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Abstract 

 
In this paper, some properties of semi-regular graphs have been studied. The energy of graphs has many 

mathematical properties, which are being investigated for some of the semi-regular graphs. Also, the 

Laplacian Energy of these types of the graph has been defined has also been studied. We give examples of 

semi-regular graphs, describe the barbell class, and describe how the property of semi regularity relates to 

other properties of graphs. 

 

 

Keywords: Regular graph, semi-regular, Graph energy, adjacency spectrum, Laplacian spectrum, matrices. 

 

1. Introduction 
 

Initially the concept of Semi regular graphs have been introduced by Balaban et al. (1972) in the form of 

combination graphs, and Kerek et al. (1974) analysed these types of graphs using convolution graphs. Various 
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classes of semi-regular graphs described by Alison Northup [1], and also discussed an algorithm for determining 

a semi-regular graph from a given graph. The publication of the papers ‘Distance degree regular graphs’ by 

Bloom G.S and others [2], and ‘How to define an irregular graph’ by Chartr and others [3] has arises much 

attention on study of the semi-regular graphs. Several matrices can be associated to a graph such as the 

adjacency matrix (denoted by A) or the Laplacian matrix 𝐿 =  𝐷 − 𝐴 where D is the diagonal matrix of degrees. 

Some structural properties can be deduced from their spectrum but in general we can’t determine a graph from 

its adjacency or Laplacian spectrum [4]. Ivan Niven (2018), introduced the theory of numbers using some 

regular graphs [5]. Merris and Grone [6-9], The Laplacian spectrum of the graph G, consisting of the numbers 

µ1, µ2, . . ., µn, is the spectrum of its Laplacian matrix. Abdollah Alhevaz et al. [10], introduced the generalized 

sharp bounds distance matrix  )()1()()( GDGTrGD    where ]1,0[   and the graph G involving 

various invariants. The generalized distance on the energy graph is defined as )()1()()( GDGTrGD     

for 10   and if the value  n ....21 are the eigenvalues the given graph, Pirzada [11]. Shaowei Sun 

et al. [12], introduced the properties of distance spectral radius of some clique trees. The block is referred that 

the maximal graph G is not cut the vertex and the order is n. The energy graph  )(GE  is defined as 

)1(
2

)( n
n

GE 







    is hold on more infinite family of graphs, Moulton, (2001)[13].  Samir et. al., (2017),  

determined that the two energy graphs namely one is splitting graph as )(5))('( GEGSE  and another one is 

shadow graph is )(2))(2( GEGDE  [14]. The asymptotic behaviour of some indices of iterated line graphs of 

regular graphs is investigated, Liu et al. [15]. 
 

A concept related to the spectrum of a graph is that of energy. As its name suggests, it is inspired by energy in 

chemistry. In 1978, Gutman defined energy mathematically for all graphs [16]. In this paper, some special semi 

regular graphs and their properties have been discussed. Energy of these semi regular graphs are also founded. 

 

2. Regular Graphs and Semiregular Graphs 

 
A graph is regular if every vertex in the graph has the same degree. If all the vertices of a graph have degree n, 

we call that graph n-regular. 

 

 
                                          2-regular                           3 -regular             4-regular 

 

Fig. 1. Regular graph design 

 

A simple connected graph in which each vertex is at distance 1 away from the same number of vertices is called 

regular graph. On the other hand, if each vertex is at distance 2 away from exactly the same number of vertices 

then the graph is called semi regular graph. If each vertex is at distance 2 away from exactly n-vertices, then the 

graph is called n-semi regular graph. 
 

Semi regular graphs are a natural extension of the idea of regular graphs. Although extensive literature exists on 

regular graphs, semi-regular graphs have been much less studies.  
 

Define deg2 (v) to be the number of vertices that are distance 2 away from v in a given graph. It is obvious that 

the union more than one n-semi regular graph is also n-semi regular, so we will limit our discussion to 

connected semi regular graphs. 
 

 



 

 
 

 

Visuvasam and Suganya; AJPAS, 12(3): 81-101, 2021; Article no.AJPAS.67049 
 

 

 
83 

 

2.1   Example 
 

The graphs given in Fig. 2 are examples of some semi regular graphs 
 

 

 

 
 

 

 

 

 

 

 

 

             0-semiregular                       1-semiregular                        2-semiregular 

  

                       3-semiregular                              4-semiregular 
 

Fig. 2. semi regular graphs 
 

From the structure of the adjacency matrices of the above semi regular graphs, it can be easily observed that 

they are the extensions of the 0-semiregular graph K2. A regular graph may not be a semi regular graph. The 

graph given in Fig.3 is 3-regular but not semi regular. 

 

 
 

Fig. 3. Regular but not semi regular graph 
 

2.2 Theorem 
 

A simple connected graph is 0-semiregular if and only if it is a complete graph. 
 

Proof:  
 

Let G be a connected 0-semiregular graph with n vertices. The distance between any two vertices of G must be 

1, because a distance greater than 1 would mean that G would have two vertices that were distance 2 apart, and 

V5 

V7 

V6 

V8 
V9 

V10 

V1 V2 

V3 V4 

V9 

V10 

V5 
V6 

V1 V2 

V3 

V4 V7 

V8 

V5 
V6 

V1 V2 

V3 
V4 V7 

V8 

V1 V2 

V5 
V6 

V1 V2 

V3 V4 

V1 V2 

V3 V4 



 

 
 

 

Visuvasam and Suganya; AJPAS, 12(3): 81-101, 2021; Article no.AJPAS.67049 
 

 

 
84 

 

G would therefore not be 0-semiregular. A connected graph with n vertices in which all vertices are at distance 1 

from all other vertices is the complete graph. Let G be the complete graph. Then for any vertex v in G, v is not 

distance 2 away from any other vertices. Thus, G is 0-semiregular. 

 

Note: In the above theorem, the connectedness is necessary to prove that the 0-semiregular is complete. 

 

2.3 Theorem  

A connected graph is 1-semiregular if and only if it is P4 or 









2

1

P
n

i

 , for 2n . 

2.4. Theorem  
 

A connected graph is 2-semiregular if and only if it is an n-cycle or the 

complement of an n-cycle for 5n , the complement of the union of at least two disjoint cycles. 

 

2.5. Theorem  
 

The necessary condition for a graph to be a semi regular 

 

Let S be a semi regular graph, and let u and v be any two vertices of deg m. If there is a vertex x of deg n 

adjacent to u then there is a vertex y of deg n, adjacent to the vertex v. 

 

Proof 

 

Let S be a semi regular graph. Let deg u = deg v = m. Also let x and y are vertices adjacent to u and v 

respectively such that deg x =k and deg y = l where k≠l. For simplicity, first let us assume that deg u = deg v = 

1. Then if deg x ≠ deg y, then the number of vertices which are at distance2 for u and v will not be the same. It 

is a contradiction to the assumption that S is semi regular. 

 

Next let us assume that deg u = deg v >1, then the number of vertices which are at distance 2 to u through the 

vertex x is k. Similarly the number of vertices which are at distance 2 to v through y is l. Since k ≠ l, the number 

of vertices which are at distance 2 from u and v are not same. Again this is a contradiction. Hence the theorem. 

The converse of the theorem 2.3 is not true; As an example, consider the Grotsch’s graph given in Fig.4. 

 

 
 

Fig. 4. Grotsch’s graph 

 

There are vertices of deg 3, deg 4 and deg 5. Also the number of vertices of deg 3, deg 4 and deg 5 are 5, 5, 1 

respectively.  

 

Let αij denote the number adjacent vertices of deg j to the vertex of degi. Then it can be found that α11=0 ; α12 = 

2 ; α13= 1 ; α21 = 2 ; α22 = 2 ; α23 = 0 ; α31 = 5 ; α32 = 0 ; α33 = 0 . 

 

But the above graph is not semi regular. 
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2.6 Theorem 
 

If a graph S is semi regular then given any vertex u of deg m, the sum of degrees of adjacent vertices is a 

constant, independent of the choice of u. 

 

Proof 

 

Theorem 2.4 can be easily observed from the theorem 2.3 

 

2.7 Example 
 

As an illustration to theorem 2.4, consider the graph given in fig. 5 

 

 
 

 

The following table gives the sum of degrees of adjacent vertices of a given vertex of the 4-semiregular graph 

given in Fig 5 

 

Table 1. Adjacent vertices 

 

Degree of vertices Vertices  Adjacent vertices Sum of degrees of adjacent vertices 

deg 1 V7 V4 5 

V8 V6 5 

V9 V1 5 

V10 V3 5 

deg 2 V2 V1 , V4 10 

V5 V3 , V6 10 

deg 5 V1 V9 , V2 , V4 , V6 , V3 18 

V3 V10 , V5 , V6 , V4 , V1 18 

V4 V7 , V2 , V1 , V3 , V6 18 

 

3. Connections between Regularity and Sem-iregularity 
 

The connection between regularity and semi-regularity is obtained using the following theorems. 

 

3.1 Theorem 
 

If G is an n-semi regular graph, let G* be defined as the graph with the same vertex set as G, such that v1 and v2 

are connected in G* if and only if they are distance 2 away from each other in G. Then G* is n-regular. 

 

Proof. 

 

Let G be an n-semi regular graph. Let v be a vertex in G. v is then distance 2 away from exactly other vertices in 

G. Now consider v in G*. In G*, v is connected to exactly those vertices that it was distance 2 away from in G. 

That is, v is connected to exactly n other vertices. Since this is true for all vertices, G* is n-regular.  
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Fig. 5. 4-semiregular graph 
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Fig. 6. Shows a graph G and the corresponding G* 

 

3.2. Theorem 

  

If G is an n-regular graph, let 'G  is defined by inserting two vertices onto each edge of G. Then 'G  is an n-

semiregular graph. 

 

 

Fig. 7. Shows a graph G and the corresponding 'G  

 

Proof.  

 

Let G be an n-regular graph, and 'G  as defined above. Let v be a vertex in 'G .Then v may or may not have 

been a vertex in G. 

 

Case 1: If v is a vertex of G, then in G vertex v was connected to exactly n other vertices: 

 

 
 

In 'G  we have:  

 

 
 

So v is distance 2 away from exactly n other vertices.  
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Case 2: If v is not a vertex of G, then v must have been added in along an edge of G. Say that v was added to the 

edge connecting v1 to v2 in G. Since G is n-regular, we have the following situation in G: 

 

 

Thus, in 'G  we have: 

 
 

Vertex v is distance two away from exactly n other vertices; those which are highlighted with a double circle 

above. Since deg2(v)=n for every vertex v in 'G , 'G
 
is n-semi regular. 

 

4. Constructions of Semiregular Graphs 
 

1-semiregular graph must have at least 4 vertices and 3 edges. It can also be noted that if G is 1-semiregular then 

dia (G) ≤ 3. Suppose if dia (G) = 4, then there must be a path from a vertex u to another vertex v of distance 4. 

The middle vertex of this path will have both u and v at distance2. Hence if dia(G) ≥ 4, then G cannot be 1-

semiregular.  
 

This type of restriction is not possible for 2- semi regular graphs. For example, consider the cycle Cn. It can be 

found that dia(Cn) = ⌊
𝑛

2
⌋and Cn is a 2-semiregular graph for all values of n. 

 

 
 

Fig. 8. 2-semiregular graph C8 

4.1 Distance symmetric 
 

A semi regular graph is called Distance Symmetric if the set of vertices can be partitioned in terms of vertices of 

distance 2. 

 

4.2 Examples 
 

Consider the following semi regular graphs 
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Fig. 9.a 2-semiregular (G1) 

 

 

 
 

Fig. 9.b 3-semiregular (G2) 

 

Table 2. Vertex (V) parameters 

 

Vertex(V) Vertices at distance 2 from V in G1 

V1 V3 ,  V5 

V2 V4 ,  V6 

V3 V1 ,  V5 

V4 V2 ,  V6 

V5 V1 ,  V3 

V6 V2 ,  V4 

Vertex(V) Vertices at distance 2 from V in G2 

V1 V3 ,  V4 , V7   

V2 V5 ,  V6 , V8 

V3 V1 ,  V4 , V8 

V4 V1 ,  V3 , V8 

V5 V2 ,  V6 , V7 

V6 V2 ,  V5 , V7 

V7 V1 ,  V5 , V6 

V8 V2 ,  V3 , V4 

 

From the above table it can be seen that the 2-semiregular graph G1 is distance symmetric because the vertex set 

can be partitioned into two sets A={v1, v3 , v5}; B = { v2 , v4 , v6 } in terms of vertices of distance 2. But the 3 – 

semi regular graph G2 is not distance symmetric as it can be seen that the vertex set cannot be partitioned into 

subsets of the vertex set of G2 in terms of distance 2. 

 

4.3 Theorem 
 

The n-Barbell graph is n-semi regular and also distance symmetric.  

 

 

 

V1 

V2 

V3 

V4 

V5 

V6 

V7 V8 

V1 V2 

V3 

V4 

V5 V6 



 

 
 

 

Visuvasam and Suganya; AJPAS, 12(3): 81-101, 2021; Article no.AJPAS.67049 
 

 

 
89 

 

 

Proof. 

 

Let G be the n-barbell graph. That is, G is formed by a central line segment connecting u and v with n other 

vertices connected to each of u and v. Let v be a vertex in G. For n = 0, G is 0-semiregular. For all other n, there 

are two possible cases: 

 

Case 1. v is a point on the central line segment of G. There are n+1 vertices connected to v, including u. There 

are also n other vertices connected to u, and v is distance 2 from each of them. We have considered all the 

vertices of G, so deg2(v) = n. 

 

Case 2. v is an endpoint of G. v is distance 2 from u and the other n-1 other vertices connected onto v. v is 

distance 3 from the n vertices connected onto u. We have considered all the vertices of G, so deg2(v) = (n-1)+1 = 

n. Thus, deg2(v) = n for every vertex v in G, and G is n-semiregular. The proof is in simple way as follows: 

 

Let V(K2)={u,v}; Also let K2
(n) is the graph obtained by adding the pendent vertices w1 , w2 ,…wn at u, and wn+1 

, ...w2n at v. The following table gives the vertices which are at distance 2 from the given vertex. 

 

Table 3. Vertices at distance 2 

 

Vertex Vertices which are at distance 2 

u wn+1 ,…w2n 

v w1 , w2 ,…wn 

wi , i= 1,2,…n v, w1 , w2 ,…wi-1 , wi+1 ,…wn 

wn+i ,i= 1,2,…n u, wn+1 ,…wn+i-1  , wn+i+1 ,…w2n 

 

Hence every vertex has exactly n vertices at distance 2. Therefore K2
 (n) is an n-semiregular graph. Also V(K2

(n) ) 

can be partitioned into two sets of vertices A = {u,wn+1 ,…w2n } and B = {v,w1 , w2 ,…wn}. Thus K2
 (n) is 

distance symmetric. 

 

Note: The n-Barbell graph (n-semi regular graph) so obtained from of K2 has 2n+2 vertices and 2n+1 edges. 

 

4.4 Theorem 
 

An n-1 semi regular graph with 2n vertices can be constructed from Kn by adding pendent vertices at each 

vertex of Kn 

 

Proof. 

 

Consider a complete graph Kn, with vertices u1, u2 ,. . . ,un.  Add the pendent vertices v1, v2,. . . ,vn respectively at 

u1, u2 ,. . . ,un.  It can be seen that for every vertex ui, the (n-1) vertices v1, v2 ,….,v(i-1), v(i+1),….,vn are at distance 

2.  

 

Similarly, Let d (vi,vj) = 1,  1 ≤ i ≠ j ≤ n. Let vn+1, vn+2,…v2n are the pendent vertices added respectively at v1 ,v2 

,…vn . Then for every vertex vi , i = 1,2,…n, the vertices vn+1 , vn+2 ,… vn+i-1 , vn+i+1 , … v2n are at distance 2 and 

also for every other vertex vi , i = n+1,…2n, the vertices v1 ,v2 , …vi-1 , vi+1 , …vn are at distance 2.  

 

Hence the new graph is a (n-1) semi regular. 

 

4.5 Examples 
 

The following graphs are 2-semiregular and 3-semiregular graphs constructed respectively from the complete 

graphs K3 and K4.  
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Fig. 10. 2-semiregular from K3 

 
 

Fig. 11. 3-semiregular from K4 

 

5. Different Types of Graph Energy 
 

5.1 Adjacency matrix 
 

Let G be a simple graph with n vertices and m edges. Adjacency matrix nn of the graph G is given by 

 

 





0

 toadjacency  is if1
),(

ji

ij

vv
aGA

 

 

The characteristic polynomial of the above adjacency matrix is given by PG (X). 

 

The zeros of the polynomial are given by which are eigen values of G. 

 

Here n21 µµ

2

µ

1 ,......, n where n  ......321 and multiplicities  µ .……,µ ,µ n21  are called 

spectrum of A. The spectrum of A is called spectrum of G.  

 

5.2 Example  
 

consider the graph 4k . 

Adjacency matrix is given by 





















0111

1011

1101

1110

)( 4kA  

 

Characteristic polynomial ),( 4 xkP =    31
3

 xx and the energy of the 6)( GE . 

 

5.3 Energy of G  
 

In the context of spectral graph theory, Energy of a simple graph  ),( EVG   with adjacency matrix A  is 

defined as the sum of absolute values of eigen values of A . It is denoted by )(GE . More precisely, If G  is an 

n -vertex graph, then the energy of G is, 



n

i

iGE
1

)(  where
i is an eigen values of A , ni ,.....,2,1

V2 

V4 3 

V5 
V6 

V7 
V8 

V1 V2 

V3 

V4 

V6 

V5 

https://en.wikipedia.org/wiki/Spectral_graph_theory
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.The total  -electron energy has an expression similar to )(GE .  Suppose k - eigen values are positive then 

2)( GE .  

 

5.4 Bounds for energy of the graph 
 

If G is graph with n -vertices, m -edges and adjacency matrix A  then 

 

mnGEAnnm n 2)()(det)1(2
2

 . 

 

Proof  

By Cauchy Schwartz inequality mnn
n

i

i

n

i

i 2

2

1

2

1












  

 

5.5 Maximal energy graphs 
 

The classical laplacian matrix of a graph G  on n -vertices is atmost   21 nn  .  Equality holds if and only 

if  G  is strongly regular graph with  4)2(,2)1(, nnnnn 
 

 

5.6 Laplacian matrix 
 

The classical laplacian matrix of a graph G  on n -vertices is defined as 

 

 
















ji  if

 not toadjacency  isj,i  if0

 toadjacency  is,ji if1

),(

ij

ji

ji

ij

d

vv

vv

aGL  

In other words, )()()( GAGDGL   where )deg().......(deg()( ni vvdiagGD   and )(GA  is the 

adjacency matrix. 

Laplacian spectrum version of graph energy =


n

i

i

1


 

5.7 Laplacian energy 
 

Let n .......1  be the eigen values of )(GL , then the laplacian energy )(GLE , 

 





n

i

i
n

m
GLE

1

2
)(  . 

 

5.8 Normal laplacian energy 
 

Let n .......1  be the eigen values of the normalized Laplacian matrix )(GL .  The normalized Laplacian 

energy )(GNLE .  
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We know that, 



n

i

iGNLE
1

1)( 

 

 

5.9 Laplacian–energy like  

 
Laplacian spectrum based energy called Laplacian–energy like invariant (LEL) is defined as  

 

LEL(G) = 


n

i

i

1


 

 

5.10 Sign less laplacian energy 

 

The sign less Laplacian matrix )(GLL   is defined as 

 

 
















ji  if

 not toadjacency  isj,i  if0

 toadjacency  is,ji if1

),(

ij

ji

ji

ij

d

vv

vv

aGL

 
  

Let n .......1  be the eigen values of )(GL
, then the laplacian energy )(GLE

, 

 




 
n

i

i
n

m
GLE

1

2
)(  . 

 

Also in this case, for regular graphs, )()( GEGLE 
. 

 

5.11 Q-Laplacian energy  

 
Q- Laplacian matrix of graph G denoted by QE(G). The Q – Laplacian matrix of G(n,m) defined by Q(G) = 

D(G) +A(G) is the sum of the diagonal matrix of vertex degrees and the adjacency matrix. Let 

nqqqq  ......321 be the Q – Laplacian spectrum of G. Then we define the Q-Laplacian energy of G as 

QE(G) 



n

i

i
n

m
qGQE

1

2
)(

 
 

5.12 Distance energy 

 
Let G be a connected graph on n vertices are nvvv ,......, 21 . The distance matrix of G is the square matrix of 

order n whose (i,j) th entry is the distance (length of the shortest path) between the vertices 
iv and 

jv .Let 

n ,,, 21   be the eigen values of the distance matrix of the graph G.  Then we define  DE=DE(G) =




n

i

i

1

 .  

 

 



 

 
 

 

Visuvasam and Suganya; AJPAS, 12(3): 81-101, 2021; Article no.AJPAS.67049 
 

 

 
93 

 

6. Finding Different Types of Energy for Semiregular Graphs 
 

6.1 Example 
 

Let G  be a complete graph on four vertices with the edge set (1,2) (2,3) (2,4) (1,3) (3,4)  (1,4). So that the 

graph is 0-semiregular (by theorem) 

 

4K : 

 

 
 

Adjacency matrix is given by 





















0111

1011

1101

1110

)(GA

 

 





















3000

0300

0030

0003

)(and GD  

Corresponding Laplacian matrix is )()()( GAGDGL 





























3111

1311

1131

1113

 
 

To find eigen values of adjacency matrix, 





















111

111

111

111

IA

 
 

Characteristic Polynomial of the adjacent matrix = (λ+1)3(λ−3) 

 

Eigen values of adjacency matrix are -1, -1, -1, 3 and energy of the graph E(G) = 6. 
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Characteristic Polynomial of the laplacian matrix  





















3111

1311

1131

1113

IL

 
= (λ−4)3(λ) 

 

Eigen values of the laplacian matrix are 4,0,4,4,4 

 

63330343
2

)(
1




n

i

i
n

m
GLE  . 

81)(
1




n

i

iGNLE 
 

 

Distance matrix of the graph 





















0  1  1  1  

1  0  1  1  

1  1  0  1  

1  1  1  0 

 
 

Table 4. Various energies for graph 

 

 

6.2 Example 
 

Let G  be a 1-semiregular cycle graph on four vertices. C4 is the only 1-semiregular cycle graph. 

 

 
 

Adjacency matrix is given by





















44434241

34333231

24232221

14131211

)(

aaaa

aaaa

aaaa

aaaa

GA





















0101

1010

0101

1010

 

Name of the energy  Characteristic polynomial Eigen values  Energy of graph 

Adjacency energy  ( λ +1)3( λ - 3)  3,-1,-1,-1  6 

Laplacian spectrum energy  λ4−12λ3+48λ2−64λ 4,0,4,4 12 

Laplacian energy λ4−12λ3+48λ2−64λ 4,0,4,4 6 

Normal Laplacian energy λ4−12λ3+48λ2−64λ 4,0,4,4 8 

Laplacian–energy like  λ4−12λ3+48λ2−64λ 4,0,4,4 6 

Signless energy  λ4-12λ3+48λ2-80λ+48  6,2,2,2  12 

Distance energy λ4 -6λ2-8λ -3  3,-1,-1,-1  6 

Q- Laplacian energy  λ4-12λ3+48λ2-80λ+48  6,2,2,2  12 

V1V1 V2

V4 V3V
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



















2000

0200

0020

0002

)(         and GD

 
 

Corresponding Laplacian matrix is )()()( GAGDGL  = 



















2000

0200

0020

0002





















0101

1010

0101

1010

 
 

)(GL =



























2101

1210

0121

1012

 

 

Eigen values 4C : 

 

The eigen values of )AG 0, 0, 2, -2 and )(GE 0 

 

The eigen values of )(GL  are 31 , 22 and the laplacian energy of the G  is  

6)( GLE . 

 

Table 5. various energies for above graph 

 

 

6.3 Example 
 

Let G  be a directed path on four vertices with the edge set (1,2) (2,3) (3,4) (4,5) which is a 1-semiregular graph 

from above theorem. 

 

5P : 

 

Name of the energy  Characteristic 

polynomial 

Eigen values  Energy of 

the graph 

Adjacency energy  λ4−4λ2 0,0,2,-2 0 

Laplacian spectrum energy  λ4−6λ3+8λ2+4λ−4 31 , 22  
6 

Laplacian energy λ4−6λ3+8λ2+4λ−4 31 , 22  
6.2925 

Normal Laplacian energy λ4−6λ3+8λ2+4λ−4 31 , 22  
6.2925 

Laplacian–energy like  λ4−6λ3+8λ2+4λ−4 31 , 22  
5.1216 

Signless energy  λ4−6λ3+8λ2+4λ−4 31 , 22  
6.2925 

Q- Laplacian energy  λ4−6λ3+8λ2+4λ−4 31 , 22  
6.2925 
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Adjacency matrix is given by

























01000

10100

01010

00101

00010

)(GA

 

   and

























10000

02000

00200

00020

00001

)(GD

 
 

)()()( GAGDGL 

























10000

02000

00200

00020

00001

























01000

10100

01010

00101

00010

 
 

Laplacian matrix is



































11000

12100

01210

00121

00011

)(GL

 
 

Table 6. various energies for above graph 

 

 

 

 

 

Name of the energy  Characteristic 

polynomial 

Eigen values  Energy of 

the graph 

Adjacency energy  −λ5+4λ3−3λ 
0,1,-1, 3

,
3  

0 

Laplacian spectrum energy  −λ5+9λ4−28λ3+35λ2−15λ+1 0.081, 0.690, 1.715, 

2.831, 3.683 

9 

Laplacian energy −λ5+9λ4−28λ3+35λ2−15λ+1 0.081, 0.690, 1.715, 

2.831, 3.683 

5.858 

Normal Laplacian energy −λ5+9λ4−28λ3+35λ2−15λ+1 0.081, 0.690, 1.715, 

2.831, 3.683 

6.458 

Q- Laplacian energy  −λ5+9λ4−28λ3+35λ2−15λ+1 0.081, 0.690, 1.715, 

2.831, 3.683 

5.858 

Laplacian–energy like  −λ5+9λ4−28λ3+35λ2−15λ+1 0.081, 0.690, 1.715, 

2.831, 3.683 

6.0265 

Signless energy  −λ5+9λ4−28λ3+35λ2−15λ+1 0.081, 0.690, 1.715, 

2.831, 3.683 

5.858 
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6.4 Example 
 

Let G  be an2-semiregular on six vertices with edge set (1,2) (2,3) (2,4) (1,5) (1,6) so that the complement has 

6-cycle from the above therorem. Finding energy of the below graph. 

 

2- semiregular graph:  

  

 
 

Adjacency matrix is given by  





























000001

000001

000010

000010

001101

110010

GA  

 

and    





























100000

010000

001000

000100

000030

000003

GD

 
 

Laplacian matrix is 





























100001-

010001-

0010-10

0001-10

00-1-131-

-1-100-13

)()()( GAGDGL

 
 

Q- Laplacian matrix is





























100001

010001

001010

000110

001131

110013

)()()( GAGDGQ

 

V6 

V5 

V1 V2 

V3 

V4 
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Characteristic Polynomial of the adjacent matrix is obtained from  

 















 -00001 

0 -0001 

00 -010 

000 -10 

0011 -1 

11001 - 

 IA

 
 

The eigen values of )(GA  are 0, 0, 1, -1, 2, -2 

 

Similarly the eigen values of )(GL  0,1,1,3,   2517 
 

 

Table 7. Various energies for above graph 

 

 

6.5 Example 
 

Let G  be a n-Barbell graph which is n-semiregular on eight vertices with edge set (1,2) (2,3) (2,4) (1,5) (1,6) 

3-Barbell graph (3- semiregular graph):   

 

 
 

Name of the energy  Characteristic 

polynomial 

Eigen values  Energy of 

graph 

Adjacency energy  λ6−5λ4+4λ2 0, 0, 1, -1, 2, -2 0 

Laplacian spectrum 

energy 

λ6−10λ5+34λ4−48λ3+29λ2−6λ  
0,1,1,3,   2517   

10 

Laplacian energy λ6−10λ5+34λ4−48λ3+29λ2−6λ  
0,1,1,3,   2517   8.4564

 

Normal laplacian energy λ6−10λ5+34λ4−48λ3+29λ2−6λ  
0,1,1,3,   2517   

7.1231 

Q- Laplacian energy  λ6−10λ5+34λ4−48λ3+29λ2−6λ  
0,1,1,3,   2517   8.4564

 

Laplacian–energy like  λ6−10λ5+34λ4−48λ3+29λ2−6λ  
0,1,1,3,   2517   6.5299

 

Signless energy  λ6−10λ5+34λ4−48λ3+29λ2−6λ  
0,1,1,3,   2517   8.4564

 

V8 

V7 

V6 

V1 V2 

V3 

V4 

V5 
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Adjacency matrix is given by  



































00000001

00000001

00000001

00000010

00000010

00000010

00011101

11100010

GA

 
 

and    



































10000000

01000000

00100000

00010000

00001000

00000100

00000040

00000004

GD

 
 

Laplacian matrix is obtained as 

 



































10000001-

01000001-

00100001-

000100-10

000010-10

000001-10

000-1-1-141-

-1-1-1000-14

)()()( GAGDGL

 
 

Q- Laplacian energy is given by 

 



































10000001

01000001

00100001

00010010

00001010

00000110

00011141

11100014

)()()( GAGDGQ

 
 

Characteristic Polynomial of the adjacent matrix is obtained from  
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



















































 -0000001

0-000001

00 -00001

000 -0010

0000 -010

00000 -10

000111 -1

1110001 -

IA

 
 

Table 8. Various energies for above graph 

 

 

6. Conclusion 
 

In this paper we have studied some of the properties of semi regular. Graph energy has so many application in 

the field of chemistry, physics and mathematics also. Some types of graph energies are studied for some semi 

regular graphs in this paper.  
 

Discuss the possible future directions with regards to the following long-standing open problems:  
 

(i) Existence of semiregular automorphisms,  

(ii) Strongly semiregular and 

(iii) Existence of strongly semi-regular circulant and their relation. 
 

In graph K4 Lapalcian energy different from sign less and Q-Lablacian energy but in other graphs given in the 

examples has equal values of energy for laplacian energy and sign less energy and Q-Lablacian energy are 

presented.  
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Name of the 

energy  

Characteristic polynomial Eigen values  Energy of 

the graph 

Adjacency energy  λ8−7λ6+9λ4 0,0,0,0,

2

113   

0 

Laplacian 

spectrum energy  

λ8−14λ7+72λ6−176λ5+229λ4−162λ3+58λ2−8λ 0,1,1,1,1,4, 

37   

14 

Laplacian energy λ8−14λ7+72λ6−176λ5+229λ4−162λ3+58λ2−8λ 0,1,1,1,1,4, 

37   

12.2915 

Normal laplacian 

energy 

λ8−14λ7+72λ6−176λ5+229λ4−162λ3+58λ2−8λ 0,1,1,1,1,4, 

37   

9.2915 

Laplacian–energy 

like  

λ8−14λ7+72λ6−176λ5+229λ4−162λ3+58λ2−8λ 0,1,1,1,1,4, 

37   

8.9712 

Signless energy  λ8−14λ7+72λ6−176λ5+229λ4−162λ3+58λ2−8λ 0,1,1,1,1,4, 

37   

12.2915 

Q- Laplacian 

energy  

λ8−14λ7+72λ6−176λ5+229λ4−162λ3+58λ2−8λ 0,1,1,1,1,4, 

37   

12.2915 



 

 
 

 

Visuvasam and Suganya; AJPAS, 12(3): 81-101, 2021; Article no.AJPAS.67049 
 

 

 
101 

 

References 
 

[1] Allison Northup, A Study on semiregular graphs, Stetson University; 2002. 

 

[2] Bloom GS, Kenney JW, Quintas LV. Distance degree regular graphs, The theory and applications of 

graph, NewYork, John Wiley & Sons. 1981; 95-108. 

 

[3] Chartrand Gary, Paul Erdos, Ortrud R. Oellermann, how to define an irregular graph. College Math 

Journal. 1998;39. 

 

[4] Evans CW. Some properties of semi-regular graphs, Match No.6. 1979;117-135. 

 

[5] Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, an introduction to theory of numbers. John 

Wiley &  Sons, U.K; 2011. 

 

[6] Grone R, Merris R, Sunder VS. The laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 

1990;11:218–238. 

 

[7] Grone R, Merris R. The laplacian spectrum of a graph II, SIAM J. Discrete Math. 1994;7:221–229. 

 

[8] Merris R. Laplacian matrices of graphs: A survey, Linear Algebra Appl. 1994;197–198:143–176. 

 

[9] Merris R. A survey of graph laplacians. Linear Multilinear Algebra. 1995;39:19–31. 

 

[10] Abdollah Alhevaz , Maryam Baghipur, Kinkar Ch. Das, Yilun Shang. Sharp bounds on (Generalized) 

distance energy of graphs. Mathematics. 2020;8:426. 

 

[11] Pirzada S, Hilal A. Ganie, Bilal A. Rather, Reswan UI Shaban. On generalized distance energy of graphs. 

Linear Algebra and its Applications. 2020;603:1-19. 

 

[12] Shaowei Sun, Kinkar Chandra Das, Yilun Shang. Mathematics, On Maximal Distance Energy. 

2021;9:360. 

 

[13] Jack H. Koolen, Vincent Moulton. Maximal energy graphs. Advances in Applied Mathematics. 

2001;26:47–52. 

 

[14] Samir K. Vaidya, Kalpesh M. Popat. Some new results on energy of graphs. Match Commun. Math. 

Comput. Chem. 2017;77:589-594. 

 

[15] Liu JB, Pan XF, Hu FT. The laplacian polynomial of graphs derived from regular graphs and 

applications. Ars Comb. 2016c;126:289–300. 

 

[16] Gutman I. The energy of a graph, Ber. Math Statist. Sekt. Forschungsz. Graz. 1978;103. 

__________________________________________________________________________________________ 
© 2021 Visuvasam and Suganya; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

http://www.sdiarticle4.com/review-history/67049 

http://creativecommons.org/licenses/by/3.0

