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ABSTRACT 
 

Hearing loss is known to be a worldwide common problem caused by noise, aging, disease, and 
heredity. The aim of this study was to investigate how hearing thresholds evolve over time and how 
this evolution depends on age. Hearing thresholds were measured on 226 subjects the at different 
time-points and were categorized into normal (< 25 dB), mild (25 - 40 dB), moderate (41 - 65 dB) 
and severe ( ≥  66 dB). A marginal model using Generalized Estimating Equations (GEE) and a 
generalized linear mixed model (GLMM) were fitted to the data. From both models it was observed 
that older subjects tend to have more hearing loss. In addition, from GLMM, it was noticed that the 
rate of decrease in hearing ability is larger for an older subject. This shows that the evolution of 
hearing loss depend on age at entry into the study. Empirical Bayes estimates were considered in 
GLMM to make inference about the random effects. It can be concluded that age has an effect on 
hearing thresholds and on their evolution over time. 

Short Research Article 
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1. INTRODUCTION  
 
Hearing loss is a common problem caused by 
noise, aging, disease, and heredity. It is a 
complex sense involving both the ear’s ability to 
detect sounds and the brain’s ability to interpret 
those sounds, including the sounds of speech. 
The hearing ability of an individual can be 
assessed through the hearing threshold, which is 
the minimum sound level of a pure tone that an 
average ear with normal hearing can hear with 
no other sound present [1]. In general clinicians 
measure the sound in dB HL (decibels Hearing 
Level), where thresholds between -10 and +20 
dB HL are considered in the normal range and 
thresholds above 20 dB HL are considered 
diagnostic for mild, moderate, severe or profound 
hearing loss. To determine the hearing threshold, 
different type audiometers can be considered. A 
popular technique to measure the thresholds is 
known to be Bekesy [2]. 
 
Worldwide, hearing loss affects more than 360 
million people, being one of the most common 
conditions affecting older and elderly adults. 
Approximately one in three people between the 
ages of 65 and 74 has hearing loss and nearly 
half of those older than 75 have difficulty hearing. 
Frequently hearing loss is related to age, 
meaning that the hearing ability gradually 
reduces as an individual grows older. Moreover, 
age-related hearing loss can be caused by other 
issues such as: diabetes, poor blood circulation, 
exposure to loud noise, family history of hearing 
loss, smoking, etc. [3,4]. The impact of hearing 
loss can be functional, social, emotional and 
economic depending on the individual and the 
level of the problem. A study conducted confirms 
that dizziness causing falling, diabetes and 
arthritis types other than osteoarthritis and 
rheumatic arthritis were significantly associated 
with poor hearing ability [5]. 
 
The main objective of this paper is to investigate 
how the hearing threshold evolves over time and 
how this evolution depends on age. 
 
Section 2 of this paper provides the description 
of the data and a brief discussion on marginal 
and random effects models focusing mainly on 
Generalized Estimating Equations (GEE) and 
Generalized Linear Mixed Models (GLMM) 
respectively. Next, results of the study are 
presented in section 3. Finally, in section 4 main 
conclusions are described and a brief discussion 

on transition models together with some 
suggestions for further research is given. 
 
2. METHODOLOGY  
 
2.1 Data and Variables  
 
The data considered in this paper consisted of 
226 individuals who were submitted to a hearing 
test. Hearing thresholds (in dB) were measured 
over time at a frequency of 500 Hz, for the left 
ear only. The choice for only left ear was 
arbitrary but the choice for a frequency of 500Hz 
is due to the fact that sound frequencies between 
500 and 4000 Hz include the frequencies            
most important for speech [6]. In total,              
873 measurements were obtained. These 
measurements were taken in a sound-proof 
chamber, by means of a Bekesy audiometer. 
Negative values means that less than the initial 
signal was needed to be heard. The hearing 
thresholds were categorized into normal (< 25 
dB), mild (25 - 40 dB), moderate (41 - 65 dB) and 
severe ( ≥ 66 dB) [7]. For each subject the 
identification number, time since entry in the 
study (in years), and age at entry in the study (in 
years) were observed. 
 
2.2 Exploratory Data Analysis  
 
In order to get more insight in the data, 
descriptive statistics were performed. 
 
2.3 Marginal Models  
 
Marginal models provide a straightforward way to 
extend generalized linear models to longitudinal 
data. They directly model the mean response            

at each occasion, ( )ij ijE Y | X , using an 

appropriate link function. Because the focus is on 
the marginal mean and its dependence on the 
covariates, marginal models do not necessarily 
require full distributional assumptions for the 
vector of repeated responses, only a regression 
model for the mean response [8]. 
 
Within the frame of marginal model there are 
several approaches. These include full-likelihood, 
pseudo-likelihood and non-likelihood. In full-
likelihood based approach the benefit is on the 
efficiency and also one can specify the joint 
probability. Nevertheless, the modelling of             
full-likelihood based models suffers from 
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computational complexity and there is also an 
increased risk of model misspecification. 
Therefore, when one is interested in marginal 
mean parameters and pairwise interactions, a full 
likelihood procedure can be replaced by quasi-
likelihood based methods. It is also worth 
mentioning that full-likelihood and quasi-
likelihood methods coincide for exponential 
families and that the quasi-likelihood estimating 
equations provide consistent estimates of the 
regression parameters in any generalized linear 
model, even for choices of link and variance 
functions that do not correspond to exponential 
families [9]. 
 
Since likelihood based approaches are 
somewhat more difficulty to formulate in non-
Gaussian data, [10] proposed a more flexible 
semi-parametric approach, so-called Generalized 
Estimating Equations (GEE), which require only 
the correct specification of the univariate 
marginal distributions provided one is willing to 
adopt working assumptions about the association 
structure. It is worth noting that, GEE has the net 
benefit of yielding asymptotically and consistent 
estimates, even under wrong working correlation 
assumption [8]. Despite the existence of several 
type of GEE, in this report only the classical 
GEE, so-called GEE1 were considered. 
 
The nature of the response variable in this report 
is multicategorical, and due to the fact that the 
interest is to study the marginal evolution of 
hearing threshold, GEE deemed appropriate to fit 
an averaged population model. Since there is a 
natural ordering in the response variable, 
proportional odds model was considered: 
 

j 0c 1

2 3

logit( (  c | , ))=  + 

+  +  ;   = 1, 2, 3
ij ij i i

ij i ij

Pr Y Time Age Age  

Time Age Time c

β β
β β

≤

×
 (1) 

 
Where Yij is the hearing loss at occasion j for 
subject i; Agei is the age of individual i at the time 
of entry into the study; and Timeij is the time 
point at which measurement j is taken for subject 

i. The 'siβ  represent the regression parameters. 

Time and age effects with powers larger than 
one were found not to be significant and 
therefore not considered as part of the mean 
structure. The model was only fitted using the 
independence working correlation structure due 
to lack of support of other correlation structures 
for ordinal data. Although the independence 
assumption is not realistic for the current setting, 
GEE correct for misspecification of the working 

correlation structure through the sandwhich 
estimator [11]. 
 
2.4 Random Effects Models  
 
Random effects models can be seen as a 
straightforward extension of generalized linear 
models by adding random effects. These random 
effects can be introduced in the probabilities 
directly or in the linear predictor. Due to the 
longitudinal nature of the data, the Generalized 
Linear Mixed Model (GLMM) is the most 
commonly used random effects model where 
random effects are added in the linear predictor 
to explain within-subject variability. To model the 
mean response at each occasion, it is 
conditioned upon the random effects, 

( ),ij ij iE Y | X b . In contrast to marginal models, 

random effects models allow one to study the 
evolution of each subject separately and also 
predict the subject-specific evolution [11]. 
 
In GLMM the marginal likelihood is used as the 
basis for inferences about fixed parameters. In 
general, evaluation and maximization of the 
marginal likelihood for GLMMs requires 
integration over the distribution of the random 
effects. This also applies for the linear mixed-
effects, but for the linear mixed model the 
integration can be done analytically, which 
means that there is a closed form for the 
marginal likelihood, implying that the application 
of maximum or restricted maximum likelihood is 
straightforward. In the absence of an analytical 
solution, and because high-dimensional 
numerical integration can be very difficult, a 
variety of approaches has been suggested for 
tackling this problem [8]. 
 
Since no closed form for the integral exists for 
non-gaussian response, different numerical 
approximations have been proposed: 
approximation of integrand (e.g Laplace 
approximation), approximation of data (e.g 
Penalized Quasi-Likelihood and Marginal Quasi-
Likelihood), and approximation of the integral 
(e.g Adaptive and Non-Adaptive Gaussian 
Quadrature). Due to the fact that the data is 
discrete, the Laplace and Quasi-likelihood 
approaches yield quite biased estimators of the 
variance components, which leads to biased 
estimators of the fixed effect parameters and 
were therefore not considered. Adaptive 
Gaussian Quadrature, with numerical integration 
centered around empirical Bayes estimates of 
the random effects, allows maximization of the 
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marginal likelihood with any desired degree of 
accuracy [8]. Taking this all into account, 
Adaptive Gaussian Quadrature was used to fit 
the random effects model. 
 
As in the marginal case, the same proportional-
odds model for hearing thresholds is considered 
by adding random effects to account for the 
within-subject association. A contrast test for 
common slopes was conducted to verify the 
proportional odds assumption [12]. The following 
random effects model was considered: 
 

( )j 0

1 2 3

logit( (  c | , ))= +b  

+ +  + ;  

 = 1, 2, 3

ij ij i 0c i

i ij i ij

Pr Y Time Age

Age  Time Age Time

c

β
β β β

≤

×
  

(2) 

 
Where b0i represent the random intercept for 
subject i and for the other terms in the model the 
same notation applies as in the marginal model. 
The subject-specific random intercepts ( 0ib ) are 

assumed to be independent and normally 

distributed with zero mean and variance 2
bσ  and 

are estimated by using empirical Bayes 
prediction. 
 
2.5 Software  
 
SAS 9.4 was used for statistical analysis and R 
3.1.1 for graphical illustrations. 
 
3. RESULTS  
 
3.1 Exploratory Data Analysis  
 
From the 227 subjects who were involved in the 
study, data about hearing ability was missing for 
one individual (id = 224). The data was found to 
be highly unbalanced since the time-points were 
not commonly fixed for all individuals and 
unequally spaced. 
 
The summary statistics of hearing loss at the 
start of the study are provided in Table 1. It is 
observed that the distribution of subjects across 
the categories is highly unbalanced with almost 
all subjects having a normal hearing ability and 
no individuals were found to have a severe 
hearing loss, since the largest hearing threshold 
was observed to be 46 dB which is less than the 
low limit of the severe category. The age of the 
individuals at the entry in the study ranges from 
18.30 to 87 years, where the average age at the 
entry seems to be different for the three 

categories with older subjects having a larger 
amount of hearing loss on average at baseline. 
 

Table 1. Summary statistics of hearing loss 
for the four categories at the first 

measurement 
 

Hearing loss Number of  
subjects 

Average  
age 

Normal 216 51.07 
Mild 9 66.17 
Moderate 1 73.50 
Severe - - 

 
The individual profiles of 40 randomly selected 
patients using continuous hearing score are 
displayed in Fig. 1. From these profiles it is 
observed that there is a lot of between-subject 
and less, but still high, within-subject variability 
according to the evolution of hearing ability over 
time. Since there were large differences in 
hearing threshold at baseline, subject-specific 
intercepts for the individuals might be a good 
choice. However, age can also attribute to those 
differences in hearing thresholds at the start of 
the study. 
 

3.2 Generalized Estimating Equations  
 
In fitting the marginal model, the independence 
working correlation assumption was considered. 
In Table 2 the parameter estimates together with 
the empirically corrected standard errors are 
presented. Age of the subject at entry into the 
study showed a significant effect on the hearing 
loss. It can be observed that older individuals 

have a higher probability of hearing loss ( 1̂ 0β >

and 3
ˆ 0β > ). Time and the interaction between 

age and time were found not to be significant, 
nevertheless it can be noticed that the decrease 
of hearing ability is faster for older patients. 
 
3.3 Generalized Linear Mixed Model  
 
It was observed that there is no evidence against 
the proportional odds assumption (F = 2.33,             
P = 0.08). The model summary statistics are 
presented in Table 3 by adaptive Gaussian 
quadrature with increasing accurate of 
approximation. It was noticed that the parameter 
estimates are more consistent and converse 
quickly by applying adaptive Gaussian 
quadrature. The GLMM with adaptive Gaussian 
quadrature approximation and Q equal to 50 
were considered to be the final random effects 
model. 
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From the generalized linear mixed model it was 
also observed that Age of the subject at entry 
into the study had a significant effect on hearing 
ability. Condition on the subject, older individuals 
has a higher probability of hearing loss. Next, the 
interaction between Age and Time was found to 
be significant, as a borderline situation (P = 
0.04). For a particular subject, the rate of 
decrease in hearing ability is larger when he or 
she is older. Time had no significant effect on the 
hearing thresholds. In addition, the variability of 
the random intercepts was about 6.51 and 
determines the size of deviation from the mean 
intercept as a source of within-subject variability. 
 
In Table 4, a comparison of the parameter 
estimates and standard errors is presented for 
both marginal and random effects model under 
consideration. It was observed that the results for 

both model families were more or less similar, 
with same direction of effect. However, the 
estimates have a different interpretation and the 
estimates from the generalized linear mixed 
model were always bigger in magnitude. 
 
3.4 Empirical Bayes Estimates  
 
A plot for the empirical Bayes estimates bi of the 
random intercepts is shown in Fig. 2. It was 
observed that there is a lot of shrinkage towards 
the prior mean of the random intercepts (zero). 
Besides, there were some outliers detected in 
the estimates. A histogram plot of the estimates 
of random intercepts is shown in Fig. A1. Same 
conclusions can be made since almost all 
random intercepts were estimated to be zero and 
a few outliers were found, especially negative 
estimates. 

 

 
 

Fig. 1. Individual profiles of 40 randomly selected subjects 
 

Table 2. GEE parameter estimates with empirically corrected standard errors 
 
Effect Parameter Estimate Standard error  P- value 
Intercept 1 

01β
 

-9.4275 1.7165 < 0.0001 

Intercept 2 
02β  -7.1506 1.6252 < 0.0001 

Age 
1β  

0.0680 0.0239 0.0044 

Time 
2β  -0.0572 0.1643 0.7300 

Age x Time 
3β  0.0023 0.0028 0.4000 
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Table 3. GLMM parameter estimates and standard errors by QUAD for various Q 

 
Effect Parameter Q=5 Q=15 Q=50 

Estimate (s.e) Estimate (s.e) Estimate (s.e) 
Intercept 1 

01β  -14.0643 (2.0330) -14.5314 (2.1655) -14.2880 (2.0800) 

Intercept 2 
02β  -10.4739 (2.2101) -10.8743 (2.3718) -10.6856 (2.2705) 

Age   
1β  0.0842 (0.0287) 0.0881 (0.0295) 0.0872 (0.0288) 

Time  
2β  -0.3105 (0.2351) -0.3192 (0.2385) -0.3139 (0.2353) 

Age x Time   
3β  0.0083 (0.0042) 0.0086 (0.0042) 0.0084 (0.0042) 

var(bi)  2
bσ  6.3787 (2.2924) 7.1398 (2.8346) 6.5128 (2.4392) 

 
Table 4. Parameter estimates (standard errors) for marginal model (GEE1) and random effects 

model (GLMM) with QUAD integration (Q=50) together with ratio of both sets of parameters 
and standard errors 

 
Effect Parameter GEE1 GLMM Ratio 
Intercept 1 

01β  -9.4275 (1.7165) -14.2880 (2.0800) 1.5156; 1.2118 

Intercept 2 
02β  -7.1506 (1.6252) -10.6856 (2.2705) 1.4944; 1.3971 

Age 
1β  0.0680 (0.0239) 0.0872 (0.0288) 1.2824; 1.2050 

Time 
2β  -0.0572 (0.1643) -0.3139 (0.2353) 5.4878; 1.4321 

Age x Time 
3β  0.0023 (0.0028) 0.0084 (0.0042) 3.6522; 1.5000 

 

 
 

Fig. 2. Distribution of empirical Bayes estimates of random intercepts (bi) 
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4. DISCUSSION AND CONCLUSIONS  
 
The aim of this paper was to investigate how 
hearing thresholds evolve over time and how 
these evolutions depended on age. Since 
missing data was observed, the measurements 
were not taken at fixed time points and the time 
between measurements were not equally 
spaced, methodologies that can deal with the 
longitudinal nature of the unbalanced data were 
required in order to provide meaningful results. 
The hearing thresholds were quatrichotomized 
into different categories: normal (< 25 dB), mild 
(25 - 40 dB), moderate (41 - 65 dB) and severe               
( ≥66 dB). 
 
Extensions of generalized linear models using 
logit link were considered as a way to deal with 
discrete longitudinal data. First, a marginal model 
using GEE1 method to obtain population-
averaged estimates was fitted under 
independence working correlation structure. 
Although the choice of working assumption could 
be found as unrealistic due to the longitudinal 
nature of the data, a misspecification of the 
correlation structure would not harm the 
parameter estimates of interest [8]. It was 
observed that at a certain time on average older 
individuals have higher probabilities of hearing 
loss. This is supported by [3] where hearing loss 
was found to be age-related. It was also noticed 
that the decrease of hearing ability was faster for 
older patients, though it was not found to be 
significant. Further, time was not found to have 
an effect on hearing thresholds. Since the 
interest is based on the average population, the 
marginal model is preferable and provides us the 
parameters of interest. The advantage of GEE is 
that it only requires a correct specification of the 
univariate marginal distributions by assuming a 
working assumption about the correlation 
structure such that the parameters could be 
estimated without making full distributional 
assumptions [11]. 
 
As a random effects model, generalized linear 
mixed model was fitted using random intercepts 
to account for within-subject variability. The final 
random effect model was considered as the 
generalized linear mixed model using numerical 
integration (Adaptive Gaussian quadrature with 
50 quadrature points). While the marginal model 
had the focus on the population-averaged 
evolution of hearing thresholds depending on 
age, the random effects model has the benefit to 
draw inferences on the subject-specific evolution 

of hearing thresholds [9]. Although the parameter 
estimates for the marginal model and random 
effects model cannot be compared, similar 
directions of effects were noticed. However, in 
the generalized linear mixed model it was found 
that the rate of decrease in hearing ability is 
larger for an older subject, condition on the 
random effects. In both models age had an effect 
on the hearing loss, with increasing hearing loss 
when the age of a subject increases. In 
magnitude the parameter estimates and standard 
errors obtained by GEE in the marginal model 
was smaller compared to those obtained from 
the generalized linear mixed model. 
 
In GLMM, as well as in the linear mixed model, 
empirical Bayes estimates are used to make 
inference about the random effects. Although 
most of the time the interest is in the fixed-effects 
parameters, empirical Bayes estimates can be 
used to make prediction on the random effects. 
Moreover, one can use empirical Bayes 
estimates to study the subject specific profile or 
to make prediction of the subject-specific 
evolution. For linear mixed-effects models with 
the classical normal assumption for the random 
effects, deviations from the normality assumption 
for the random effects have very little impact on 
the estimation of the fixed-effects parameters. 
On the other hand, in GLMM misspecification of 
the random-effects distribution can lead to 
seriously biased estimates for the fixed-effects 
parameters. However, there is no formal test to 
check the validity of the normality assumption, 
since this could be a result of the fact that the 
prior distribution dominates the posterior 
(shrinkage towards the prior mean of the random 
intercept), which is probably the case in this 
study due to missingness. Moreover, empirical 
Bayes estimates can be useful for identifying 
outlying observations [8]. 
 
Another way to deal with longitudinal data is by 
considering transition models as a special class 
of conditional models where the conditional 
distribution of the response at any occasion is 
modelled given a set of previous responses and 
the covariates [8]. Transition models assume the 
Markov structure for the longitudinal process to 
encompass the correlating among the repeated 
measures [13]. However, transition models have 
been criticized because the interpretation of fixed 
effect parameters is conditioned on the previous 
measurements. In addition, transition models 
have limitations that it is applicable for repeated 
measures that are equally separated over           
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time, but more difficult to apply when there are 
missing data, mistimed measurements, and non-
equidistant intervals between measurement 
occasions [11]. Moreover, estimation of the 
regression parameters is very sensitive to 
assumptions concerning the time dependence 
and the interpretation changes with the order of 
serial dependence. Based on these arguments 
and due to the fact that the number of 
measurements per subject regarding hearing 
threshold were not equal and the time points at 
which the measurements were taken were not 
equally spaced, transitional models were 
deemed not appropriate and were therefore not 
considered. 
 
Some limitations could be taken into account for 
improvement. First, the marginal model with GEE 
was fitted assuming a strong assumption of 
MCAR. However, patterns in missingness could 
be explored in order to define whether 
techniques such as weighted GEE or multiple 
imputation could be considered (Fitzmaurice et 
al., 2009) to provide an appropriate analysis 
technique for incomplete data. In addition, only a 
few individuals were found to have mild, 
moderate or severe hearing loss. Therefore, 
quatrichotomization might not be the best choice 
to analyse hearing thresholds. Finally other 
important factors that can be studied related to 
hearing thresholds, such as gender or other 
causes of hearing loss, can be considered to 
reduce the between-subject variability. 
 
COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 
REFERENCES 
 
1. Durrant JD, Lovrinic JH.  Bases of hearing 

sciences. 5th ed. United States of America: 
Williams & Wilkins; 1984. 

2. Lee J, Diar S, Abel R, Banakis R, Grolley 
E, Zecker S, Siegel J. Behavioral hearing 
thresholds between 0.125 and 20 kHz 
using depth-compensated ear simulator 

calibration. Ear Hear. 2012;33(3):315-329. 
3. World Health Organization. Deafness and 

hearing loss.  
(Accessed 2 February 2014)  
Available:http://www.who.int/mediacentre/f
actsheets/fs300/en/ 

4. NIDCD - National Institute on Deafness 
and other Communication Disorders. Age-
Related Hearing Loss.  
(Accessed 24 April 2015)  
Available:http://www.nidcd.nih.gov/health/h
earing/Pages/Age-Related-Hearing-
Loss.aspx 

5. Stam M, Kostense PJ, Lemke U, Merkus 
P, Smit JH, Festen JM, Kramer SE. 
Comorbidity in adults with hearing 
difficulties: Which chronic medical 
conditions are related to hearing 
impairment? International Journal of 
Audiology. 2014;53:392–401. 

6. Sharma K. Aural rehabilitation of hearing 
impaired children. New Delhi: Sarup & 
Sons; 2006. 

7. Davis H, Silverman SR. Auditory test 
hearing aids. Davis H, Silverman SR. 
Hearing and deafness. Holt: Rinehart and 
Winston. 1970;253-79. 

8. Fitzmaurice G, Davidian M, Verbeke G, 
Molenberghs G. Longitudinal data 
analysis. Hand-books of Modern Statistical 
Methods. New York: Chapman & Hall / 
CRC; 2009. 

9. Verbeke G, Molenberghs G. Linear mixed 
models for longitudinal data. New York: 
Springer; 2000. 

10. Zeger SL, Liang KY. Longitudinal data 
analysis for discrete and continuous 
outcomes: Biometrics. 1986;42(1):121-
130. 

11. Molenberghs G, Verbeke G. Models for 
discrete longitudinal data. New York: 
Springer; 2005. 

12. Stroup WW. Generalized linear mixed 
models, modern concepts, methods and 
applications. Florida: Taylor & Francis 
Group, LLC; 2013. 

13. Wu L. Mixed effects models for complex 
data. Florida: Chapman & Hall/CRC; 2010. 

 
 
 
 
 
 

 



 
 
 
 

Adjei et al.; BJAST, 16(1): 1-9, 2016; Article no.BJAST.25948 
 
 

 
9 
 

APPENDIX 
 

 
 

Fig. A1. Histogram of empirical Bayes estimates of random intercepts (bi) 
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