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Abstract

The proposed mechanical system consists of two magnetidlatisgi subsystems, which arfe
mechanically coupled. The first one consists of angpmagnet-mass subsystem and the other one is a
spring-mass subsystem. The non-linear symmetric fieddted by two other fixed magnets, oriented (for

attraction, acts only upon the first subsystem. Thereertystem can oscillate horizontally, withqut
friction and without loss of energy. Oscillations occur vatimservation of kinetic energy and potential
energy stored in the springs. During the movement, depgrodfi the amplitude of oscillations, the main
body stops for a period and this can be controlled by hlgsigal constants of the system. The reasor for
these controlled halts of oscillations is the transfer @flmnical impulse, due to both oscillators entefing
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in the frequencies equalizing status with different infietjuencies. The frequency of the main oscilli
gets synchronized with the frequency of the second oscjllayoits deeper or more superficial presence
in a non-linear magnetic field, which is strongly dependent stamite. This paper will apply linear
algebra transformation methods, on th& VRctor spaces, for differential equations systems, that are
applicable to non-linear systems only if we consider sepezial conditions. The general case will|be

solved and the method will be verified through a numerical sgijit.

Keywords: Nonlinear second order differential equation systliptic functions; 2N parametric vector
space, R vector spaces; double oscillating mechanical system:ielémtces field; magnetic
forces field; controlled halts.

1 Introduction

The proposed mechanical system consists of two oscillatibgystems, which are mechanically coupled,
like in the Fig. 1. The first subsystem will be main orensisting of one spring and a mass with a magnet

inside, while the second one is a classical spring-malssystem. Both subsystems interact with each other
through a connection spring.

The oscillations that occur in various situations are vesrésting and will be described in the following.
We will treat the ideal case, with no friction andlie tassumption that there is no loss of energy during the
magnetic and mechanic interactions. One of the most impattanacteristic is that the system starts with
an applied initial impulse and kinetic energy is transforpexibdically into potential energy.

1.1 Thedescription of the mechanical system

We will start from the figure below, which displays tposed mechanical system, where there are two
mechanical subsystems being in nonlinear interaction, defushown:

- The first subsystem, called the main subsystem, censistnass-body mand a spring that will
introduce a linear elastic field. At the same timeg gBubsystem is placed in a magnetic field,
nonlinear strong at the ends of the race, thus creatioglmear potential field. In the magnetic force
description, a simple monopole-monopole expression has been arskohgf bar magnets, described
in [1].

- The second subsystem, called secondary subsystem, safisisass-body gnand a resort that will
produce oscillations under the influence of the potentidd faé its own resort, but also under the
action of the inertial field induced by the first osiilhg system.

In the mathematical description of the introduced mechamsigstem we are taking into account some
equations from the physical model already described inutiees’ earlier work [2]. Actually, the current
study represents a continuation of ideas presented in titdé,at a more complex level.

We have to specify that, during the oscillations, tlagnetic field acts only on the ensemble formed by m
mass and its interior magnet. The permanent magnet vgiokide the mbody, is oriented as shown and
the entire mechanical system can move freely, with@tttdn, in X axis direction.

1.2 The constants of this mechanical system are

kl — is the elastic constant of the first spring;
k2 — is the elastic constant of the second spring;
k3 — is the magnetic constant depending on strength of the pertmagnet;

n‘h_ —is mass of the magnet-mass body of the principal oscillator
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m2 —is mass of the mass-body of the second oscillator;

& - is a magnetic constant depending on the mechanical coimtro€the system.

S

I Equilibrum ¥ ! Equilibrum
RO position 1 —— position I|::;:=~
0 X,(t) X=Xt x

Fig. 1. Two coupled spring-mass subsystems, inter acting in a nonlinear magnetic field

From a mechanical point of view, the mathematical difféaéeiquations that describe the system include
the resultant of the static and dynamic forces, as irfdll@ving, and some constructive ideas have been
taken from scientific papers [3] and [4].

1.3 Theinvolved forcesare

F_ — the elastic force of the first subsystem, given byettression:

€l
Feq = —kg X1(t) + ko[ X2 (t) = Xq(t)] )

F_ —the elastic force of the second subsystem, with thesesjon:

€2

Fea = —ka[ X2 (t) = X1 ()] @)

In the way of writing the equations that describe the eléisiid created by springs, we took into account for
the lineat part of our problem, the work [5].

an — the magnetic force acting on the first permanentn@iad with nonlinear expression, it has been

also described in detalil, in the work [2], and has the exipress

k3 k3
Fm (X)) = 2~ 2 &
[e-X1(O]7  [e+X ()]

Fl’l = Fel + an — the static forces resultant of the first subsystem:
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K K
Frq =Ky Xq (0 +Ko[ X o () = Xq ()] 3 ,- 3 , @
=X, 12 [£+%, (O]

Fr 2 = Fe2 — the static forces resultant of the second subsyst

Fro=—ko[ X5 (t)=X1(1)] (5)

Fi — the inertial force acting on the first mass:

2
d“X4(t)
F. =n‘171 (6)
|
1 dt2
Fi2 — the inertial force acting on the second mass:
2
d“Xo(t)
- 2
i, =M o )
2 dt2

2 Applied Methods

Given the forces described in the expressions above, we gahatahe system of differential equations
describing the mechanical system has the following sireict

97,0 Ky X (1) + K[ X, (8) = X, (1)] i “
=- t) + t) - X, ()] + -
PR T eox 1 e+ Xy ]2

m
1 dt2

e
l, =Fe
2 2 d2X2(t) @®

We have an homogenous, non-linear, Betder differential system, with coupled equations, diffi¢a
solve through an analytical method. In order to solesd¢hequations, the model proposed by the authors can
be described in the following way:

We will rewrite the system in the form of a matrixssym as follows:

dXy ()

a2 | [larke) ks ko . X0 .

02,0 | | kg 0 —kp) |[EX O [e+Xy (07

a2 X(1) (9)
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As the system is written in a 2x3 matrix form, with 2 roavsd 3 columns and we want to make a 2N—
parametric vector transformation, in the vector spatewR will perform a mathematical artifice. We

. . . . —_ d 2Gn (Xl) . . .
consider a nonlinear mathematical functidnm, (X,) = ——5 » With the following form, described
also in (3):

d an (Xl) — k3 _ k3 (10)
dt® [e-X, (01 [e+X, O
The system becomes:
d*X,(t)
dt’ ~( k) K,k X, (1)
d°G, (X,) |_ (klo 2 o 11
dt’ 0 —k | |[ETXOF [E+X )
d?X, (1) 2 2 X, (1)
dt? (11)
We divide the conexion matrix b, , as follows:
d?X,(t) _lktk) ko ky
dt? K, k, K, X, (t)
d*G,(X,) |_ K, 1 1
—5 |7k 0 — 0 >~ 5
dt K, [e-X.(O [£+X,(D]
47X, k oy _k X, (1)
dt? K, K, (12)
o withg = K _ ks . o .
Denoting withq = k_ and N = k_ , we obtain the next system written in E - orthogonal veuasis:
2 2
m d?X,(t)
k, dt? ( X, (t)
-(g+) n 1 1
1 1d°G,(X) |_ 1 1
E:l——5"|=| 0 n O 2~ 2 (13)
k, dt L o g |[[ETXOF £+ X, (0]
m, d*X,(t) X, (1)
k, dt?

We are going to transform the system of differentégalagions in a quasi-diagonal form. This fact will help
us to solve those three differential equations separatedyspecial vector space, which will be found further
down.
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This method, which we are going to apply, was alreadgessfully applied in the earlier authors’ work [6],
where a simple 1N parametric vector transformation’imeRtor spacayas considered.

The problem that implies the usage of vector spacesluing of systems of liner differential equations, was
widely described in specialty scientific paper and alsmiorgginal manner in work [7].

We are seeking to transform matrix A, into a matrix Bllofving a vector transformation, using the

associated matrix of a V-vector space together with isrse, V*, while observing that the following
condition must be fulfilled:

det(A) = det(B) (14)

We are searching to transform the matrix A,

-(q+1) n 1
A= 0 n O (15)
1 0 -1

In a special, quasi-diagonal form one:

VO°+4-q-2
2

0
B= - n 0 (16)
a— 2 a— a—
0 0 Vg +4-9-2
2

In connection with B matrix, we specify that:

= We have chosen this form of quasi — diagonal, B- matrizaliee we intend to solve this problem (a
2"order, nonlinear differential equations system), by solmedel presented in [6], and we want to
bring the system of differential nonlinear equations,lteoat that form, with specification that, here
we use a quasi-diagonal form one, not a diagonal form.

= The matrix B, described in equation (16), was obtained sftegral successive attempts, not applying
a certain known algorithm, just based on the matrix muléfibois, conveniently chosen. It was
obtained by thinking in advance the steps for solving matheahatiodel.

This solution allows us to symbolically decouple those tlifferential equations, and in compliance with
the conditions stated above and as it is written below, vthereesemblance relations of matrix A and B are
being verified:

det(A)=nq
n( q2+4—q—2j(—\/ 2+4—q—2j n[—q2—4—(q2+4q+4ﬂ (17)
det(B)= 4 = 4 =nq

Looking for a three-dimensional V-basis, ifi \ector space, the: (a,b,c,d,e,f,g,h,i) - independentreas,
will be found as follows:
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* We are searching to find a generalized vector transtamaegardless of the physical constants
of the system, a matrix form, with nine unknown matrix ctiméstic in R -vector space.

* In order to perform an advance unitary transformatjgerametrically point of view, we will
consider all the numerical possibilities, through the miaeameters taken into account, and this it

was the reason of choosing that those nine parameters.

a b c
V=/d e f (18)
g h i
Calculating symbolically the inverse of this matrix, welfthe following form:
ei— fh _ bi—ch _ bf +ce
aei—afh—dbi+dch+ gbf —gce aei—afh—dbi+dch+gbf —gce aei—afh—dbi+dch+gbf -gce
v di- fg ai-cg N af —cd
aei—afh—dbi+dch+ gbf —gce aei—afh—dbi+dch+gbhf-gce aei—afh-dbi+dch+gbf - gce
_ -dh+eg _ ah-bg ae—bd
aei—afh—dbi+dch+gbf -gce  aei—afh—dbi+dch+gbf —-gce aei—afh-dbi+dch+gbf-gce
(19)
where for any R- vector space form, determined by physical constaeatiations, verifies the equality:
1 00
VV=010 (20)
0 01
According to the theory of vector space transformationd ursénear algebra, we obtain:
(21)

VAV'=B

= The intermediate calculus, regarding the matrix multiplcatiector rule, is too voluminous, and
we chose not to mention there, because we shouldnt complicateal¢hkis, but each elements of
this matrix (eq ... eg), will be described in (23). .. (31), and we specify tliat,verification is

immediate.
= We now can write the matrix multiplication, as following:

\lq2+4—q—2

o | fA1 %2 *4g 2 0 0
V A V- =|ety ety elps|= -q n 0 (22)
€1 B2 €®B3 0 0 Vg% +4-q-2
2

Based on the formula above which transforms a matrix dizgpto a vector space and its inverse, we obtain
after successive multiplications, next nine equations with ohknowns:

cq. :| ~2€iq-aei+afhgt afh+ baf —cae+ nedi-nfdh-ndbi+ ndch+ieg - hfg— gbf + gce _ g*+4-q-2| (23)
A aei-afh—-dbi+dch+ gbf - gce 2
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ca |~ beig—bei+bfhq+b* f —bce+ ne’i —nefh- nebi+ nech+ hei- fh® + hce_ 0
4 aei- afh— dbi+ dch+ gbf — gce

(24)
ca. | - ceiq—cfhq—cfh—cbf +c’e—nfei+ nf *h + nfbi - nfch-ei’ +ifh _ 25)
s aei—afh—dbi+dch+ gbf — gce
ca - idga+ adi-afgq—a’ f +acd-nd"i +ndfg+ ndai- ndcg- gdi+ fg* —ged _ _q@s)
G- aei- afh—dbi+dch+ gbf — gce

cq. - dbig+ dbi-bfgg+ gbf + baf — cbd- nedi+ nfeg+ neai— necg+idh - gfg— afh— dch: nlen
% aei-afh- dbi+dch+ gbf - gce

eq, .[cidq—cfgq—cfg—caf +c’d — nfdi+ nf g + nfai — nfcg—di® +ifg +iaf _
3" -

, : 0 (28)
aei— afh— dbi+ dch+ gbf — gce J

I adhg-adh+ aegg+ a’e - abd+ nd’h - dneg- ndah+ ndbg+ gdh-eg” + gdb:0 (29)
G- aei-afh—dbi+dch+ gbf - gce

ca [~ bdha+ begg+ beg+bae-b”d + nedh-ne’g — neah+ nebg+ dh* — heg-hae_ 0l@0)
Gz aei- afh—dbi+ dch+ gbf — gce

eq. - -cdhg-dch+ cegar gee+ cae—cbd+ nfdh—nfeg-nfah+ nfbg+idh—ieg—aei+dbi _ —/q° +4-q-2 (31)
% aei-afh—dbi+dch+ gbf - gce 2

We form the next system:

S= {eqv €q,,€d;,€q,,€0,,€0;,€q;,, €0, eqas} (32)

Were we have to mention that solving calculus of (eceq), is also too voluminous, and we chosed not to
mention there, because is an elementary one. After solwéengibe equations system, with nine unknowns,
depending on two parameters (g, n), we obtain solutions for thosknowns as follows:

+40%+4
a=-q b=n+1 c:%
2n+2 Jai+4 2
Solutions {d =2 +q;rq 472 o-n +2n2+nq+q f=0 (33)
g=0 h=1 i=-1
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It follows that the three-dimensional matrix, associatedh Wit vector space, which helped us to perform
the transformation is V:

+40%+4
-q n+1 arva r2 g
2
v=|2n*2+g+aya +4 n®+2n+ng+q 0 (34)
2 2
0 1 -1

Discution:

» The associated matrix of V-vector space thus found has a gaafoem, depending on initially
given constants, and it can turn the connections matrixntd a connections matrix B, in any
situation, regardless of the values of the physical cots{&;, K, , K3), with only one condition
that the V—matrix be non singular.

« V and his inverse V, are parametric type and by reason, it is possibleatsform matrix A into
matrix B, in the general case, regardless of the physoradtants of the system.

With matrix B, this 2% order differential system, described in form of equa¢i8), becomes:

m d*X,(t) s
k, dt Vg *4mgTe . 97< 5 0 X, (t)
2
V: idGnig(l) = -q n 0 1 5~ 1 5 (35)
kz dt _ q2+4_q_2 [g_xl(t)] [€+X1(t)]
m, d*X,(t) 0 0 St X, (t)
k, dt’
Which involves solving a system of a 3 - differential e, with this decoupled form:
m, d*X,(t) _ya°+4-q-2
8) b X, (t)
5 t 2
2
p LOCO) e M 2
k, dt [e-X, (O [e+X,(1)]
m, d*X,(t) _-v9°+4-q-2
0) CdZ X,(t)
5 t 2
These three differential equations will be separately dolag follows:
a) The first 2% order linear equation, written in the following form:
2 \Jg?+4-q-2
T 78725 0 =0 (37)

dt? m, 2
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Where we denote the first oscillator’'s own pulsation:

2 __ﬁ@/q2+4—q—2
2

W = (38)
m
The general solution of differential equation is:
X, (t) =, + e (39)
Where, after transformation, using Euler’s formulasaweve at:
X, (t) = Xy Sin(wr t + ¢,) (40)

b) The second nonlinear differential equation, in this uncoupleth,farill have the following
resolution, based on the authors’ earlier work [2], wherertbgon of a single spring-mass-magnet
in magnetic field was considered, and where analytwatisn of elliptic sine form functions was
found.

In the description of the Jacobi elliptical functions, ived by this problem resolution, what has been taken
into account is the dedicated content of two scientiffgeps [8] and [9].

With the purpose of finding the form for the analytitusion of differential equation, we have to proceed as
shown below. Equation solving metod presented in [2],v@lsummarized in the following way:

M = - kzn k2n =- ka - ka
) = gl X, (1) + WO X OF T X, OF

_ - 41)
[e-X, (O [e+X, )]

We firstly calculate the<1p and P parameters from the roots of the right member of uppeerdifitial

equation:
k k
=Root —k X, + —=—-—2——=0
& { X, [+ X, TP } “
and
p= Roo{—(1+ p2k2)x1p+2p2k2xfp: } (43)

After this we get the eccentricity argument of elliptia¢tion as follows:

1
k(P %) = —=5— (44
Py2x%; —1

We can calculate then the time argument of elliptic tiondn this mode:

10
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If we consider, the initial gived function, wich is the righémber of (41), a§r :

Fomk X e K (45)
r [E_xl] [£+X1]

We find a special prototype functionF-p, starting from our dedicated form of the right membefakws:

- |- 2,2
F,(u,v, p,k,xo)—u 1+ p“k )XO 5

2p2k2 3] (46)

For finding (u, v) - constants, the next system of integgaations is implied, in order to solve our problem:

K k
F,=F c»—u(1+p2k2)x +2vp2k2x3: kX pt 3 - 3
pr P P p [e-x 12 [£+X 12
. . P P (47)
P P
[FpdX= [F dX
0 0

With specification that the first equation is solved fé(rlb P, K - being constants, and the second one is

integrated for variable X, and for constan{s; k.

After the above system is solved for finding (u, v) - cant, we have to identify the coefficients of the
expression, provided from the right member of (41):

— X, @2X + 2%, %KX 2 = x,a?k2X = —u(L+ p2k)X +2vpZkEX? g

Starting from the system:

—X,a° =X, :—u(1+p %)
(49)
2X,a°k? = 2vp 22
where after solving it fol? , we will be able to obtain the final form of the function.
= 50
Gn (Xl(t)) x (50)

M ‘[2X01—1

Wich is a Jacobi sine, elliptic solution of our partiabdema.
In the previously formulated problem, what has been taken imtmuat is a number of some constructive

ideas from the authors’ research work [10,11]. The probiesolution consists of finding an analitical
general formula to get the interaction between lineamamiinear subystems.

11
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c) The third one is a second order linear equation, and iewiit the form:

dt? m,

(51)
We denote the second oscillator’'s own pulsation:

__ky o ra-a-2) (52
m, 2

2
a)Z

The general solution of this differential equation is:

X,(t) = e + e (53)
After transformation, using Euler formulas, we get:

X, (t) = Xg sin(@,t +¢,) (54)

as we obtain the following system sollutions, written in gigia

Xl(t):X01S|n(C()_|_t+¢l)

{3 {4
V: Gn(Xl(t))=X01 sn \/X— t, > (55)
01 1 2X01_1
XZ(t):X02 Sin(a)2t+¢2)
Finding the final form of those two solutions involves a basfiva transformation:
Searched V matrix, associatedto V - vector spaces . Decuplatedform of solutions
solutions -q n+1 a+ VZ +4 x01sin(w1t+¢1)
X, 2 2
1 ' '
E:G (X)) |= 2n+2+q;q a”*4 n +2n2+nq+q 0 Xo1 SN 3, 4 (56)
X, (1) 0 1 -1 Vo1 2x5, -1
X0 sin(wzt +9,)
Discusion:

= We use the inverse vector transformation method, of diffiefeequations, which has been
described also in other research work, where we can memtick [7].

=  We will return to the basic vector space for finding gemeral solution to this problem in the initial
given conditions.

=  After inverse transformation, the unknown functian; (X 1) , will have no effect and will not be
written.

12
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We finally find the general solution in E space, as follow

2
X,(t) = —q X, sin(@yt + @) + (N +1)x,, sn s ) W |, q+/q? +4
Voo 23 -1 2

Xop SIN(@W,t + 4,)

(57)

Z, 4 .
X, (t) = Xy SN t, =X, Sin(at + @,
t) xs[m m]x ina,t +¢,)

3 A Specific Numerical Application

With the purpose of applying into practice the analyticdlitton presented above, we take a numerical
application, so that the double nonlinear oscillator has theriled behavior.

We start to give numerical values of physical constattseliminate the parameters considered in the
beginning, and to highlight the existence of the functionashal

Although there are many other possible physical valueheotonstants, we have selected the next set of
values, because the obtained effect is similar to thetipah experimental situation, from which we have
started, and we developed the theoretical study.

£=5mm
m; =1.26%
Numerical Val Mo =11819 8
= 5
umerical Values k; =0.585mN/mm (58)
ko =1ImN/mm
ka=1ImN/mm
We denote by:
kl
q=—=0.585 (59)
k2
and:
n=Xs_q (60)
k,
The system of nonlinear second order differential equatiormne=
d?X, (1) 1 1
1.265——3~ = -0.585X, (1) +[ X, (t) = X, (1)] + -
e (1) + X, (1) = X, (1] B-X, O B+X, O
d’G,(X,) _ 1 ~ 1
dt* [5- X, (0]* [5+ X, (1)
d?X,(t
11819220 = 1, 0 - x, ) 1)

13
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Matrix B will take the form:

-025 O 0
B=|-0585 1 0
0 0 -2334

The vector space that decouples the solutions of our systebew

-0585 2 1334
V= 29 208 O
0 1 -1

Our system is rewritten in a quasi-diagonal form, in thetarespace thus founded:

2
1265dx—§(t)
de?(t —025 0 O X
% =|-0.5851 0 [5 )2-(1:)]2 _[5+>2- (t)]2
—_ - ! '
gdXe [ L0 0 -233 %0
dt?

This implies solving three isolated differential equatiaagollows:

d?X 4 ()
dt 2
d%Gp(Xq) 1 1

a) 1.265 =-0.25 X()

b) =-0585 Xq()+ -
dt 2

d?X 5 (1)
c) 118~ ~27=-2334 X,(t)
dt 2

We solve separately these tree differential equations:

a) The first 2% order linear differential equation, having the proper atios:

025 / 025
= = =,|—— =0.444 rad/s
& 1.256 “ 1.256

With solutions:

Xl(t) = x01sm(0.444 t)

[5-X, ®]% [5+X, (1)]°

(62)

(63)

(64)

(65)

(66)

(67)

14
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b) The second order, non-linear differential equation whiate elliptical solution, are solved in the
following:

Ecuation (42) and (43) are becaming:

x, = Roo{F; =0)= (—5.554,—4.376 0,4.376,5.5549 (68
And:

p= Roo{—(1+ p2)(4.376+2 p2(4.37@3=0} = 0.1637 )

For the eccentricity argument we get:

6.107
K(p,X%,) =

)=——
Txg = (70)

The (45) and (46) form becomes:

F, (x1)=-0:585 X,(0)+ 1 5" ! 5 (72)
[5-X; (D] [5+X, ()]
The found prototype function will be:
Fp (Xl) = —0.89635789(1 + 0.04679999(f (72)

The both functions have the same roots, and comparison grdphtefd functions is shown below.

+ F)
(mN)

Initial function (F;) - = -Modified function (Fr)

Fig. 2. Thegraph of (Fp, F,) functions, with the same roots and the same inter gr aphic area
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The time argument will become:
0.93432
a=———
VX0

Finally we obtain the function:

(73)

0.9343: 6.107

t,
\/Z /—2 x§ 1 (74)

Which is accompanied by the mulgraph as a function of t and initial positi

Gn(xl) = XOl sn

.l | | , '.IL .
U \WF M jl et
_1_5———11——/——4\:'——;{ —Jr—/——\—l— !}—I—_
1 Y |I
| I

sl -4+ - - — [ 4 =t | x_- 4375

Hp= 1.5 mm - —-=Xp=3mm HKo=4.35 mm

Fig. 3. Graph of G, function, deppending on starting possition

c) The third 2 order linear differential equation, in this foi

d2X H(t)

1181 +2334 X,(t)=0 (75)
dt 2

With proper pulsation:

_ 2334 e W, = 1}@ =0.444 rad/s (76)
1181 1181

And we get a trigopnometric form of solutio

X2(t) = X9 sin(0.444 t) (77)
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4 Discussion

In order to produce mechanical oscillations withorftolled halts”, as their existence has been
experimentally demonstrated, for the first time,thbg authors and presented in Fig. 9, we have cdhibee
physical constants of the system, so that thosecomoponents in trigonometric sine, must have theesa
frequency of oscillation.

The component that oscillates after elliptic sia@,lwill have a variable frequency, which dependgte
strength of the eccentricity of the nonlinear comgrd. It can be adjusted iny)Xinitial start position, so
there is an equal condition of oscillation frequesc The system naturally tends to self-synchrgnize
becoming stronger or weaker in eccentricity to tHah frequency.

In this way, the system will always tend to selégulate in a natural way, the main oscillator will
periodically enter in standby (stops), synchrorgzinith the frequency of the second oscillator, wahic
requires in fact the repetition frequency of thisqess.

In order to get controlled halts it is indicatedpmduce a difference between the individual ostihs
frequencies, by choosing the physical constantsgetgand elastic constant of the springs).

The phenomenon will be simulated for that value mél, in order to achievey = w2 = 0)2 =044

1 2

a=093%32_ a6 x  =43734 (78)

So the start position for the main oscillator witlve the value above.

We found a system with three decoupled solutioxglained as it follows:

Xl(t) = XOls'n(0'444 t)

093432 6.107 79)

t,
[x 02 _
01 2x01 1

X 2(t) =X5o sin(0.444 t)

A Gn(X(t)) =X SN

To reach the basic vector space solution, we parfiorultiplications. We will introduce them in a lisue
combination, using inverse vector transformatioricews, in order to obtain the final solution, iwh we
have searched.

We will have to find the final solutions, as shotelow:

Xy, SIN(044 t)

X, (t) -0585 2 1334 0.93432 6.107
E:|G,(X(t)|=|] 29 208 0 Xop SN | — t, : (80)
X - V%o 2x; -1

(D) 0 1 1

X, SIN(0.44 t)

17
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«  We will return to the basic vector space for firglthe general solution of this problem in the aiiti
conditions.

+ Since the nonlinear functios , (x,) was artificially introduced in the vector spaceivhas no
physical significance in base vector space E anddtresponding equation will not be written.

0.93432, ' _6.107 |, 1334 sin(0.4441)
VXor V2x5, -1 (81)

0.93432 6.107

t,
\/701 V 2X§1 -1

4.1 We associate the most important, graphic representations, in the following:

X, (t) = —0.585,, sin(0.444 t) + 2x,, Sn

X, (t) = X,y SN = X,, SIiN(0.444 1)

The previous formula has the following graph, whiobludes the corresponding values of some initial
perturbations applied to the two oscillators.

It was considered that these two oscillators weri@ed in motion at time t = 0, with zero initigled.

a) For

=4.3732 mm
{Xm )

X5, =—1.0 mm

We have the graph bellow:

Xty

5 — ——., — . — —

L [ ) [N .

o~/ \_~_J L~

o 02 0.4 0.6 0.8 L0 12

Main oscillator possition in time Second oscillator possition in time

Fig. 4. Graph for the given physical system and starting conditions a

In the Fig. 4, are graphically represented theionogquations (81), as a function of time, for thitial
conditions (82). The grey line represents the ldwmotion for the second oscillator and the blaicle |
represents the law of motion of the main oscillator

b) For:
=4.3732 mm
X01 (83)
x02:—0.1 mm
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We have the graph bellow:

X(E)
19 |-

— —

Time(sec)

[ [ )
_ J \__

-10

o 02 04 0.6 0.8 1.0 12

Main oscillator possition in time Second oscillator possition in time

Fig. 5. Graph for given physical system and starting conditions b
In the upper graph, we see what is happen if we maititaiimitial startingposition of the main oscillato
and we modify only the starting positions of the secondacjlaber (10 times lower thhan the previ
example). We obtain the changing of the graphic concavity of asaifator, as can be se

c) For:

=4.373 mm
{xm o

Xp, =15 mm

If the starting positionX,, is in the same direction wiX,,;, we obtain the next graph.

X(E)
8 mm

. - /\\ N
s WY i W o PO
R N A VR R W

N N AN

0 02 04 0.6 08 1.0 1.2

Main oscillator possition in time Second oscillator possition in time

Fig. 6. Graph for given physical system and starting condition of item ¢

d) For:

{xm =4.373mm
(85)

Xg, =1.95 mm

19



Nistor et al.; BJMCS, 16(5): 1-23, 2016; Article.BOMCS.24446

If the same value 0K, is more increasing, as it overpasses a certaiit, lthen we can notice that the

subsystems change their roles, as is shown inakefigure. The second oscillator is halt for aiperof
time, while the main oscillator, make speediest em@nts, as it can be seen in the following:

Xit)
g (mm)

2N 2\ A
e WY o W o VO
N A Nt B

\v4 \v4 \/

-8
0 0.2 04 0.6 0.8 1.0 12
Main oscillator possition in time Second oscillator possition in time
Fig. 7. Graph for given physical system and starting condition of item d
e) For:

(86)

Xoy =4.373mm
Xgp =23 mm

As we see, if the same value X, is more increasing, the graph concavity are noanging, like in the

follow:

Xit)
mim

ey N\ N\
L e
0

R AR A
. \// \/ \,

0 0.2 0.4 0.6 0.8 1.0 1.2

Main oscillator possition in time Second oscillator possition in time

Fig. 8. Graph for given physical system and starting condition e
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f)

The theoretical study presented above is confirmed by hexxperimental resul

Description of the xperimental device, which also was conducted by the aythotghis iss not the subj
of this work, and will be treated in other scientifiticle, that will be a more complex model, tezhfor the
experimental point of view, by considering of frin forces, disipative interactions between magi
dipole -dipole interactions and excitation forc

By reason, we present the graphic result of experimeess| ilustrating the mechanicall system bigina
based on the numerical acquisition of ¢ and their further processing. The presented expstiah
situation is most similar with upper theoretical case la

12

]

X(t) mm

Time (sec

02 o4 ] oE 11

Fig. 9. Graph for experimental results

5 Conclusions

We have come to the following main conclusit

In the mechanical systepresented in this research paper, the two oscillatingsystems do n
produce beats phenomenon during their oscillations. Surprisaltiypugh both swbsystems do
have the same individual frequency of oscillation, thayckyonize and oscillate: ihase, taking
turns. In the end, a composition of the oscillations isetdound, in subtractive ancd additive w

In terms of application, during the motion laws simulatioa,have noticed that tthis system ha
optimum performance, in the circumstas in which m is at least the double of;m

The oscillations which are presented in this paper, maykedsobtained, in an . artificial way,
mathematical terms, by composing the elliptic sine androgetric sine functioins, under cer
circumstances

The halt time of main oscillator depends on the physmastants of the system, sspecifically on
mass difference between the first and the second subis

Those two subsystems could have different oscillafguencies and in this case the k of

oscillations can occur, while the component which osedlatfter an elliptic sine law, will have
variable frequency, depending on the strength of eccentiicitye nonlinear fielc

Both subsystems naturally tend to - synchronize, the nonlinedield of the main oscillato
becoming stronger or weaker in elliptic eccentridity,adjusting its frequency with the seco

In fact, the mass difference between these-coupled oscillating subsystems is offset by a n
profound or superficial peence in a nonlinear field, because the subsystems 2 naturally ten
to come into play and give each other tir*Controlled halts” are produced without mechan
collision, from a distance, by transferring mechanicatmaotum, through the cormmon sprive

regularly transfer momentum, through spring connection, usecauring shutddown/startup,

secondary oscillar is accelerated, respectively deceler:
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The motion equations include three components, thigmnometric equations and one elliptical
equation. It may be said that these allow for thectiption of several other types of movements,
not yet shown from an experimental point of viewt they were highlighted by the initial
conditions (start) of the mechanical subsystemd thay were shown in the graphics.

We specify that this phenomenon, which is discayened presented in this study, has been used in
the construction of a new type of mechanical engimbich is based on controlled halts of
movement.

By using special nonlinear transformations, we apmethod of algebraic vector transformation,
applicable to linear systems in a nonlinear case,stated analytical results being in accordance
with experimental results.

As this is a theoretical article, the physical ekpent and the experimental data have not been
described in detail, as exceeding the purposdsopaper.
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