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Abstract

With more than 4300 confirmed exoplanets and counting, the next milestone in exoplanet research is to determine
which of these newly found worlds could harbor life. Coronal mass ejections (CMEs), spawned by magnetically
active, superflare-triggering dwarf stars, pose a direct threat to the habitability of terrestrial exoplanets, as they can
deprive them of their atmospheres. Here we develop a readily implementable atmosphere sustainability constraint
for terrestrial exoplanets orbiting active dwarfs, relying on the magnetospheric compression caused by CME
impacts. Our constraint focuses on an understanding of CMEs propagation in our own Sun–heliosphere system
that, applied to a given exoplanet requires as key input the observed bolometric energy of flares emitted by its host
star. Application of our constraint to six famous exoplanets, Kepler-438b, Proxima Centauri b, and Trappist-1d,
-1e, -1f, and -1g, within or in the immediate proximity of their stellar host’s habitable zones showed that only for
Kepler-438b might atmospheric sustainability against stellar CMEs be likely. This seems to align with some recent
studies that, however, may require far more demanding computational resources and observational inputs. Our
physically intuitive constraint can be readily and en masse applied, as is or generalized, to large-scale exoplanet
surveys to detect planets that warrant further scrutiny for atmospheres and, perhaps, possible biosignatures at
higher priority by current and future instrumentation.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Habitable zone (696); Solar flares (1496); Solar coronal
mass ejections (310); Stellar coronal mass ejections (1881); Stellar flares (1603)

1. Introduction

Planets beyond our solar system have become an object of
fascination in recent decades, with nearly regular references in
headlines and the popular media. Only recently have observational
capabilities evolved to the point where potential terrestrial planets
are detected around M-type dwarf stars. However, young M-type
dwarfs are known to be magnetically active, often more than our
middle-aged Sun. Superflares in them are a common occurrence
(e.g., Maehara et al. 2012; Armstrong et al. 2016) that should
result in fast and massive coronal mass ejections (CMEs; see, e.g.,
Khodachenko et al. 2007; Lammer et al. 2007; Vidotto et al.
2011, and several others). The CMEs are gigantic, eruptive
expulsions of magnetized plasma and helical magnetic fields from
the solar and stellar coronae at speeds that may well surpass local
Alfvénic and sound speeds, severely but temporarily disrupting
stellar winds and generating shocks around their bodily ejecta.

Contrary to solar flares that have been known since the 19th
century (Carrington 1859), CMEs were only observed well into the
space age (Howard 2006) due to their much fainter magnitude
compared to the bright solar photospheric disk. Stellar CME
detections are notoriously ambiguous, although recent efforts offer
reasonable hope (Argiroffi et al. 2019). However, in strongly
magnetized stellar coronae, CMEs are inevitable. In the case of
intense stellar magnetic activity and the existence of an atmosphere
that shields a planet, extreme pressure effects by CMEs owning to
stellar mega-eruptions can, under certain circumstances, cause
intense atmospheric depletion via ionization-triggered erosion (e.g.,
Zendejas et al. 2010). In the solar system, results from NASA’s
Mars Atmosphere and Volatile Evolution mission (MAVEN) seem
to establish that the sustained eroding effect of solar interplanetary

CMEs (ICMEs) may be responsible for the thin Martian
atmosphere (Jakosky et al. 2015) after the planet’s magnetic field
weakened.
Our objective here is the introduction of a practical and

reproducible (magnetic) atmosphere sustainability constraint
(mASC), reflected on a positive, rational number  and relying
on CMEs and planetary magnetic pressure effects. Here  is a
dimensionless ratio that, in tandem with the considered
habitability zone (HZ; e.g., Kopparapu et al. 2013), can provide
an understanding of which terrestrial exoplanets warrant further
screening for the existence of a possible atmosphere ( < 1) or
otherwise ( > 1). Our mASC becomes fully constrained in the
case of tidally locked exoplanets (e.g., Grießmeier et al. 2004) by
means of an estimated planetary magnetic field, while if no tidal
locking is assumed, the planetary magnetic field can be replaced
by a known benchmark field, such as Earth’s. Only magnetic
pressure effects are taken into account in this initial study, but our
mASC  can be generalized at will. Given that pressure effects
are extensive and additive, however, adding more terms (i.e.,
kinetic, thermal) to the CME pressure will only increase the
adversity of possible atmospheric erosion effects for a studied
exoplanet (e.g., Ngwira et al. 2014).

2. (Magnetic) Atmosphere Sustainability Constraint

The magnetic activity of the exoplanets’ host stars reflects on
several observational facts, including the bolometric energy of
their flares. From it, and assuming a Sun-as-a-star analog further
reflected on the solar magnetic energy–helicity (EH) diagram
(Tziotziou et al. 2012), we estimate the magnetic helicity of stellar
CMEs and a corresponding stellar CME magnetic field based on
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the fundamental principle of magnetic helicity conservation in
high magnetic Reynolds number plasmas (Patsourakos et al.
2016; Patsourakos & Georgoulis 2017). As explained in
Appendix A, CMEs are inevitable in strongly magnetized stellar
coronae, as they relieve stars from excess helicity that cannot be
shed otherwise.

The near-star CME magnetic field is propagated self-similarly
in the astrosphere until it reaches exoplanet orbits (Patsourakos &
Georgoulis 2017). The mASC introduced in this study achieves a
precise, quantitative assessment of whether the magnetic pressure
of stellar ICMEs alone can be balanced by the estimated (tidally
locked) or guessed (in the general case) magnetic pressure of
observed terrestrial exoplanets at a magnetopause distance large
enough to avert the erosion effects of a possible atmosphere.

There are two conceptual pillars of the mASC introduced
here. First, it relies on observed stellar flare energies but does
not perform a case-by-case stellar eruption analysis. In other
words, it does not look at the particular eruption but points
to the collective effect of numerous similar eruptions over
∼1 Gyr, or significant fractions thereof, of the young star’s
activity (see also Chen et al. 2020). In this sense, the suitable
orientation required for an enhanced ICME planeto-effective-
ness, namely, the ICMEs’ ability to reconnect with the
planetary magnetic field causing magnetic storms, is ignored;
it is implicitly assumed that numerous such ICMEs will have
the correct orientation. Second, our mASC ratio relies explicitly
on a worst-case scenario (i.e., largest possible ICME magnetic
field strength) magnetic pressure for stellar CMEs (∼Bworst

2 ) and
a best-case scenario planetary magnetic field (i.e., largest
possible planetary magnetic field) generated in the planet’s core
due to internal dynamo action (∼Bbest

2 ). Then, our mASC
becomes the ratio of planetary magnetic intensities relating to
these pressure terms: the minimum planetary magnetic field
(equal to Bworst) able to balance the worst-case CME magnetic
field and the best-case planetary magnetic field Bbest as per the
modeled planetary characteristics, i.e.,

( )=
B

B
. 1worst

best

The two planetary magnetic field strengths are taken at a critical
magnetopause distance from the studied planet in terms of
atmospheric erosion effects (Sections 2.1 and 2.2). It is then
understood that if > 1, the planet’s magnetosphere will be
compressed beyond the critical threshold, presumably leading to
atmospheric erosion (after processes such as thermal, nonthermal,
or hydrodynamic escape, catastrophic erosion, etc., take place;
see, for example, Melosh & Vickery 1989; Lundin et al. 2004;
Barabash et al. 2007 for more details). Assuming that, statistically,
the presumed ICME is not a unique occurrence, the planet may
undergo this atmospheric stripping for hundreds of millions of
years due to its star’s magnetic activity. Magnetic helicity
conservation, on the other hand, dictates that at least some (or
even most or all) magnetic eruptions in the star will unleash
powerful CMEs to shed the excess helicity generated in the star’s
magnetized atmosphere that is otherwise conserved and remains
accumulated in the star’s corona. In such situations, one casts
doubt on the viability of an atmosphere in the otherwise terrestrial
planet, even if the planet is seated well into the HZ of its
astrosphere. The opposite is the case for < 1.

2.1. The Worst-case CME-equipartition Magnetic Field

A critical magnetopause distance of rmp= 2 Rp (i.e., two
planetary radii, or one radius away from the surface of the
planet; see Khodachenko et al. 2007; Lammer et al. 2007) was
adopted as the minimum planetocentric distance in which
atmospheric ionization and erosion can still be averted during
extreme magnetospheric compression. Then, the equipartition
planetary magnetic field Beq (to be viewed as Bworst) that
balances the ICME magnetic pressure at rmp= 2 Rp can be
estimated as (see Appendix B for a complete description)

( )=B B8 , 2eq ICME

where BICME is the worst-case ICME axial magnetic field at
rmp= 2Rp.
To infer BICME at any given astrocentric distance rICME, we

first need to constrain the axial magnetic field B0 of the CME at
a near-star distance r0 (see Appendix A for a derivation). Here
B0 is constrained by observational facts and, more specifically,
by assuming a given flux-rope model and a corresponding
magnetic helicity formula depending on the radius R and length
L of the flux rope that can then be solved for B0 (Patsourakos
et al. 2016). Patsourakos & Georgoulis (2017) tested several
linear force–free (LFF), nonlinear force–free (NLFF), and non-
force-free flux-rope models and determined that the worst-case
scenario B0 for near-Sun CME flux ropes was obtained by the
LFF Lundquist flux-rope model (values estimated by other
models range between 2% and 80% of the Lundquist values)
that gives a magnetic helicity of the form

( ) ( )ò
p
a

a=H
B L

J r rdr
4

, 3m

R
0
2

0
1
2

where α is the constant force-free parameter and J1() is the Bessel
function of the first kind. Parameter α is inferred by the additional
constraint αR; 2.405, imposed by the first zero of the Bessel
function of the zeroth kind, J0(), in the Lundquist model. The flux-
rope radius R corresponds to the CME front that is assumed to
have a circular cross section with maximum area.
We use the Lundquist flux-rope model throughout this analysis,

as this is a standard ICME model for the inner heliosphere. It
gives the strongest near-Sun CME axial magnetic field B0,
provided that the twist is not excessive (see Patsourakos &
Georgoulis 2017). Adopting the fundamental helicity conservation
principle for high magnetic Reynolds number plasmas (e.g.,
Berger 1984) implies a fixed Hm and dictates that as the CME
expands, B0 decreases self-similarly as a function of 1/r2, with r
being the heliocentric distance. We maintain this quadratic scaling
for distances relatively close to the Sun (e.g., up to the Alfvénic
surface, where the solar wind speed matches the local Alfvén
speed at ∼10 Re). Beyond that surface, this analysis continues to
adhere to helicity conservation but adopts a power-law radial
falloff index aB= 1.6 for the propagation of Lundquist flux-rope
solar CMEs within the astrospheres (see Appendix A for a
derivation of the exponent). As a result, BICME at a given
astrocentric distance rICME is given by

⎛
⎝⎜

⎞
⎠⎟ ( )=B B

r

r
, 4ICME 0

0

ICME

1.6

where r0 is the near-star distance up to which the CME axial
magnetic field scales as (1/r2), and B0 is this magnetic field at
that distance.
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2.2. The Best-case Planetary Magnetic Field

The “defense” line in the ICME pressure effects for any
given planet is being held primarily by the planet’s magnetic
pressure. The planet’s dipole magnetic moment gives rise to
a planetary magnetic field

( )=


B
r

5p
mp
3

for the dayside magnetopause occurring at a planetocentric
distance rmp. To identify the best-case scenario, we examined
several prominent models for the magnetic moment  (Busse
1976; Stevenson et al. 1983; Mizutani et al. 1992; Sano 1993; see
also Christensen 2010 for a review) to determine which would
provide the strongest , focusing particularly on the tidally
locked regime. We concluded that an uppercase is provided by
Stevenson et al. (1983) and a model variant of Mizutani et al.
(1992), namely,

( ) r w s= -  A R . 6c cStev
1 2 1 2 3 1 2

The other models provided values ranging between 18% and
62% of the Stevenson value. In Equation (6), A; 3.45× 105

A·s·kg−0.5 is the proportionality constant, ω corresponds to the
planet’s angular rotation, and ρc, Rc, and σ correspond to the
planetary core’s mean density, radius, and electrical conduc-
tivity, respectively (see Appendix C for more details on the
calculations and assumptions made). The Bp for =Stev

(hereafter BStev) is to be viewed as Bbest.
Summarizing, our mASC ratio of Equation (1) translates to

( )= B Beq Stev . The Beq can be estimated in the case of
known bolometric stellar flare energies, while BStev is fully
constrained for tidally locked exoplanets.

3. Application of the mASC Method

Assuming tidal locking to fully determine BStev, Figure 1
provides the nominal values of  for different stellar flare
energies and an Earth-like exoplanet lying precisely at the inner
(red) and outer (blue) HZ boundary of Kopparapu et al. (2013).
This plot represents a different conception of Figure 2 that
shows a number of exoplanets provided by the NASA
Exoplanet Archive lying within and without both the tidally
locked regime and the inner and outer HZ limits. Nevertheless,
Figure 1 now includes  as a function of stellar flare energies,
while stellar masses are implicitly included in the astrocentric
distances dinner and douter. It comes as no surprise that higher
flare energies, statistically resulting in more helical CMEs and
stronger axial magnetic fields, require the planet to be orbiting
its host star at a larger orbital distance to achieve < 1. For
flare energies higher than 1033 erg, it appears that planets
located precisely on the inner HZ boundary may be incapable
of sustaining an atmosphere, while this is the case for energies
higher than 1034 erg for planets located on the outer HZ
boundary.

Importantly, our mASC method can also be applied to case
studies of terrestrial exoplanets, provided that flares from their
host stars are observed. If these planets are—or are assumed to
be—tidally locked, then  becomes fully constrained. In
Figure 3, we examine six popular cases of terrestrial
exoplanets, all within the tidal-locking zone and either within
or close to the respective HZ of their host stars. These cases are

Kepler-438b (K438b), Proxima Centauri b (PCb), and four
Trappist-1 (Tp1) exoplanets, namely, Tp1d, Tp1e, Tp1f, and
Tp1g. Actual mASC values and applicable uncertainties (see
Appendix D) are provided in Table 1. Figure 3 offers a
graphical representation of these results, where observed flare
energies from host stars have been taken from Armstrong et al.
(2016), Howard et al. (2018), and Vida et al. (2017) for K438b,
PCb, and Tp1, respectively.
The uncertainty analysis mentioned above and described in

Appendix D aims to determine under which circumstances a
conclusion of < 1 or > 1 could be reversed due to
applicable uncertainties. In particular, we define an equiparti-
tion scaling index )( =aB 1

for which = 1, along with its
uncertainty δaB. If (i) ∣ ∣)( d- >=a a aB B B1

for the nominal
aB= 1.6 of Patsourakos & Georgoulis (2016, 2017) or (ii)

)( =aB 1
is steeper than 2 beyond the applicable δaB, with 2 being

the “vacuum” radial falloff index near the star and aB< 2
reflecting an astrosphere with its own MHD environment, then
our conclusion of < 1 or > 1 is unlikely to change. If the
uncertainties are large enough to preclude a safe conclusion,
then our main result on an exoplanet is likely to change because
of these uncertainties. Analogous uncertainties may be sought
in the case of additional pressure effects included in .
Table 1 shows that for all six presumed tidally locked

exoplanets, the 1:1 spin–orbit resonance results in planetary
rotations that are slow enough to allow > 1, rendering a
sustainable atmosphere unlikely. In all cases, ( )=aB 1 is well
above the “vacuum” value of 2, with PCb and the four Tp1
exoplanets showing ( ) >=a 2B 1 beyond the applicable uncer-
tainties. Hence, for five out of six potentially tidally locked
exoplanets, our result for > 1, meaning a nonsustainable
atmosphere, seems robust. The result could be reversed for
K438b, as the difference between ( )=aB 1 and 1.6 is within the
applicable uncertainties, meaning that if aB systematically lies
in the range (1.6, 2.0), then the exoplanet might conceivably
sustain an atmosphere.
The above underlines the potential value of the mASC, even

in its simplest form involving only magnetic pressure effects; lying
in the HZ of their host stars does not necessarily make exoplanets
capable of sustaining an atmosphere, a favorable Earth Similarity
Index (ESI; Schulze-Makuch et al. 2011) notwithstanding. This

Figure 1. The mASC ratio ( )= B Beq Stev for Earth twins but with different
equatorial magnetic fields, lying on the inner (red) and outer (blue) HZ
boundary inferred by Kopparapu et al. (2013) for different stellar flare energies,
each represented by a different curve thickness. The astrocentric distance in the
abscissae implicitly includes the stellar mass shown in Figure 2. The limit

= 1 (dashed line) separates an apparent nonviability of an atmosphere
( > 1) from an apparently likely atmosphere ( < 1) for both cases.
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Figure 2. Ensemble of 1771 confirmed exoplanets by the NASA Exoplanet Archive plotted on a diagram of stellar mass vs. astrocentric distance. We restrict the
analysis to stars less or equally as massive than the Sun, while the exoplanets shown have a confirmed orbital semimajor axis. Inner and outer HZ limits are indicated
by solid lines enclosing the pink shaded HZ area, while the black and gray dashed lines indicate internal and potential external tidal-locking limits, respectively. The
locations of nine exoplanets, six of which are studied here due to their proximity to or presence within the HZ, are also highlighted.

Figure 3. Testing the viability of a potential atmosphere from the value of the mASC for six confirmed exoplanets, namely (clockwise from top left), K438b, PCb,
Tp1e, Tp1g, Tp1f, and Tp1d. Ordinates correspond to stellar flare energies and abscissae to astrocentric distances. The color scales correspond to ( )log . Each planet
is represented by a point corresponding to coordinates set by the maximum observed flare energies from its host star and confirmed orbital distances, highlighted by
vertical lines.

4
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would be the case for PCb and Tp1d, e, f, and g, although virtually
all lie in the HZ. Conversely, K438b is slightly beyond the inner
HZ that might inhibit an atmosphere and possible liquid water on
its surface, but at the same time, due to its larger orbital distance, it
might be relatively immune to at least plausible, as per flare
observations, space weather from its host star.

4. Conclusions

This versatile and highly reproducible analysis shows that
space weather cannot be left out of considerations for planetary
habitability in stellar systems (Airapetian et al. 2020). It carries
both value and promise; consider the European Space Agency
CHaracterising ExOPlanet Satellite (CHEOPS) mission, for
example (e.g., Sulis et al. 2020). The mission is designed to
characterize only selected, confirmed exoplanets, ranging from
super-Earth to Neptune sizes, aiming toward studies that extend
into their potential atmospheres. Although the mission is
already in orbit, analyses such as this could help assess future
observing priorities. The same applies to optimizing exoplanet
selection for biosignature analysis in the framework of the
upcoming James Webb mission.

In anticipation of these exciting observations that will give the
ultimate test of our method, we hereby supply a first round of
tentative tests aiming toward its validation. For example, it was
recently shown that LHS 3844b (Vanderspek et al. 2019; Kane
et al. 2020), a rocky exoplanet orbiting an M dwarf star within its
tidally locked zone, lacks an atmosphere. Kane et al. (2020)
suggested that the mother star of LHS 3844b exhibited an active
past, comparable to that of Proxima Centauri. By adopting,
therefore, a maximum superflare energy identical to the one of
Proxima Centauri, we obtained R= 251.08 (>1, atmosphere
unlikely), which agrees with the observations. Also, our result
seems robust because ∣ ∣)( d- >=a a aB B B1

.5 Our mASC could
be indirectly validated as well by checking if other studies—
also focusing on tidally locked, terrestrial worlds and having
similar objectives—converge on similar results. This said, the
results presented here are in qualitative agreement with MHD
simulations of stellar winds, for example, by Garraffo et al.
(2017), that find extreme magnetospheric compressions below
≈2.5 planetary radii for Tp1d–g and a magnetopause distance
of [1.5, 4.5] planetary radii for PCb. Recent extensive (and

computationally expensive) MHD models of stellar CMEs
(e.g., Lynch et al. 2019), along with semiempirical approaches
(e.g., Kay et al. 2016), have emerged, and both approaches take
as input maps the stellar surface magnetic field inferred by
Zeeman–Doppler imaging reconstructions (e.g., Donati &
Brown 1997). While detailed, these studies may be rather
impractical for bulk application to a large number of
exoplanets. On the other hand, our introduced mASC could
provide guidance to large-scale MHD simulations of stellar
CMEs by efficiently scanning and bracketing the corresp-
onding parameter space so that the simulations could be
performed only for pertinent cases.
Concluding, we reiterate that mASC can be generalized at

will with additional pressure terms, albeit mainly from the
ICME side. In its most general form, = P Peq planet, with
worst- and best-case scenario pressure terms Peq and Pplanet,
respectively. We note, in particular, the study of Moschou et al.
(2019), where a (flare) energy versus (CME) kinetic energy
diagram is inferred from stellar observations and modeling.
Such statistics could be integrated into the EH diagram of this
study to revise the Peq term. The EH diagram used here is also
an entirely solar one, so any possibilities of extending it to
better reflect the magnetic activity of dwarf, planet-prolific stars
are well warranted. Equally meaningful Pplanet terms could be
introduced to provide a far more sophisticated but still readily
achieved mASC ratio  for the screening of alien terrestrial
worlds for potential atmospheres and, ultimately, life.

The authors would like to thank the anonymous referee for
comments and suggestions that improved the manuscript. This
work was inspired by and originated during the M.Sc. thesis of
E.S., implemented at the University of Athens and the Research
Center for Astronomy and Applied Mathematics of the Academy
of Athens, Greece. We thank both institutions for their support
and encouragement. The authors would also like to extend their
acknowledgments to Prof. Dr. Stefaan Poedts from the Centre for
mathematical Plasma-Astrophysics (CMPA), Department of
Mathematics, KU Leuven, for his support and encouragement
on this work.
Facilities: The properties of the exoplanets and host stars

used in this study are available at the NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu/).
Software: The code to implement the mASC for any

terrestrial-like exoplanet lying within the tidally locked regime
of its host star is available in the following repository: https://
github.com/SamaraEvangelia/mASC-method.

Table 1
Six Case Studies of the mASC  Value as Depicted in Figure 3

Exoplanet Abridged  Atmosphere ( )=aB 1 δaB Result
Likely? Robust?

Kepler-438b K438b 5.46 No 2.48 0.99 No
Proxima Centauri b PCb 42.84 No 3.48 0.96 Yes
Trappist-1d Tp1d 95.35 No 4.95 1.40 Yes
Trappist-1e Tp1e 77.87 No 4.24 1.15 Yes
Trappist-1f Tp1f 70.61 No 3.80 0.99 Yes
Trappist-1g Tp1g 48.53 No 3.43 0.90 Yes

Note. The values of  corresponds to our nominal radial power-law falloff index aB = 1.6. The index ( )=aB 1 corresponds to the equipartition aB value for which
= 1, while δaB corresponds to the uncertainty of ( )=aB 1 . The last column assesses whether our result is robust as per the difference ( ) d=a aB B1 from the nominal

aB value.

5 For this specific exoplanet, which orbits very close to its mother star, we
maintain the quadratic scaling of B0 with astrocentric distance (1/r2) for
distances up to 7 R* and not 10 R*. Beyond 7 R*, we adopt the same power-
law radial falloff index aB = 1.6 for the propagation of Lundquist flux-rope
solar CMEs within the astrospheres.
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Appendix A
Near-Sun/Star CMEs and Helio-/Astrospheric Propagation

A physically meaningful expression of magnetic helicity in
the Sun and magnetically active stars is the relative helicity,
related to the absence of vacuum and hence the flow of electric
currents in the solar and stellar coronae, along with the
topological settings of solar (and stellar) magnetic fields that
are only partially observed and detected, on and above the
stars’ surface. By construction, the relative helicity must be
quantitatively connected to the excess or free magnetic energy
that is also explicitly due to the presence of electric currents
(e.g., Sakurai 1981). An attempt to correlate the free magnetic
energy with the relative magnetic helicity in solar active
regions was made by Georgoulis & LaBonte (2007) for LFF
magnetic fields and Georgoulis et al. (2012) for NLFF ones.

The NLFF (magnetic) energy–(relative) helicity correlation
resulted in the EH diagram of Tziotziou et al. (2012). There,
∼160 vector magnetograms of observed solar active regions
were treated in the homogeneous way of Georgoulis et al.
(2012), aiming toward a scaling between the NLFF free
magnetic energy Ec and relative helicity Hm. They found a
robust scaling of the form (cgs units)

∣ ∣ ( ) ( )µ -H E
E

log 53.4 0.0524 log exp
97.45

log
. A1m c

c

0.653

Here |Hm| refers to the magnitude of the relative helicity Hm,
which can be right- (+) or left- (–) handed. A similar
expression to Equation (A1) provides a simpler power-law
dependence between |Hm| and Ec of the form (cgs units)

∣ ∣ ( )µ ´H E1.37 10 . A2m c
14 0.897

The above EH scaling was shown to hold for typical active-
region free energies in the range Ec∼ (1030, 1033) erg and
respective relative helicity budgets |Hm|∼ (1040, 1044) Mx2.
The robustness of the EH diagram scaling was validated in
multiple cases that involved not only active regions but also
quiet-Sun regions and MHD models (Tziotziou et al. 2013).

Combining the EH scaling with the conservation principle of
the relative magnetic helicity, Ec in Equations (A1) and (A2) is
dissipated in every instability (solar flare, CME, etc.), while Hm

is only shed away from the Sun via CMEs. If an active region
was to completely relax (i.e., return to the vacuum energy state)
by a single magnetic eruption, then for a given free magnetic
energy Ec, it would expel helicity Hm. This is the core
reasoning behind a worst-case scenario solar eruption originat-
ing from a given solar source. Typically, up to ∼10% of the
total free energy and up to 30%–40% of the total magnetic
helicity of the source are dissipated and ejected, respectively, in
a solar eruption (see, e.g., Nindos et al. 2003; Moraitis et al.
2014).

The majority of CME ejecta are observed to be in the form of
a magnetic flux rope (e.g., Vourlidas et al. 2013, 2017), with
this geometry surviving the CMEs’ inner heliospheric propaga-
tion all the way to the Sun–Earth libration point L1 and
probably beyond (e.g., Zurbuchen & Richardson 2006; Nieves-
Chinchilla et al. 2018). Based on the flux-rope CME geometry,
tools such as the graduated cylindrical shell (GCS) model of
Thernisien et al. (2009) and Thernisien (2011) processed
observations by the STEREO/SECCHI coronagraph (Howard
et al. 2008) to obtain the aspect ratio k= R/L between the
radius R and along with the half-angular width w of the CME

flux rope at some distance (typically, 10 Re) away from the
Sun. The length L corresponds to the perimeter of the flux rope,
while the radius R corresponds to the CME front, which is
assumed to have a circular cross section with maximum area.
The worst-case scenario B0 for near-Sun CME flux ropes

was provided by the LFF Lundquist flux-rope model, which
was used throughout this analysis and gives a magnetic helicity
of the form

( ) ( )ò
p
a

a=H
B L

J r rdr
4

, A3m

R
0
2

0
1
2

where α is the constant force-free parameter and J1() is the
Bessel function of the first kind. Parameter α is inferred by the
additional constraint αR; 2.405, imposed by the first zero of
the Bessel function of the zeroth kind, J0(), in the Lundquist
model.
As already mentioned, for helicity conservation imposing a

fixed Hm, the Lundquist model requires that as the CME
expands, B0 decreases self-similarly as a function of 1/r2 for
distances close to the Sun. In this analysis, however, and for
distances away from the Sun (see also Patsourakos &
Georgoulis 2016), the self-similar expansion was not a priori
assumed to be quadratic (i.e., 1/r2), but more generally,
( )r1 aB , with aB being the absolute value of the power-law
radial falloff index. This different index, still under helicity
conservation that dictates the respective power laws for the
increase (expansion) of the CME flux rope R and L, aimed to
include all effects present during heliospheric propagation and
the interaction of ICMEs with the ambient solar wind (see, e.g.,
Manchester et al. 2017, for an account of these effects).
Prominent among them is the CME flattening (see, e.g.,
Raghav & Shaikh 2020, and references therein) that tends to
distort the CME geometry due to plasma draping or flux pileup
as the CME pushes through the heliospheric spiral. As a result,
inner heliospheric propagation implies that BICME at a given
heliocentric distance rICME is given by

⎛
⎝⎜

⎞
⎠⎟ ( )=B B

r

r
, A4

a

ICME 0
0

ICME

B

where r0 is the (near-Sun) distance up to which the CME axial
magnetic field scales as (1/r2), and B0 is this magnetic field at
that distance.
This analysis adopts aB= 1.6 in Equation (A4) for the

propagation of Lundquist flux-rope stellar CMEs within their
astrospheres (where aB can vary in the range [1.34, 2.16]; see
Salman et al. 2020). A Monte Carlo simulation for various
stellar (k, w) pairs is adopted, while the stellar CME |Hm| is
inferred by the bolometric observed stellar flare energies via
Equation (A2). A valid question is where in the near-star space
are we to apply the model (k, w) that was taken at 10 Re;
assuming a 10 R* astrocentric distance, where R* is the radius
of the host star, we should apply a “fudge-factor” correction to
B0 as follows:

⎛
⎝⎜

⎞
⎠⎟ ( )( ) ( )




=B B
R

R
. A50 0

2

R R10 10

*
*

This factor is adopted for the cases of this study’s six exoplanets
and their host stars. In the general case, or where no assessment is
taken for the stellar radius, one may start the astrospheric
propagation at a physical astrocentric distance of 10 Re,
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independently from the stellar radius (provided, of course, that this
radius does not exceed 10 Re).

Figure 4 provides the mean ( )
B0 R10 of the abovementioned

Monte Carlo simulation for different flare energies Ec, along
with a standard deviation around these values (cyan ranges).
The inset in Figure 4 provides the respective median values.
We notice that both mean and median ( )

B0 R10 can be adequately
modeled by power laws of the flare energy Ec of the form

( ) ( ) ( )( )
=B G f E erg , A6c0

0.23
R10

where the proportionality constant f is 3.30× 10−9 (median) or
5.94× 10−9 (mean), with an uncertainty amplitude 1.29×
10−8.

Appendix B
ICME Equipartition Magnetic Field

Figure 5 provides the worst-case scenario axial magnetic field
of ICME magnetic flux ropes (as virtually all CMEs/ICMEs are
expected to be) as a function of solar/stellar flare energies and
helio-/astrocentric distances. The ICME magnetic pressure effects
on the planet will be determined from this magnetic field strength.

Textbook physics dictates that either nominal solar/stellar
winds or “stormy” ICMEs exert pressure that comprises magnetic
(i.e., B2/(8π)), kinetic (i.e., ram; ρυ2), and thermal (i.e., n k T)
terms as per the local MHD environment (plasma number density,
mass density, and speed, n, ρ, and υ, respectively, and magnetic
field B). At the planet’s dayside at few to several planetary radii,
the only nonnegligible pressure term is magnetic pressure
stemming from the planetary magnetosphere. This is because a
possible atmosphere typically wanes at the planetary thermo-
sphere or exosphere, already at small fractions of a planetary
radius. In a seminal early work, Chapman & Ferraro (1930)
considered a spherical magnetosphere interfacing with interpla-
netary ejecta. Adopting this working hypothesis and taking only
the magnetic pressure term of the ICME determined by its
characteristic field BICME, the existence of a magnetopause at
planetocentric distance rmp implies an equilibrium of the form

(Patsourakos & Georgoulis 2017)

⎛
⎝⎜

⎞
⎠⎟ ( )

p p
=

B B

r8 8

1
, B1ICME

2
mp
2

mp

6

where rmp is expressed in planetary radii and Bmp is the
planetary magnetic field at the magnetopause. We now adopt a
critical magnetopause distance, that is, the minimum planeto-
centric distance at extreme compression in which atmospheric
ionization and erosion can still be averted at rmp= 2 Rp (i.e.,
two planetary radii, or one radius away from the surface of the
planet). This is a limit already adopted by several previous
studies (Khodachenko et al. 2007; Lammer et al. 2007).
Therefore, the equipartition planetary magnetic field Beq that
balances the ICME magnetic pressure at rmp= 2Rp is

( )=B B8 B2eq ICME

from Equation (B1). This equipartition field for the same range
of flare energies and astrocentric distances (viewed in this case
as the exoplanets’ mean orbital distances in circular orbits) as
in Figure 5 is provided in Figure 6. Equation (B2) and Figure 6,
therefore, provide the requirement for the planetary magnetic
field such that planets avoid atmospheric erosion due to a given
ICME magnetic pressure.
It would worth mentioning at this point that the toroidal

component of the interplanetary magnetic field could become
important in the case of fast rotators such as M stars (e.g., Petit
et al. 2008; Kay et al. 2016; Villarreal D’Angelo et al. 2019). In
such a case, an extra term is added in the pressure-balance
equation at the substellar point. However, we note that in the
case of active M dwarf stars, the notion of a Parker spiral for
the associated interplanetary magnetic field may not be fully
applicable, given the much more frequent CME activity than in
the solar case that could keep the spiral significantly perturbed
virtually at all times.

Figure 4.Mean (main plot) and median (inset) values of the near-star CME axial magnetic field B0 at a physical distance of 10 Re from the star. The modeled data are
shown by blue points, while the least-squares power-law best fits are shown by red curves. Standard deviations around each B0 value are represented by cyan ranges.
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Appendix C
Best-case Planetary Magnetic Field in Tidally Locked

Regimes

The planet’s dipole magnetic moment  gives rise to a
planetary magnetic field

( )=


B
r

C1p
mp
3

for the dayside magnetopause occurring at a planetocentric
distance rmp. The magnetic moment and resulting magnetic
field in exoplanets are generally unknown, and one may need to
use a known planetary field benchmark (i.e., Earth’s or another)
to estimate the equilibrium magnetopause (or standoff) distance
between a planet and the stellar wind it encounters. For Earth,
in particular, this distance is ∼10 R⊕ for the unperturbed solar
wind, where R⊕ is Earth’s radius. Patsourakos & Georgoulis
(2017) concluded that the terrestrial magnetopause cannot be
compressed to a value smaller than ∼5 R⊕ by the magnetic

pressure of ICMEs, an estimate that aligns with other findings
of extreme magnetospheric compression (e.g., Russell et al.
2000).
While our knowledge of exoplanet magnetic fields is

virtually nonexistent, for the subset of exoplanets that lie in
the tidally locked zone of their host stars (Grießmeier et al.
2004; Khodachenko et al. 2007), we have an additional
constraint: the 1:1 spin–orbit resonance (see Figure 2 to
visually locate all such exoplanets). It implies that tidally
locked exoplanets have a self-rotating speed equal to the
rotational speed around their host stars in a synchronous
rotation. While exceptions are possible, this study adopts the
1:1 spin–orbit resonance because it affords us an estimate of the
angular self-rotation of the planet in case the orbital period
around its host star is known from observations. Synchronous
rotation statistically weakens the planetary magnetic dipole
moment, but at the same time, it enables its first-order
estimation, further enabling an estimation of the planetary
magnetic field that is crucial for this analysis. In the case of

Figure 5. Worst-case scenario axial magnetic field for ICME magnetic flux ropes as a function of source flare energy and astrocentric distance, up to 1 au. A wide range of
flare energies is provided, from flares observed on the Sun (i.e., up to 1033 erg) to orders-of-magnitude stronger superflares with energies up to 1036 erg.

Figure 6. Same as Figure 5 but showing the equipartition magnetic field of the planet at the adopted atmospheric erosion critical threshold of two planetary radii. The
label “Earth” in the color bar shows the uncompressed terrestrial equatorial magnetic field for reference.
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planets that are not tidally locked to their mother star, or we do
not employ tidal locking, the planetary magnetic field (Bbest)
will have to be hypothesized by assigning an ad hoc magnetic
dipole moment in Equation (C1). No scaling law is employed
then, but we can use a benchmark planetary field, such as
Earth’s, for example.

Emphasizing the terrestrial planets, we calculate the upper-
case  provided by the Stevenson et al. (1983) model by
assuming a core conductivity σ= 5× 105 S m−1 as per
Stevenson (2003). The mean core density ρc that enters the
relationship is further assumed to be equal to the mean density
of the planet, i.e., ( )r r p= = M R3 4c p p

3 , where Mp and Rp are
the planetary mass and radius, respectively. The assumption
allows a density estimate based on direct or implicit
observational facts relevant to the terrestrial planet under
study. Moreover, an angular rotation (ω) equal to the planet’s
angular rotation around its host star is adopted for presumed
tidally locked planets. In the case of planets that are not tidally
locked, as explained initially, ad hoc planetary field bench-
marks must be used.

Another obvious unknown is the planetary core radius, Rc.
For Earth, we have Rc; 0.55 R⊕, while for Mercury, the
fraction is significantly larger (Rc; 0.85 R☿). Regardless, an
upper limit of Rc is the radius of the studied planet. In the frame
of adopting the best-case scenario for the planetary magnetic
pressure, we will use this upper limit, adopting Rc= Rp. As an
example, the above settings and Equation (6) for Earth imply
an equatorial magnetic field of ∼0.309 G, almost identical to
the nominal terrestrial equatorial field of ∼0.305 G.

Appendix D
Sensitivity Analysis

As already explained, we are essentially interested in the
ratio = B Beq Stev of the equipartition magnetic field Beq of a
planet at magnetopause distance rmp= 2 Rp to the expected
upper-limit Stevenson magnetic field (BStev) for the planet. This
paragraph details our approach to determine whether applicable
uncertainties are capable of changing the outcome of > 1 or

< 1 for a given exoplanet.
We start by asking what value of the radial falloff power-law

index aB is required for = 1. Under this condition and
Equation (4), we find

( ( ))
( )

( )( )

/

/
==a

B B

r r

log 8

log
. D1B

Stev 0

0 ICME
1

Evidently, if we find > 1 for the nominal aB= 1.6, then

( ) >=a aB B1 , meaning that the ICME magnetic field must decay
more abruptly than assumed to achieve = 1 at 2Rp. The
opposite is the case if we find < 1 for aB= 1.6 (i.e.,

( ) <=a aB B1 ).
Let us now assume an uncertainty δB0 of the near-star

magnetic field of the CME, B0. This relates to the uncertainty
δaB on ( )=aB 1 as follows:

( )
( )

( ) /

d d
=

=

a

a B B

B

B

1

ln 8
. D2B

B 0 Stev

0

01

From Equation (A3), we can relate δB0 to the uncertainty in the
CME helicity, δHm, as

∣ ∣
( )d d

=
H

H

B

B
2 , D3m

m

0

0

and by using the EH diagram of Equation (A2), we can find
another expression for δHm, namely,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∣ ∣

( ) ( )d
b

d
db db= +

H

H

E

E
E Eln ln , D4m

m

c

c
c c

2
2

2 2

1 2

for (δEc/Ec) 4 and typical superflare energies Ec� 1030 erg. In
Equation (D4), we have propagated the uncertainties for the free
energy of the eruptive flare, δEc, and the power-law index in the
EH diagram of Equation (A2), δβ; 0.05. In Equation (D3), we
have further assumed that the forward-modeled GCS geometrical
properties R and L of the CME carry no uncertainties, as even
when assuming (δk/k)= (δw/w)= 1, the dominant error term is
still (δB0/B0). As further shown in Equation (D4), given the term
depending on the logarithm of Ec, we may ignore the contribution
of δEc for typical superflare energies Ecä (1030, 1038) erg, thus
simplifying the uncertainty equation.
Combining Equations (D3) and (D4), we eliminate

(δHm/|Hm|) and solve for δB0 to find

( )d
db

B

B
E

1

2
ln . D5c

0

0

Then, substituting Equation (D5) to (D2), we reach the desired
expression for δaB on ( )=aB R 1 as follows:

( )
( )

( )

d
db

=

a

a

E

B B

ln

2 ln 8
. D6B

B

c

0 stev1

Equation (D6) allows us to assign an uncertainty to ( )=aB 1 , and
the relevant question is whether ( ) ¹=a 1.6B R 1 beyond this
uncertainty. In this case, our conclusion on  is unlikely to
change. In addition, if > 1 and ( ) >=a 2B 1 , then ( )=aB 1 may
be deemed unrealistic because the ICME magnetic field is
required to fall more abruptly in the astrosphere than the
“unobstructed” aB= 2 case for the near-star CME expansion in
order to achieve = 1. If ( ) >=a 2B 1 beyond the applicable
uncertainties, then our conclusion for > 1 is considered
solid, whereas in case ∣ ∣( ) d-= a a2B B1 , our conclusion is
again unlikely to change, but it is conceivable that  1 for a
significantly steeper than 1.6 decrease of the ICME magnetic
field in the astrosphere.
Figure 7 provides two examples of the ratio ( )( )d =a aB B 1 of

Equation (D6) for a wide range of superflare energies and
Stevenson planetary fields, from zero to the BStev value for
Earth ( ÅB 0.309Stev G). Examples are based on two nominal
B0 values, one for Ec= 1033 erg (Figure 7(a)) and another for
Ec= 1034 erg (Figure 7(b)). These are mean values stemming
from the Monte Carlo simulations of Figure 4 for these two
energies. Both are toward the upper end of the distribution for
near-Sun CME magnetic fields as found in Patsourakos &
Georgoulis (2016). Stronger B0 increases the value of ( )=aB 1

(Equation (D1)) but correspondingly decreases its uncertainty
fraction (Equation (D6)).
As an example, for the strong terrestrial magnetic field, we

find ( ) = =a 0.40 0.63B 1 (Equations (D1) and (D6)) assum-
ing Ec= 1033 erg and a nominal r0= 10 Re. The respective
value for Ec= 1034 erg is ( ) = =a 0.63 0.64B 1 . These are
both very flat aB values, flatter beyond the uncertainties than
the nominal aB= 1.6 that gives  0.026 and ;0.052,
respectively, under the same settings.
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