��� − 0.3112��,��,��� 	− 0.1405��,��,��� + 0.0244��,��,���	 + 0.2240��,��,��� +

0.10680��,��,��� − 0.2285��,��,��� − 0.0170��,��,��� − 0.0036��,��,��� + 0.0876��,��,��� +

0.0972��,��,��� − 0.1408��,��,��� + 0.6408��,��,��� − 0.0497��,��,��� + 0.1350��,��,��� − 0.0190��,��,��� +

0.0847��,��,��� − 0.02426���,��,���� − 0.03012���,��,���� + 0.0677���,��,���� − 0.1535���,��,���� +
0.3541���,��,���� + 0.2833��,��,��� − 0.0275��,��,��� + 0.0288��,��,��� − 0.0683��,��,��� − 0.3000��,��,���	  

��� = 0.0030 + 1.2032��,��,��� − 0.3156��,��,��� + 0.5776��,��,��� 

−	0.6418��,��,��� − 0.1086��,��,��� 	+ 0.5970��,��,��� − 0.0834��,��,���	 − 0.1380��,��,��� −

0.4973��,��,��� + 0.0180��,��,��� + 0.6349��,��,��� − 0.1894��,��,��� + 0.0576��,��,��� − 0.6138��,��,��� +

0.6543��,��,��� + 0.2791��,��,��� + 0.0932��,��,��� + 0.4450��,��,��� − 0.5166��,��,��� − 0.0986��,��,��� −

0.03301���,��,���� + 0.1616���,��,���� − 0.7219���,��,���� − 0.2516���,��,���� + 0.8880���,��,���� +

1.1115��,��,��� − 0.02316��,��,��� + 0.5661��,��,��� − 0.4788��,��,��� + 0.0810��,��,���	  

��� = 0.0351 − 0.0903��,��,��� − 0.1084��,��,��� − 0.932��,��,��� +	 

0.0370��,��,��� − 0.0702��,��,��� 	− 0.0478��,��,��� − 0.0192��,��,���	 − 0.1190��,��,��� −

0.0290��,��,��� + 0.0348��,��,��� + 0.0233��,��,��� − 0.0199��,��,��� − 0.0346��,��,��� + 0.0778��,��,��� −

0.1380��,��,��� − 0.1913��,��,��� − 0.0908��,��,��� +
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0.6510��,��,���������������������������+ 0.0876��,��,��� + 0.1881��,��,��� −

0.0402���,��,���� + 0.0106���,��,���� + 0.3094���,��,���� + 0.0139���,��,���� − 0.0893���,��,���� −
0.1259��,��,��� − 0.13026��,��,��� + 0.1964��,��,��� + 0.0589��,��,��� − 0.1450��,��,���	  

��� = 0.0158+ 0.1599��,��,��� + 0.1521��,��,��� − 0.1680��,��,��� −	 

0.1616��,��,��� − 0.0637��,��,��� 	+ 0.1477��,��,��� + 0.0569��,��,���	 + 0.0283��,��,��� −

0.0997��,��,��� − 0.4033��,��,��� + 0.1556��,��,��� − 0.0078��,��,��� − 0.0738��,��,��� − 0.1367��,��,��� +

0.0235��,��,��� + 0.0492��,��,��� − 0.0402��,��,��� + 0.4260��,��,��� + 0.5966��,��,��� − 0.1747��,��,��� +

0.00385���,��,���� + 0.00166���,��,���� + 0.3018���,��,���� − 0.1221���,��,���� − 0.0123���,��,���� −

0.1637��,��,��� + 0.1922��,��,��� + 0.32054��,��,��� + 0.3656��,��,��� − 0.7400��,��,���	  

��� = 0.0124 + 0.0537��,��,��� + 0.0379��,��,��� − 0.0841��,��,��� −	 

0.0048��,��,��� − 0.676��,��,��� 	− 0.0021��,��,��� + 0.0266��,��,���	 + 0.1090��,��,��� − 0.0223��,��,��� −

0.1791��,��,��� + 0.1182��,��,��� − 0.0078��,��,��� + 0.0658��,��,��� + 0.0313��,��,��� − 0.2295��,��,��� +

0.0775��,��,��� − 0.0804��,��,��� + 0.2700��,��,��� − 0.0460��,��,��� + 0.6085��,��,��� −

0.0846���,��,���� + 0.2527���,��,���� + 0.5310���,��,���� − 0.1652���,��,���� + 0.1129���,��,���� +

0.0706��,��,��� + 0.0406��,��,��� + 0.1348��,��,��� + 0.0121��,��,��� − 0.172��,��,���	  
 
Where Z1t, Z2t, Z3t, Z4t, and Z5t are Agriculture, Industries, Building & Construction, Wholesale & Retail, and 
Services 
 
The standard error of the coefficient estimates in the model showed that some of the standard error coefficient 
estimates and the residual on the parameters were not statistically significant at the 5% level. Hence we have to 
carry out model simplification by removal of the insignificant statistical coefficient of the estimated parameters.  
 

4.4 Model checking of the residual on simplified SVARMA (4,1,1)(1,0,0)12 
 
From the plots of the simplified SVARMA (4, 1, 1) (1, 0, 0)12, the residual of the series plot indicates that the 
model is of the goodness of fit. Whereas Fig. 4 also shows the residual cross-correlation matrices, as we can see, 
the dashed lines of the serials correlations indicate the approximate 2 standard error limits of the correlations. 

That is±2/√� . Based on the serial correlation matrices, we now conclude that the residual of the model has no 
strong serial correlation. The plot of the P-values of the Qk(m) statistics applied to the residual of the simplified 
model also confirmed that the model is fitted. So in conclusion, we agreed that the simplified 
SVARMA(4,1,1)(1,0,0)12 is adequate for the model of  GDP of agriculture, industries, building & construction, 
wholesale & retails, and services in Nigeria. 
 

 
 

Fig. 3. Residual plots of the simplified SVARMA (4,1,1)(1,0,0)12 model for the sectors gdp of agriculture, 
industries, building & construction, wholesale & retails and services in Nigeria 
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Fig. 4. Residual cross correlation matrices  of the simplified SVARMA (4,1,1)(1,0,0)12 model for the 
sectors GDP of agriculture, industries, building & construction, wholesale & retails and services in 

Nigeria 
 

 
 

Fig. 5. Plot of ljung-box statistics of the residual  of the simplified SVARMA (4,1,1)(1,0,0)12 model for the 
sectors GDP of agriculture, industries, building & construction, wholesale & retails and services in 

Nigeria 
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Table 2. Forecasts, Standard Error and Root Means Square of quarterly sectors GDP, in logarithm, for 
Agricultures, Industries, Building $ Construction, wholesale $ Retail, and Services using SIMPLIFIED 

SVARMA (4,1,1)(1,0,0)12 model 
 

Forecasts 
         AGRIC. INDUS B$CON  W$RET  SERVICES 
 [1]   8.053      8.439     5.155       7.560       7.116 
 [2]   8.230      8.305     5.315       7.792       7.377 
 [3]   8.422      8.583     5.084       7.598       7.284 
 [4]   8.460      8.518     5.190       7.713       7.430 
 [5]   8.154      8.800     5.227       7.700       7.283 
 [6]   8.326      8.502     5.411       7.967       7.532 
 [7]   8.500      8.705     5.164       7.709       7.407 
 [8]   8.560      8.529     5.268        7.834       7.554 
 [9]   8.251      8.835     5.293        7.780       7.404 
[10]   8.420     8.485     5.494        8.074       7.653 
[11]   8.575     8.720     5.240        7.776       7.512 
[12]   8.645     8.525     5.343       7.917       7.660 

 
Standard Errors of predictions Root MSE of predictions 
0.083  0.1670   0.049   0.0724  0.046 
0.102 0.201  0.0614   0.0897  0.0598 
0.114  0.222  0.0674  0.1033   0.0677 
0.128  0.233  0.0714  0.1178  0.0718 
0.153  0.257  0.0895  0.1519   0.0940 
0.177  0.273  0.0964  0.1689   0.1048 
0.192  0.284  0.1006   0.184   0.1128 
0.206  0.298  0.104   0.200   0.1178 
 0.226  0.305 0.116  0.224  0.1340 
0.244  0.315  0.1207  0.2382   0.1431 
 0.257  0.324  0.1245  0.2507  0.1509 
 0.268   0.334  0.1277  0.2632   0.1567 

0.093   0.186   0.0551   0.08052   0.051 
10.994   20.79   6.684    9.784    7.0636 
 9.376   17.41   5.136    9.429      5.84 
 10.53     13.24   4.31   10.46     4.420 
 15.64    20.00    9.96   17.68     11.18 
  16.20  16.94   6.605   13.62    8.57 
  13.87   14.38   5.34    13.68     7.67 
  13.63   16.34  4.83   14.25     6.308 
 17.24     12.11    9.50   18.91 11.77 
 16.84    14.98   6.11   14.54  9.230       
 15.25    14.028   5.65   14.42  8.850  
 13.89   14.56    5.210   14.78    7.81 

 

5 Discussion 
 
Variability (graphical) presentations of the variables were carried out on the variables of the model to confirm 
the seasonality trend. We also adopt the first different process to obtain the seasonal order of the model. By 
adoption of information criteria on the data in order of selecting the model in table 1, we observed that the order 
selected by AIC, and BIC, of the SVARMA (4,1,1)(1,0,0)12 model, have the least value of AIC, and  BIC. 
However, we select the SVARMA (4, 1, 1)(1,0,0)12 model as the best in modeling the data  GDP in Nigeria. We 
also examine one-step to twelve-step (3 years) ahead projections of the rates at the projected origin 2017. 12. 12. 
We include the standard errors and the predictions' root mean square error. We found from the results tables that 
the forecast point of the five series moves close to sample means of increasing data at the forecast horizon, 
which indicates the proof of reverting means as we predicted. Secondly, with the horizon, the Standard Error of 
Prediction and the root MSE of the predictions increase. So this is reasonable because a stationary SVARMA (4, 
1, 1) (1, 0, 0)12 is a mean-reverting series with the fact that, there exists long-term stability in the variables. The 
root means square error and the standard error of the forecast in table 2 can also be used to construct interval 
predictions. For instance, a five-step 95% interval for the Agriculture GDP is  0.153 ± 1.96�15.64     and 
0.153 ± 1.96+ 11.18 respectively. 
 

6 Conclusion 

 
The “Seasonal Vector Autoregressive Moving Average” was used to analyze the Gross Domestic Product 
(GDP) growth rate of five (5) sectors in this research: Agriculture, Industries, Building/Construction, 
Wholesales/Retails, and Services. The data was gathered from the National Bureau of Statistics and spans 33 
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years, from 1985 to 2017. To evaluate the model, Real (R) software was used. The five variables' time series 
plots reveal that they all have a seasonality pattern that is not stationary. We difference the data series (once) to 
obtain stationary series and describe the seasonal order to show the seasonality pattern in order to obtain 
seasonality. The best model and Lag's were chosen using Akaike Information Criteria in this study; based on the 
information criteria in the results, the SVARMA (4, 1, 1) (1, 0, 0)12 is the best model selected. The results show 
that the rate of growth in the Agriculture sector is slowing, the rate of growth in the Industries sector is slowly 
decreasing, the rate of growth in the Building/Construction sector is rising, the rate of growth in the 
Wholesales/Retails sector is not stable, and the rate of growth in the services sector is weak in Nigeria.  
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