British Journal of Mathematics & Computer Science

16(5): 1-12, 2016, Article no.BJM CS.26337
ISSN: 2231-0851

SCIENCEDOM AIN international

www.sciencedomain.org

SCIENCEDOMAIN

Defect Prediction Framework Using Neural Networks for
Softwar e Enhancement Projects

Vipul Vashisht™, Manohar Lal'and G. S. Sureshchandar?

'sOCIS, IGNOU, India.
2ASQ, Chennai, India.

Authors’ contributions

This work was carried out in collaboration among all authd\uthor VV conceived and designed the work
and wrote the first draft of the manuscript. Authors ML @8 helped perform the analysis of study with
constructive discussions. All authors read and approvedrhéerhanuscript.

Article Information

DOI: 10.9734/BJMCS/2016/26337
Editor(s):
(1) Dijana Mosic, Department of Mathematics, Unsigrof Nis, Serbia.
Reviewers:
(1) Derya Sevim Korkut, Duzce University, DuzceyRey.
(2) Ankur Singh Bist, UPTU, India.
Complete Peer review Historpttp://sciencedomain.org/review-history/14542

Received: 11 April 2016
Accepted: 28 April 2016
Published: 9" May 2016

| Original Research Article |

Abstract

So far, various approaches have been proposed for effentivacaurate prediction of software defe
yet most of these approaches have limited adoption in peadtie objective of this paper is to provide a
framework which is expected to be more user-friendlycéiffe and acceptable for predicting the defects
in multiple phases across software enhancement projeuis.communication describes a process of
applying computational intelligence technologies, in paldic neural networks in formulating defect
prediction models early in the software development lifelec A series of empirical experiments are

carried out based on input and output measures extri@otadb0 ‘real world' project subsystems. In orger
to increase the adoption and make the prediction frameeaslty accessible to project managers, a
graphical user interface (GUI) based tool has been desmmeimplemented that allows input data to| be
fed easily.
The proposed framework uses historical data for trainindaihand as a result provides a defect range
(minimum, maximum) based output instead of a definite def@ent based output. This is done in view

of the fact that exact-count prediction has less probplfitbeing correct as compared to range bgsed
predictions. The defect predictions can be used for takingrn&@d decisions including prioritizing
software testing efforts, planning additional round of codeeresj allocating human and computer

*Corresponding author: E-mail: vipulvashisht@gmedm;

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; Artinte BJMCS.26337

resources, planning for risk mitigation strategy androtoerective actions. The claim of effectivenes:
proposed framework is established through results of a conyearstudy, involving the proposed
framework and some well-known models for software defesdiction.

Keywords: Software defect; software defect prediction mddelral Network (NN); quality management.
1 Introduction

The constantly evolving technological infrastructure presargeeat challenge for developing better, faster
and cost effective software systems. The increasing leoitypof software products and projects has been
constantly pushing software organizations to improve prodwditg@and performance. Most organizations

have business goals of customer satisfaction and prefitablvth, which are being met through increasing
use of software systems. In organizations, defect dsunbst commonly used as one of the major indicator
of product quality. A higher defect count may not only affihet planned cost and schedule but may also
result in losing the customer base. Hence planning farcied defect count during software development
can bring significant business benefits. Most expertseatyethe fact that it is always better to prevent
defects or detect them earlier in software developméntiicle rather than to let the end customer find
them.

In the current context, developing defect free softwarediaumting task, specially, when software is being
developed for problems with increasing complexity. Howewecurrences of certain defects are inevitable
in spite of all measures planned by the organizations. derdo control and reduce defect injection in
software engineering processes, organizations not onby tegplan huge budgets for time and resources but
also need to plan for appropriate defect prediction mfidelThe Software Capability Maturity Model
Integration (SW-CMMI) framework from CMMI Institute provigle set of requirements that organizations
can use in setting up the software process used to castftlare development process and guide
organizations in high performance operations. The CMMI framlevaimhlights use of defect prediction
model as one of the high maturity practices. In this tkddrorganizations must make use of quantitative
techniques like control charts and prediction models to shesvthe process improvements while planning
for CMMI L5 appraisal from CMMI Institute [2,3]. Softwarelefect prediction framework once
implemented is used as effective tool by organizationstHferpurpose of identifying parts/phases of a
software life cycle, requiring increased focus bef@lease and taking necessary corrective and preventive
actions towards reducing defect leakage.

1.1 Software enhancement project life cycle

A complex software development project would typically ceingf phases such as, Requirement gathering,
Design, Construction (including Coding and Unit Testingystem Testing, User Acceptance Testing,
Implementation, and Post Implementation support. In the miubgsiness context, there are ever changing
business needs, and as a consequence, frequent changefeadnimplemented project have become an
integral part of the process. These changes are made @nadlled through due approvals from select teams
usually termed as Change Advisory Board (CAB) constitutedhb organization. Changes are generally
approved on the basis of new requirements that have touol(g)dio the code of the already existing
software. Depending on factors such as changes in sizeigfuptints/line of codes), the priority and the
criticality, the project team generally decides whethernew change should be considered as a production
support ticket or an enhancement by itself. In view effict that software enhancements are generally of
smaller duration, these are termed as mini or shojégs The enhancement life cycles generally covers
phases such as Requirement Gathering, Impact Analysis tr@dim, Testing with UAT and Post
Implementation. Effort spent under each of the softvearieancement includes production effort, review
effort and rework effort. Both effort and defects anterrelated by the fact that the production effortdsel
the number of defects injected, the review effort yi¢tdsnumber of defects detected and the rework effort
removes the defects so detected. It is a well knowntfettthere is a relationship between functionality

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; Artinte BJMCS.26337

enhancement and software defects distribution [4]. A piedianodel generally predicts the number of
defects as against the amount of effort for each of ttesgs aforementioned. Enhancement life cycle
methodology represents improvements to existing softwaterims of functionality / technologies. This
enhancement methodology is suitable for ongoing maintenanlkeegef applications. These projects carry
out identified enhancements as a part of periodic re¢easd / or individual basis depending on priority and
customer preferences.

The enhancement methodology is most suited to projects inltbeihg scenarios:

» Small changes to a large application

« Significantly changes in core architecture and functignal
» Simpler requirements / requirement changes

» Small changes in functional and technology upgrade

In previous paper [5], the authors have presented a neuvebrikebased framework to predict defects in
large software projects based waterfall lifecycle The overall duration of most of software enhancement
project is quite small as compared to waterfall lifeeyzhsed projects. In this communication, three distinct
phases (Requirement Gathering, Construction and Testing)tfrersoftware enhancement projects have
been considered for designing the framework. In view offdbethat the effort and duration for analysis
and design phase plays a minimal role, hence, the defedttpmedfor these phases is not taken into
consideration.

It has also been observed that relevant research wadttheifield past is focused more towards software
development as compared to software enhancements or softeareenance [6]. Unfortunately, there is
shortfall of appropriate defect prediction models for softveari@gancement projects. To address this problem,
we propose a defect prediction model for software enhamteprejects, justifying the investigations
reported through this communication.

The paper is organized as follows. Section Il providesief bwverview of Neural Networks, Section Il
reviews the existing literature on the subject, Sectibddscribes the proposed framework and discusses the
results as obtained through use of the proposed defatittowa framework vis-a-vis some other relevant
models/frameworks, and finally Section V concludes thegmtesl work.

2 Computational Intelligence Technologies

During the previous decade, there has been increased integrati@eehe fields of software engineering
and computational intelligence (Cl). Where, the CI includegure technologies of fuzzy logic, neural
networks, genetic algorithms, genetic programming, rough asetshybrid systems that combine two or
more of these individual technologies like ANFIS. The comtjarial intelligence area provides a unique
opportunity of incorporating these technologies to addressussoftware engineering problems. The main
objective of incorporating Cl technologies into the vari8I_C phases is to address the issues arising due
to imprecise measurement and uncertainty of informatio8].[;he next section discusses about the
structure and functions of a Neural Network.

2.1 Neural networks

Artificial Neural Network (ANN) approach is inspired iye human brain networks, which is a network of
about 100 billion neurons, each neuron being connected, on the everaout 1000 other neurons. A
neuron is basic constituent of human brain, a sort of eleameprocessor having small local memory and
capable of localized information processing. In Fighg, leftmost layer in this network is called the input
layer which consists of neurons called input neurons, througbhwinputs from the environment are

received by the ANN. The rightmost or output layer contiesoutput neurons through which output to the
environment are delivered by ANN. The middle layerigskalled a hidden layer in which the actual

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; ArtinleBIJIMCS.26337

processing by ANN takes place. The signal or input givennt reeuron is passed to all the neurons to
which it is connected in fractions equivalent to the welggtiveen these neurons. Each neuron-to-neuron
connection has a variable weight quantifying the connectiomgitre Each neuron calculates its output
based on a function which can be sigmoid, step or some suahlsdunction. In the first phase, the neural
network performs learning by finding a vector of intercanio® weights that minimizes its error on the data
set used for training that has known values of inputs @responding outputs. In the next phase, after
selection of the connection weights, the network predigtotitput values for data having known inputs and
unknown outputs.

Input layer Hidden layer Output layer

Out,

Qut,

Fig. 1. Neural network [5]

Depending upon the pattern (architecture) of the conneditificial neural network can be classified into
two categories, feed-forward networks and recurrent éediiack) networks. In feed-forward networks,
graphs have no loops and the output from one layer is usaedugo the next layer. In feedback networks,
there are loops providing feedback connection to input layer.

One of the major advantages of neural networks over wadltiexpert systems is their ability to
automatically learn from examples. ANNs have the abilityldarn underlying rules (like input-output
relationships) from the given collection of represeméaixamples. A neural network learns patterns by
adjusting its weights. When the neural network is propedined, it can give correct, or nearly correct,
answers for not only the sample patterns, but also forsimadar patterns [9,10].

3 Related Literature Review

Software defect prediction is an active research arefgeld of software engineering. Researchers have
proposed new defect prediction algorithms and/or new metrieffectively predict defects. The historical
data of software systems is a valuable asset useddearch ranging from software design to software
development, software maintenance, software testing, letaciew of the fact that each defect prediction
model has its own set of advantages and disadvantagegjifficult to find most appropriate model for a
particular type of project scenario, especially in viefathe fact that every software project tends to be
unique.

Neural networks have been found to be effective in si@natwhere data relationships may not be known, as
normally happens in the case of software defect piedictt was observed during literature review that
neural network based framework for modeling defect preditizanbeen successful in following application
areas:

« Diverse fields range from autonomous vehicle control [11].
* Financial risk analysis to handwriting recognition [12].
« Dynamic software reliability modeling [13].

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; Artinte BJMCS.26337

* Applying neural networks in software effort estimation 5},
e Software metrics models [16,17,18,19,20,5].

Prior to conducting the experiments, it is necessary ¢aldeupon appropriate computational intelligence
approach. It was decided to use neural network paradigm ftirgelefect prediction model framework for
software enhancement project. This decision was basadthp fact that the relationship between effort and
defect data is quite complex and is generally difficult toes@nt in functional or near functional form. The
decision is further strengthened by the author's previous erperiwith using neural networks to model
software defect prediction tool for Java waterfall tfele based software projects [5].

In past, McCabe [21] and Halstead [22] work based onicsétave been commonly used to describe the
attributes of each software module (i.e. the unit of fonelity of source code). General
principles/approaches/steps which have been found useful #o liandling the difficult task of software
defect prediction, along with the relevant literature,sanmmarized below:

* In [23], an enhanced Multilayer Perceptron Neural Network dasehnique has been used for
defect prediction. Comparative analysis of defect proreemesdictions was performed using
dataset from NASA MDP (Metrics Data Program). The resutim proposed MLP neural network
model were better when compared with existing technigkesRandom Tree, classification and
regression trees (CART) algorithm, and Bayesian logisticession.

* In [24], Adaptive Resonance Neural Network having 29 input nedhestwo output nodes is
designed for the purpose of defect prediction in softwangrams. PROMISE dataset is used to
train the network. The results showed that recalle(tpositive) rate is improved in predicting
whether a module is defective or not [25].

* In [26], a software reliability modeling approach in terof the predictive quality and the quality
of fit is described using neural and regression analysisitgues. The data set has been taken from
an Ada development environment for the command and control of lisarynidata link
communication system (CCCS). Results showed that the meatvebrk based model has smaller
standard error and is superior to traditional regressiordliashniques.

* In [5], neural network based defect prediction model han Isiccessfully used for predicting
defects across Java based projects following wateifallclycle. The tests conducted for 15
projects showed accuracy close to 90 %.

* In[27], neural network based tool using Levenberg-Marquard) @lgbrithm is used for software
defects. The PROMISE repository dataset uses the CKCiidamber and Kemerer Object-
Oriented) metrics. The results showed that neural networkl lzdgerithm provides better accuracy
(88.09%) as compared to each of polynomial function-based neerabrks (pF-NNs), linear
function-based neural network (If-NN) and quadratic fuoretbased neural network (gf-NN)
respectively.

This paper describes a neural network based frameworkrfoufating models for defect prediction early in
the software life cycle. For the purpose, a seriesngbirical experiments is conducted based on input and
output measures extracted from 'real world' projects.eXperiments establish the efficacy and superiority
of the approach. Next section describes the proposedviranike

4 The Proposed Framewor k

As mentioned earlier, the objective of this study is toetty prediction for forecasting the defects in
software enhancement projects. In this section, tirstassumptions made about the proposed framework
have been explained. Then the structure of the propoaeeivork and functions of major components of
the framework are described. The results and other ddlsgaes are discussed in the next section.

Vashisht et al.; BIMCS, 16(5): 1-12, 20¥8ticle no.BIMC.26337

Defect Estimation System Output/ Defect
(MNeural Network) Prediction
Y

Input of one

phase from
(Total Efforts)

Requirement

User Training using Meural
—E Netwaork Fitting Toal -
Training
Database
_’IE Data Range Estimation (40 Projects ;
(Statistical Analvsis) Real Time Data) |,

i

Prevention ' T

Fig. 2. Model framework design

The experiments reported here involve data set taken 5fbmeal projects from a software organizatis
Out of this dataset, 40 projects are used for trainingrtbdel and the rest 10 projectss data ard ts
validate the accuracy of the model. The actual defectidatken from completed software enhance
projects. This historical data has served as a trainitg © build the proposed framework (refel. 2) and
then the neural network so obtained is used to predict tleetdddr all new projects

While executing software projects, estimated efforthe primary determinant for arriving at the ove
development cost and project schedule. In this communicatiergéfect prevention effcort, reviewoe!
and rework effort have been considered along with the prioduetfort. In view of tlithe fact thas
voluntary effort towards defect prevention activities iases, there is a considerrable decrea
involuntary costs of rework leading to overall better quality [24,Z8F effort estimationa for abbfevare
enhancement projects considered in thper has been done using standard program complestityation
technique [29].

4.1 Structure of the proposed neural network

A feedforward network with sigmoid (hidden and linear output neurongsésl to formuulate the syst
The network is trained with scaled conjugate gradierk-propagation (training).

Defect prediction system consists of three parallel neoeavork: with different configurations an
parameters for each sub phase. Only first phase, thReguirement Gathering phase is; having 16em
layers. The architectural view of Neural Network fequirement gathering phase is shown ir. 3.

Hidden Layer

Fig. 3. Model framework design

The decision on number of hidden layers to be used is doike ednsidering the need cof optimizing
regression value for attaining the best performance. Desygittact that use of more neuurons requiee
computation and atssuch use leads to over fitting the data yet, ataheegime, it allowss the network
solve more complicated problems [3

Vashisht et al.; BJMCS, 16(5): 1-12, 20¥6ticle no.BIMC.26337

Input data of 40 real time projects is divided randoimlyhree parts before training is initiatedaihing
(70%), Validdion (15%) and Testing (15%). Fig. 4 shows the data distribi

Validation and Test Data
Set aside some samples for validation and testing.

Select Percentages Explanation

& Randomly divide up the 40 samples: &% Three Kinds of Samples:

i’ Training: 70% 28 samples a Training:
@ vali . Ferrirs These are presented to the network during training, and the network is
T oy B adjusted according to its error.
[] Testing: 15% - 6 samples
Ei Validation:
These are used to measure network generalization, and to halt training
when generalization stops improving.
[T} Testing:

These have no effect on training and se provide an independent measure of
network performance during and after training.

Fig. 4. Validation and test data per centage
Since the Levenberg Marquardt bagmopagation optimization method is considered to beand uses le:
memory, this is being used for tn&ig the network. Neural network design configuratparameters a
listed in Table 1.

Table 1. Network design configuration

S.no. Parameters Requirement phase Construction phase Testing phase
1 Trainingsample 40 samples of 4 elements (4 X 40)
[Productioneffort, review effort, rework effort revention effol]

2 Target samples 40 samples of 1 element (1 X 40) [Def
3 Hidden layer 10 5 20
4 Data division for Training (70%)validation (15%) & testing (15%)

network use

4.2 User interfacefor testing the framework with new projects

One of the primary objectives during GUI design has begmagde eas-of-use for project manager. T
GUI based tool developed using Matlab R2013b uses onlwinaows, the first for identifying the pbe
for which prediction is required and the sed to input the planned effort for activities andures a
straightforward output of the defect predictions (ré&fig. 5). For any new project, the project agar will
provide the inputs required to the Ul. The inputs would be theephdse efforts pnned for the projec
Apart from production effort, the planned review eff@ianned prevention effort and the plannedaey
effort are also required as a feed to the framework. Basdtlese inputs, the frameworkk will foreths
number of defects #t the project manager could expect to be discovered iaugaBDL(C phases in t
project. The defects are forecast in a range basedenanhe framework would provide tthe minimum
maximum number of defects. The forecast would enable thegbmojanaer to plan prevention activities f
the phase where the framework is projecting higher numbeefefcts. The project manaager can plal
multiple preventive actions, such as multiple review gaisage of tools, and increasinng reviewrteféc
mitigatethe higher probability of defect leaka

4.3 Results and discussion on NN based approach

In the experiments, the data sets with different netwiwhitectures have been used. The: actuattefate
from 40 completed projects was taken and used as a galaba. Later, the framework was also te$te(
prediction of defects for newly stad@rojects. The quality of fit and the predictive qualitynd for each ¢

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; ArtinleBIJIMCS.26337

the data sets have given very optimistic resuksdf{acussed below). The prediction results inditz the
network (based on the proposed framework) triegsack the behavior of the full data set and itdfred
value around the actual values —sometimes less@mnéthing more.

rﬂ Input |Lﬂ1
7 M
B3 NN Options RSN x| [
| Production:
|
) | Revi
Which NN Modsl do pou nesd? o
== - —— ERewuﬂc
[i i
|Hewrement | Consuuchnn! [Tesmn'_% !
L “JJ ! Prevention
(OK Cancel |

Fig. 5. Defect prediction system Ul

For the test results of pilot conducted on 40 mtgjesoftware enhancement project dataset haslatiore
coefficient R value of 0.97 for Requirement gathgrphase, 0.91 for construction phase and 0.8&#&bing.
The regression value depicts a closer relationbbiveen the predicted and actual defects. The Reval
measures the correlation between outputs and sargiet. 6 represents the relationship for all ths&d.C
phases (Requirement gathering, Construction, Tgsfior software enhancement project and defines the
prediction reliability of the network designed.

All: R=0.98129 All: R=0.91524 All: R=0.8942

o

O Data g = O Dala

—Fit Q Fit
oy =T 8 Ao v=T

Q Data
Fit
Y=T

bl

-
n

w
]

= n ¢
- h B oW in o
&

Q0 4

=]

Output ~= 0.94*Target + 1.6
o
Lo}
OON [+]
o 0"
Output ~=0.74"Target+ 3.7
[

Output ~= 0.97*Target + 0.072

Requirement Phase i Construction Phase Testing Phase

1 2 3 4 5 10 15 2 % 5 10 15 20 25
Target Target Target

Fig. 6. Representation of R value for phases of software enhancement projects
Table 2 shows metrics which are often used by rekees to assess the performance of the model

e The mean absolute error (MAE) is used to measuve ¢lose forecasts or predictions are to the
eventual outcomes.

e The mean squared error (MSE) is used to measur@vtdrage of the squares of the "errors”, that is,
the difference between the estimator and whattisiated.

e The root-mean-square error (RMSE) is used to meagifferences between values (sample and
population values) predicted by a model and thaeshctually observed [31].

As shown in Table 2, the MAE, MSE and RMSE valueed from complete data set of 50 projects shows
that ANN prediction results are in line with thetdal results. Also, the comparison of the defemtdrchart
(refer Fig. 7) from 10 projects during model vatida phase shows that, in most cases, actual defiextd
follows the ANN prediction trend.

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; ArtineBJIMCS.26337

Table 2. Comparative MAE, M SE and RM SE valuefor neural network model predictions and actual

defects
Phase M ean absolute error M ean squared error Root mean squareerror
(MAE) (MSE) (RMSE)
Actual defectsvs Actual defectsvs Actual defectsvs
NN predicted defects NN predicted defects NN predicted defects
Requiremer 0.43 0.52 0.72
Construction 1.61 5.38 2.32
Testing 2.9 57.8: 7.6C
Comparison of defects data for 10 Projects during Validation :
ANN Prediction VS Actual Defects (Requirement Phase)
7
6
L\
E 4
& 3 o —#— Actual Defects
1 L ¥ -
a T T T T T T T T T 1

1 2 8] 10

30
25

20

Comparison of defects data for 10 Projects during Validation : ANN
Prediction VS Actual Defects [Construction Phase)

2 s / \ /,-\
& 10 / \,~‘ \J —#— Actual Defects
ANN
5 42
a
1 2 3 4 5 6 7 8 9 10
Projects
Comparison of defects data for 10 Projects during Validation :
ANMNN Prediction VS Actual Defects (Testing Phase)
80
70
60 ;A\
w50
£ J \
& 40 }- \
& 30 ; j,_ —#— Actual Defects
r Y
20 e —— ANN
SR — 7
o - : : :)

Fig. 7. Defect

trend chart showing NN model prediction compar ed with actual defects

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; Artinte BJMCS.26337

4.4 NN framework comparisons of results

The artificial neural network framework based apgto appears to be promising for solving software
engineering problems on defect prediction wheréotital data from past software enhancement prejisct
made available. The model performed well in thdiieary validation experiments.

The results from software enhancement project dates R value of 0.97 for Requirement gatheriragsph
0.91 for construction phase and 0.89 for testingsph The overall prediction reliability of the netk
designed is close to 92%hese results obtained by the proposed framewaskd on Neural Network are
comparable with, and even better than, the resittsaccuracy of 88.09 % as obtained in [27], ugnglic
PROMISE library and Levenberg-Marquardt (LM) algom based neural network for predicting the

software defects. The results are also better thidim the work done on neural network based defect
prediction model for Java projects following wagdirfife cycle, having accuracy of 90% [5].

5 Conclusions

The results from experiments indicate that the psed framework based on neural network approach
possesses good properties from the standpoint afeinguality of fit and predictive capability. The
conclusions are based on investigations of softvesatgancement projects data set. In order to adhpt t
proposed framework to suit other software methogiek like ERP, Agile, Production Support, etc, tiert
effort is required. The investigations in thosepexgs will be reported in subsequent communications

Competing Interests
Authors have declared that no competing interesst.e

References

[1] Levinson M. Let's stop wasting $78 billion per ye@O Magazine; 2001.

[2] Shurei Tamura. Integrating CMMI and TSP/PSP: UsSK®P data to create process performance
models. Carnegie Mellon University; 2009.

[3] Vashisht V. Enhancing software process managenteough control charts. Journal of Software
Engineering and Applications. 2014;7(2):87-93.

[4] Lanning DL, Khoshgoftaar TM. The impact of softwaehancement on software reliability. IEEE
Trans. Rel. 1995;44(4):677-682.

[5] Vashisht V, Lal M, Sureshchandar GS. A framework $oftware defect prediction using neural
networks. Journal of Software Engineering and Aggtlons. 2015;8(8):384—-394.

[6] Pigoski Thomas M. Practical software maintenancestBpractices for managing your software
investment. John Wiley & Sons, Inc.; 1996.

[7] Boetticher GD. Applying machine learners to GUI afieations in formulating early life cycle
project estimations. Software Engineering with Catagional Intelligence. 2003;1-16.

[8] Khoshgoftaar TM, Ed. Software engineering with camagional intelligence; 2003.

[9] Sivanandam SN, Deepa SN. Principles of soft compgutlohn Wiley & Sons, Inc"2Edition; 2009.

10

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; Artinte BJMCS.26337

(10]

(11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

(26]

Munakata T, Ed. Fundamentals of the new artificitdlligence. Texts in Computer Science; 2007.

Narula SC, Wellington JF. Prediction, linear regies and the minimum sum of relative errors.
Technometrics. 1977;19:185- 190.

Gafhey JE Jr. Estimating the number of faults idecdEEE Transactions on Software Engineering.
1984;SE10:459-464.

Karunanithi N, Malaiya YK, Whitley D. Prediction afoftware reliability using neural networks.
Proceedings of the International Symposium on SofvReliability Engineering. 1991;124-130.

Kumar S, Krishna BA, Satsangi PJ. Fuzzy systems rengal networks in software engineering
project management. Journal of Applied Intelligerk®94;4:31-52.

Srinivasan K, Fisher D. Machine learning approactegstimating software development effort.
IEEE Trans. Software Engineering. 1995;126-137.

Boetticher G, Srinivas K, Eichmann D. A neural based approach to software metrics. Proceedings
of the 8" International Conference on Software Engineering &nowledge Engineering. 1993;
271-274.

Available: http://nas.cl.uh.edu/boetticher/publioas.html

Boetticher G, Eichmann D. A neural net paradigmdoaracterizing reusable software. Proceedings
of the First Australian Conf on Software Metric9938;41-49.
Available: http://nas.cl.uh.edu/boetticher/publicas.html

Boetticher G. Characterizing object-oriented sofewor reusability in a commercial environment.
Reuse '95 Making Reuse Happen - Factors for Suckksgantown, WV; 1995.
Available: http://nas.cl.uh.edu/boetticher/pub tiicas.html

Boetticher G. An assessment of metric contribuiiorthe construction of a neural network-based
effort estimator. Second Int. Workshop on Soft Cating Applied to Soft. Engineering; 2001.
Available: http://nas.cl. uh.edu/boetticher/pukbiioas.html

Boetticher G. Using machine learning to predictjgebeffort: empirical case studies in data-starved
domains. Workshop on Model-Based Requirements Eeging; 2001.
Available: http://nas.cl.uh.edu/boetticher/publioas.html

McCabe TJ. A complexity measure. IIEEE Trans. SaferEng. 1976;SE-2(4):308-320.

Curtis B, Sheppard SB, Milliman P, Borst MA, Love Measuring the psychological complexity of
software maintenance tasks with the Halstead an@didle metrics. IEEE Trans. Software Eng.
1979;SE-5:96 -104.

Gayathri M, Sudha A. Software defect predictiontsys using multilayer perceptron neural network
with data mining. International Journal of Recertfinology and Engineering (IJRTE) ISSN: 2277-
3878. 2014;3(2):54-59.

Croshy P. Quality is free: The art of making quadiertain. McGraw-Hill, New York; 1979.

Singh S, Singh M. Software defect prediction usidgptive neural networks. International Journal of
Applied Information Systems. 2012;4(1):29-33.

Katiyar N, Singh R. Prediction of software devel@faults using neural network. VSRD-IJCSIT.
2011;1(8):556-566.

11

Vashisht et al.; BJMCS, 16(5): 1-12, 2016; Artinte BJMCS.26337

[27]

(28]

(29]

(30]

(31]

Singh M, Singh Salaria D. Software defect predittimol based on neural network. 1JCA.
2013;70(22):22-28.

Juran J, Gryna F. Quality control handbodkedl., McGraw-Hill, New York; 1988.

Sunohara Takeshi, et al. Program complexity measoresoftware development management.
Proceedings of thé"8nternational Conference on Software EngineeriB§E Press; 1981.

Neural Network Toolbox™ User's Guide; 2015.

Chai T, Draxler RR. Root mean square error (RMSEnean absolute error (MAE)? — Arguments
against avoiding RMSE in the literature. GeoscidgldDev. 2014;7(3):1247-1250.

© 2016 Vashisht et al.; This is an Open Acces<lertdistributed under the terms of the Creative @mms Attribution License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondamproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be aseds$ere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/14542

12

